1
|
Espadas G, Morales-Sanfrutos J, Medina R, Lucas MC, Novoa EM, Sabidó E. High-performance nano-flow liquid chromatography column combined with high- and low-collision energy data-independent acquisition enables targeted and discovery identification of modified ribonucleotides by mass spectrometry. J Chromatogr A 2022; 1665:462803. [PMID: 35042139 DOI: 10.1016/j.chroma.2022.462803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 01/10/2023]
Abstract
Over 170 post-transcriptional RNA modifications have been described and are common in all kingdoms of life. These modifications range from methylation to complex chemical structures, with methylation being the most abundant. RNA modifications play a key role in RNA folding and function and their dysregulation in humans has been linked to several diseases such as cancer, metabolic diseases or neurological disorder. Nowadays, liquid chromatography-tandem mass spectrometry is considered the gold standard method for the identification and quantification of these modifications due to its sensitivity and accuracy. However, the analysis of modified ribonucleosides by mass spectrometry is complex due to the presence of positional isomers. In this scenario, optimal separation of these compounds by highly sensitive liquid chromatography combined with the generation of high-information spectra is critical to unequivocally identify them, especially in high-complex mixtures. Here we present an analytical method that comprises a new type of mixed-mode nano-flow liquid chromatography column combined with high- and low-collision energy data-independent mass spectrometric acquisition for the identification and quantitation of modified ribonucleosides. The method produces content-rich spectra and combines targeted and screening capabilities thus enabling the identification of a variety of modified nucleosides in biological matrices by single-shot liquid chromatographic analysis coupled to mass spectrometry.
Collapse
Affiliation(s)
- Guadalupe Espadas
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Julia Morales-Sanfrutos
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Rebeca Medina
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain
| | - Morghan C Lucas
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Eva Maria Novoa
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Eduard Sabidó
- Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Spain; Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| |
Collapse
|
2
|
Gregorova P, Sipari NH, Sarin LP. Broad-range RNA modification analysis of complex biological samples using rapid C18-UPLC-MS. RNA Biol 2020; 18:1382-1389. [PMID: 33356826 PMCID: PMC8494288 DOI: 10.1080/15476286.2020.1853385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Post-transcriptional RNA modifications play an important role in cellular metabolism with homoeostatic disturbances manifesting as a wide repertoire of phenotypes, reduced stress tolerance and translational perturbation, developmental defects, and diseases, such as type II diabetes, leukaemia, and carcinomas. Hence, there has been an intense effort to develop various methods for investigating RNA modifications and their roles in various organisms, including sequencing-based approaches and, more frequently, liquid chromatography–mass spectrometry (LC-MS)-based methods. Although LC-MS offers numerous advantages, such as being highly sensitive and quantitative over a broad detection range, some stationary phase chemistries struggle to resolve positional isomers. Furthermore, the demand for detailed analyses of complex biological samples often necessitates long separation times, hampering sample-to-sample turnover and making multisample analyses time consuming. To overcome this limitation, we have developed an ultra-performance LC-MS (UPLC-MS) method that uses an octadecyl carbon chain (C18)-bonded silica matrix for the efficient separation of 50 modified ribonucleosides, including positional isomers, in a single 9-min sample-to-sample run. To validate the performance and versatility of our method, we analysed tRNA modification patterns of representative microorganisms from each domain of life, namely Archaea (Methanosarcina acetivorans), Bacteria (Pseudomonas syringae), and Eukarya (Saccharomyces cerevisiae). Additionally, our method is flexible and readily applicable for detection and relative quantification using stable isotope labelling and targeted approaches like multiple reaction monitoring (MRM). In conclusion, this method represents a fast and robust tool for broad-range exploration and quantification of ribonucleosides, facilitating future homoeostasis studies of RNA modification in complex biological samples.
Collapse
Affiliation(s)
- Pavlina Gregorova
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Nina H Sipari
- Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki Finland
| | - L Peter Sarin
- RNAcious Laboratory, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Gonzalez G, Cui Y, Wang P, Wang Y. Normalized retention time for scheduled liquid chromatography-multistage mass spectrometry analysis of epitranscriptomic modifications. J Chromatogr A 2020; 1623:461181. [PMID: 32505282 PMCID: PMC7962276 DOI: 10.1016/j.chroma.2020.461181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/01/2023]
Abstract
Investigations into post-transcriptional modifications of RNA and their regulatory proteins have revealed pivotal roles of these modifications in cellular functions. A robust method for the quantitative analysis of modified nucleosides in RNA may facilitate the assessment about their functions in RNA biology and disease etiology. Here, we developed a sensitive nano-liquid chromatography-multistage mass spectrometry (nLC-MS3) method for profiling simultaneously 27 modified ribonucleosides. We employed normalized retention time (iRT) and scheduled selected-reaction monitoring (SRM) to achieve high-throughput analysis, where we assigned iRT values for modified ribonucleosides based on their relative elution times with respect to the four canonical ribonucleosides. The iRT scores allowed for reliable predictions of retention times for modified ribonucleosides with the use of two types of stationary phase materials and various mobile phase gradients. The method enabled the identification of 20 modified ribonucleosides with the use of the enzymatic digestion mixture of 2.5 ng total RNA and facilitated robust quantification of modified cytidine derivatives in total RNA. Together, we established a scheduled SRM-based method for high-throughput analysis of modified ribonucleosides with the use of a few nanograms of RNA.
Collapse
Affiliation(s)
| | - Yuxiang Cui
- Environmental Toxicology Graduate Program, United States
| | - Pengcheng Wang
- Environmental Toxicology Graduate Program, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, United States; Department of Chemistry, University of California, Riverside, California 92521, United States.
| |
Collapse
|
4
|
Mass Spectrometry to Study Chromatin Compaction. BIOLOGY 2020; 9:biology9060140. [PMID: 32604817 PMCID: PMC7345930 DOI: 10.3390/biology9060140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
Abstract
Chromatin accessibility is a major regulator of gene expression. Histone writers/erasers have a critical role in chromatin compaction, as they “flag” chromatin regions by catalyzing/removing covalent post-translational modifications on histone proteins. Anomalous chromatin decondensation is a common phenomenon in cells experiencing aging and viral infection. Moreover, about 50% of cancers have mutations in enzymes regulating chromatin state. Numerous genomics methods have evolved to characterize chromatin state, but the analysis of (in)accessible chromatin from the protein perspective is not yet in the spotlight. We present an overview of the most used approaches to generate data on chromatin accessibility and then focus on emerging methods that utilize mass spectrometry to quantify the accessibility of histones and the rest of the chromatin bound proteome. Mass spectrometry is currently the method of choice to quantify entire proteomes in an unbiased large-scale manner; accessibility on chromatin of proteins and protein modifications adds an extra quantitative layer to proteomics dataset that assist more informed data-driven hypotheses in chromatin biology. We speculate that this emerging new set of methods will enhance predictive strength on which proteins and histone modifications are critical in gene regulation, and which proteins occupy different chromatin states in health and disease.
Collapse
|
5
|
Haghighi F, Talebpour Z, Nezhad AS. Towards fully integrated liquid chromatography on a chip: Evolution and evaluation. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Dudley E, Bond L. Mass spectrometry analysis of nucleosides and nucleotides. MASS SPECTROMETRY REVIEWS 2014; 33:302-31. [PMID: 24285362 DOI: 10.1002/mas.21388] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 05/12/2023]
Abstract
Mass spectrometry has been widely utilised in the study of nucleobases, nucleosides and nucleotides as components of nucleic acids and as bioactive metabolites in their own right. In this review, the application of mass spectrometry to such analysis is overviewed in relation to various aspects regarding the analytical mass spectrometric and chromatographic techniques applied and also the various applications of such analysis.
Collapse
Affiliation(s)
- Ed Dudley
- Institute of Mass Spectrometry, College of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | | |
Collapse
|
7
|
On-line solid phase extraction–liquid chromatography, with emphasis on modern bioanalysis and miniaturized systems. J Pharm Biomed Anal 2014; 87:120-9. [DOI: 10.1016/j.jpba.2013.05.006] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 11/24/2022]
|
8
|
Wicke L, Engels JW. An unexpected methyl group migration during on-column Stille derivatization of RNA. Tetrahedron 2014. [DOI: 10.1016/j.tet.2013.11.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Qin Z, Baker AT, Raab A, Huang S, Wang T, Yu Y, Jaspars M, Secombes CJ, Deng H. The fish pathogen Yersinia ruckeri produces holomycin and uses an RNA methyltransferase for self-resistance. J Biol Chem 2013; 288:14688-97. [PMID: 23572522 DOI: 10.1074/jbc.m112.448415] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Holomycin and its derivatives belong to a class of broad-spectrum antibacterial natural products containing a rare dithiolopyrrolone heterobicyclic scaffold. The antibacterial mechanism of dithiolopyrrolone compounds has been attributed to the inhibition of bacterial RNA polymerase activities, although the exact mode of action has not been established in vitro. Some dithiopyrrolone derivatives display potent anticancer activities. Recently the biosynthetic gene cluster of holomycin has been identified and characterized in Streptomyces clavuligerus. Here we report that the fish pathogen Yersinia ruckeri is a holomycin producer, as evidenced through genome mining, chemical isolation, and structural elucidation as well as genetic manipulation. We also identified a unique regulatory gene hom15 at one end of the gene cluster encoding a cold-shock-like protein that likely regulates the production of holomycin in low cultivation temperatures. Inactivation of hom15 resulted in a significant loss of holomycin production. Finally, gene disruption of an RNA methyltransferase gene hom12 resulted in the sensitivity of the mutant toward holomycin. A complementation experiment of hom12 restored the resistance against holomycin. Although the wild-type Escherichia coli BL21(DE3) Gold is susceptible to holomycin, the mutant harboring hom12 showed tolerance toward holomycin. High resolution liquid chromatography (LC)-ESI/MS analysis of digested RNA fragments demonstrated that the wild-type Y. ruckeri and E. coli harboring hom12 contain a methylated RNA fragment, whereas the mutated Y. ruckeri and the wild-type E. coli only contain normal non-methylated RNA fragments. Taken together, our results strongly suggest that this putative RNA methyltransferase Hom12 is the self-resistance protein that methylates the RNA of Y. ruckeri to reduce the cytotoxic effect of holomycin during holomycin production.
Collapse
Affiliation(s)
- Zhiwei Qin
- Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sakaguchi R, Giessing A, Dai Q, Lahoud G, Liutkeviciute Z, Klimasauskas S, Piccirilli J, Kirpekar F, Hou YM. Recognition of guanosine by dissimilar tRNA methyltransferases. RNA (NEW YORK, N.Y.) 2012; 18:1687-1701. [PMID: 22847817 PMCID: PMC3425783 DOI: 10.1261/rna.032029.111] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 06/16/2012] [Indexed: 06/01/2023]
Abstract
Guanosines are important for biological activities through their specific functional groups that are recognized for RNA or protein interactions. One example is recognition of N(1) of G37 in tRNA by S-adenosyl-methionine (AdoMet)-dependent tRNA methyltransferases to synthesize m(1)G37-tRNA, which is essential for translational fidelity in all biological domains. Synthesis of m(1)G37-tRNA is catalyzed by TrmD in bacteria and by Trm5 in eukarya and archaea, using unrelated and dissimilar structural folds. This raises the question of how dissimilar proteins recognize the same guanosine. Here we probe the mechanism of discrimination among functional groups of guanosine by TrmD and Trm5. Guanosine analogs were systematically introduced into tRNA through a combination of chemical and enzymatic synthesis. Single turnover kinetic assays and thermodynamic analysis of the effect of each analog on m(1)G37-tRNA synthesis reveal that TrmD and Trm5 discriminate functional groups differently. While both recognize N(1) and O(6) of G37, TrmD places a much stronger emphasis on these functional groups than Trm5. While the exocyclic 2-amino group of G37 is important for TrmD, it is dispensable for Trm5. In addition, while an adjacent G36 is obligatory for TrmD, it is nonessential for Trm5. These results depict a more rigid requirement of guanosine functional groups for TrmD than for Trm5. However, the sensitivity of both enzymes to analog substitutions, together with an experimental revelation of their low cellular concentrations relative to tRNA substrates, suggests a model in which these enzymes rapidly screen tRNA by direct recognition of G37 in order to monitor the global state of m(1)G37-tRNA.
Collapse
Affiliation(s)
- Reiko Sakaguchi
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Anders Giessing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Qing Dai
- Departments of Biochemistry & Molecular Biology, and Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, USA
| | - Georges Lahoud
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Zita Liutkeviciute
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - Saulius Klimasauskas
- Department of Biological DNA Modification, Institute of Biotechnology, Vilnius University, LT-02241 Vilnius, Lithuania
| | - Joseph Piccirilli
- Departments of Biochemistry & Molecular Biology, and Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, USA
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
11
|
Larsen LHG, Rasmussen A, Giessing AMB, Jogl G, Kirpekar F. Identification and characterization of the Thermus thermophilus 5-methylcytidine (m5C) methyltransferase modifying 23 S ribosomal RNA (rRNA) base C1942. J Biol Chem 2012; 287:27593-600. [PMID: 22711535 DOI: 10.1074/jbc.m112.376160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methylation of cytidines at carbon-5 is a common posttranscriptional RNA modification encountered across all domains of life. Here, we characterize the modifications of C1942 and C1962 in Thermus thermophilus 23 S rRNA as 5-methylcytidines (m(5)C) and identify the two associated methyltransferases. The methyltransferase modifying C1942, named RlmO, has not been characterized previously. RlmO modifies naked 23 S rRNA, but not the assembled 50 S subunit or 70 S ribosomes. The x-ray crystal structure of this enzyme in complex with the S-adenosyl-l-methionine cofactor at 1.7 Å resolution confirms that RlmO is structurally related to other m(5)C rRNA methyltransferases. Key residues in the active site are located similar to the further distant 5-methyluridine methyltransferase RlmD, suggestive of a similar enzymatic mechanism. RlmO homologues are primarily found in mesophilic bacteria related to T. thermophilus. In accordance, we find that growth of the T. thermophilus strain with an inactivated C1942 methyltransferase gene is not compromised at non-optimal temperatures.
Collapse
Affiliation(s)
- Line H G Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | | | | | |
Collapse
|
12
|
Mogensen KB, Kutter JP. Carbon nanotube based stationary phases for microchip chromatography. LAB ON A CHIP 2012; 12:1951-1958. [PMID: 22566131 DOI: 10.1039/c2lc40102a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have already been demonstrated in more classical formats, for improved separation performance in gas and liquid chromatography, and for unique applications in solid phase extraction. Carbon nanotubes are now also entering the field of microfluidics, where there is a large potential to be able to provide integrated, tailor-made nanotube columns by means of catalytic growth of the nanotubes inside the fluidic channels. An evaluation of the different implementations of carbon nanotubes and related carbon-based nanomaterials for microfluidic chromatography devices is given in terms of separation performance and ease of fabrication.
Collapse
Affiliation(s)
- Klaus B Mogensen
- Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | | |
Collapse
|
13
|
Giessing AMB, Kirpekar F. Mass spectrometry in the biology of RNA and its modifications. J Proteomics 2012; 75:3434-49. [PMID: 22348820 DOI: 10.1016/j.jprot.2012.01.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/20/2012] [Accepted: 01/26/2012] [Indexed: 01/31/2023]
Abstract
Many powerful analytical techniques for investigation of nucleic acids exist in the average modern molecular biology lab. The current review will focus on questions in RNA biology that have been answered by the use of mass spectrometry, which means that new biological information is the purpose and outcome of most of the studies we refer to. The review begins with a brief account of the subject "MS in the biology of RNA" and an overview of the prevalent RNA modifications identified to date. Fundamental considerations about mass spectrometric analysis of RNA are presented with the aim of detailing the analytical possibilities and challenges relating to the unique chemical nature of nucleic acids. The main biological topics covered are RNA modifications and the enzymes that perform the modifications. Modifications of RNA are essential in biology, and it is a field where mass spectrometry clearly adds knowledge of biological importance compared to traditional methods used in nucleic acid research. The biological applications are divided into analyses exclusively performed at the building block (mainly nucleoside) level and investigations involving mass spectrometry at the oligonucleotide level. We conclude the review discussing aspects of RNA identification and quantifications, which are upcoming fields for MS in RNA research. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Collapse
Affiliation(s)
- Anders M B Giessing
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | |
Collapse
|
14
|
Havelund JF, Giessing AMB, Hansen T, Rasmussen A, Scott LG, Kirpekar F. Identification of 5-hydroxycytidine at position 2501 concludes characterization of modified nucleotides in E. coli 23S rRNA. J Mol Biol 2011; 411:529-36. [PMID: 21723290 DOI: 10.1016/j.jmb.2011.06.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
Complete characterization of a biomolecule's chemical structure is crucial in the full understanding of the relations between their structure and function. The dominating components in ribosomes are ribosomal RNAs (rRNAs), and the entire rRNA-but a single modified nucleoside at position 2501 in 23S rRNA-has previously been characterized in the bacterium Escherichia coli. Despite a first report nearly 20 years ago, the chemical nature of the modification at position 2501 has remained elusive, and attempts to isolate it have so far been unsuccessful. We unambiguously identify this last unknown modification as 5-hydroxycytidine-a novel modification in RNA. Identification of 5-hydroxycytidine was completed by liquid chromatography under nonoxidizing conditions using a graphitized carbon stationary phase in combination with ion trap tandem mass spectrometry and by comparing the fragmentation behavior of the natural nucleoside with that of a chemically synthesized ditto. Furthermore, we show that 5-hydroxycytidine is also present in the equivalent position of 23S rRNA from the bacterium Deinococcus radiodurans. Given the unstable nature of 5-hydroxycytidine, this modification might be found in other RNAs when applying the proper analytical conditions as described here.
Collapse
Affiliation(s)
- Jesper Foged Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|