1
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Peters-Clarke TM, Quan Q, Anderson BJ, McGee WM, Lohr E, Hebert AS, Westphall MS, Coon JJ. Phosphorothioate RNA Analysis by NETD Tandem Mass Spectrometry. Mol Cell Proteomics 2024; 23:100742. [PMID: 38401707 PMCID: PMC11047293 DOI: 10.1016/j.mcpro.2024.100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
Therapeutic RNAs are routinely modified during their synthesis to ensure proper drug uptake, stability, and efficacy. Phosphorothioate (PS) RNA, molecules in which one or more backbone phosphates are modified with a sulfur atom in place of standard nonbridging oxygen, is one of the most common modifications because of ease of synthesis and pharmacokinetic benefits. Quality assessment of RNA synthesis, including modification incorporation, is essential for drug selectivity and performance, and the synthetic nature of the PS linkage incorporation often reveals impurities. Here, we present a comprehensive analysis of PS RNA via tandem mass spectrometry (MS). We show that activated ion-negative electron transfer dissociation MS/MS is especially useful in diagnosing PS incorporation, producing diagnostic a- and z-type ions at PS linkage sites, beyond the standard d- and w-type ions. Analysis using resonant and beam-type collision-based activation reveals that, overall, more intense sequence ions and base-loss ions result when a PS modification is present. Furthermore, we report increased detection of b- and x-type product ions at sites of PS incorporation, in addition to the standard c- and y-type ions. This work reveals that the gas-phase chemical stability afforded by sulfur alters RNA dissociation and necessitates inclusion of additional product ions for MS/MS of PS RNA.
Collapse
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Qiuwen Quan
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benton J Anderson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Emily Lohr
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander S Hebert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA
| | - Michael S Westphall
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin, USA; Morgridge Institute for Research, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Brademan DR, Riley NM, Kwiecien NW, Coon JJ. Interactive Peptide Spectral Annotator: A Versatile Web-based Tool for Proteomic Applications. Mol Cell Proteomics 2019; 18:S193-S201. [PMID: 31088857 PMCID: PMC6692776 DOI: 10.1074/mcp.tir118.001209] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/21/2019] [Indexed: 11/06/2022] Open
Abstract
Here we present IPSA, an innovative web-based spectrum annotator that visualizes and characterizes peptide tandem mass spectra. A tool for the scientific community, IPSA can visualize peptides collected using a wide variety of experimental and instrumental configurations. Annotated spectra are customizable via a selection of interactive features and can be exported as editable scalable vector graphics to aid in the production of publication-quality figures. Single spectra can be analyzed through provided web forms, whereas data for multiple peptide spectral matches can be uploaded using the Proteomics Standards Initiative file formats mzTab, mzIdentML, and mzML. Alternatively, peptide identifications and spectral data can be provided using generic file formats. IPSA provides supports for annotating spectra collecting using negative-mode ionization and facilitates the characterization of experimental MS/MS performance through the optional export of fragment ion statistics from one to many peptide spectral matches. This resource is made freely accessible at http://interactivepeptidespectralannotator.com, whereas the source code and user guides are available at https://github.com/coongroup/IPSA for private hosting or custom implementations.
Collapse
Affiliation(s)
- Dain R Brademan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706; Genome Center of Wisconsin, Madison, WI 53706
| | - Nicholas M Riley
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706; Genome Center of Wisconsin, Madison, WI 53706
| | - Nicholas W Kwiecien
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706; Genome Center of Wisconsin, Madison, WI 53706
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706; Morgridge Institute for Research, Madison, WI 53715; Genome Center of Wisconsin, Madison, WI 53706; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
4
|
Kempkes LJM, Martens J, Berden G, Oomens J. w-Type ions formed by electron transfer dissociation of Cys-containing peptides investigated by infrared ion spectroscopy. JOURNAL OF MASS SPECTROMETRY : JMS 2018; 53:1207-1213. [PMID: 30281881 PMCID: PMC6283004 DOI: 10.1002/jms.4298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/24/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
In mass spectrometry-based peptide sequencing, electron transfer dissociation (ETD) and electron capture dissociation (ECD) have become well-established fragmentation methods complementary to collision-induced dissociation. The dominant fragmentation pathways during ETD and ECD primarily involve the formation of c- and z• -type ions by cleavage of the peptide backbone at the N─Cα bond, although neutral losses from amino acid side chains have also been observed. Residue-specific neutral side chain losses provide useful information when conducting database searching and de novo sequencing. Here, we use a combination of infrared ion spectroscopy and quantum-chemical calculations to assign the structures of two ETD-generated w-type fragment ions. These ions are spontaneously formed from ETD-generated z• -type fragments by neutral loss of 33 Da in peptides containing a cysteine residue. Analysis of the infrared ion spectra confirms that these z• -ions expel a thiol radical (SH• ) and that a vinyl C═C group is formed at the cleavage site. z• -type fragments containing a Cys residue but not at the cleavage site do not spontaneously expel a thiol radical, but only upon additional collisional activation after ETD.
Collapse
Affiliation(s)
- Lisanne J. M. Kempkes
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryNijmegenThe Netherlands
| | - Jonathan Martens
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryNijmegenThe Netherlands
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryNijmegenThe Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX LaboratoryNijmegenThe Netherlands
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
5
|
Lermyte F, Valkenborg D, Loo JA, Sobott F. Radical solutions: Principles and application of electron-based dissociation in mass spectrometry-based analysis of protein structure. MASS SPECTROMETRY REVIEWS 2018; 37:750-771. [PMID: 29425406 PMCID: PMC6131092 DOI: 10.1002/mas.21560] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 05/11/2023]
Abstract
In recent years, electron capture (ECD) and electron transfer dissociation (ETD) have emerged as two of the most useful methods in mass spectrometry-based protein analysis, evidenced by a considerable and growing body of literature. In large part, the interest in these methods is due to their ability to induce backbone fragmentation with very little disruption of noncovalent interactions which allows inference of information regarding higher order structure from the observed fragmentation behavior. Here, we review the evolution of electron-based dissociation methods, and pay particular attention to their application in "native" mass spectrometry, their mechanism, determinants of fragmentation behavior, and recent developments in available instrumentation. Although we focus on the two most widely used methods-ECD and ETD-we also discuss the use of other ion/electron, ion/ion, and ion/neutral fragmentation methods, useful for interrogation of a range of classes of biomolecules in positive- and negative-ion mode, and speculate about how this exciting field might evolve in the coming years.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Dirk Valkenborg
- Centre for Proteomics, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Agoralaan, Diepenbeek, Belgium
- Applied Bio and Molecular Systems, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Joseph A Loo
- Department of Biological Chemistry, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- UCLA/DOE Institute for Genomics and Proteomics, University of California-Los Angeles, Los Angeles, California
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, California
| | - Frank Sobott
- Biomolecular and Analytical Mass Spectrometry Group, Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
6
|
Affiliation(s)
- Nicholas
M. Riley
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Genome
Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department
of Biomolecular Chemistry, University of
Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Morgridge
Institute for Research, Madison, Wisconsin 53715, United States
| |
Collapse
|
7
|
Rush MJP, Riley NM, Westphall MS, Syka JEP, Coon JJ. Sulfur Pentafluoride is a Preferred Reagent Cation for Negative Electron Transfer Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1324-1332. [PMID: 28349437 PMCID: PMC5483201 DOI: 10.1007/s13361-017-1600-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 05/10/2023]
Abstract
Negative mode proteome analysis offers access to unique portions of the proteome and several acidic post-translational modifications; however, traditional collision-based fragmentation methods fail to reliably provide sequence information for peptide anions. Negative electron transfer dissociation (NETD), on the other hand, can sequence precursor anions in a high-throughput manner. Similar to other ion-ion methods, NETD is most efficient with peptides of higher charge state because of the increased electrostatic interaction between reacting molecules. Here we demonstrate that NETD performance for lower charge state precursors can be improved by altering the reagent cation. Specifically, the recombination energy of the NETD reaction-largely dictated by the ionization energy (IE) of the reagent cation-can affect the extent of fragmentation. We compare the NETD reagent cations of C16H10●+ (IE = 7.9 eV) and SF5●+ (IE = 9.6 eV) on a set of standard peptides, concluding that SF5●+ yields greater sequence ion generation. Subsequent proteome-scale nLC-MS/MS experiments comparing C16H10●+ and SF5●+ further supported this outcome: analyses using SF5●+ yielded 4637 peptide spectral matches (PSMs) and 2900 unique peptides, whereas C16H10●+ produced 3563 PSMs and 2231 peptides. The substantive gain in identification power with SF5●+ was largely driven by improved identification of doubly deprotonated precursors, indicating that increased NETD recombination energy can increase product ion yield for low charge density precursors. This work demonstrates that SF5●+ is a viable, if not favorable, reagent cation for NETD, and provides improved fragmentation over the commonly used fluoranthene reagent. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Matthew J P Rush
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
- Department of Genome Center, University of Wisconsin, Madison, WI, 53706, USA
| | - Nicholas M Riley
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
- Department of Genome Center, University of Wisconsin, Madison, WI, 53706, USA
| | - Michael S Westphall
- Department of Genome Center, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Joshua J Coon
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA.
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706, USA.
- Department of Genome Center, University of Wisconsin, Madison, WI, 53706, USA.
- Mordgridge Institute for Research, Madison, WI, 53705, USA.
| |
Collapse
|
8
|
Fuhs SR, Hunter T. pHisphorylation: the emergence of histidine phosphorylation as a reversible regulatory modification. Curr Opin Cell Biol 2017; 45:8-16. [PMID: 28129587 DOI: 10.1016/j.ceb.2016.12.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/31/2016] [Indexed: 12/30/2022]
Abstract
Histidine phosphorylation is crucial for prokaryotic signal transduction and as an intermediate for several metabolic enzymes, yet its role in mammalian cells remains largely uncharted. This is primarily caused by difficulties in studying histidine phosphorylation because of the relative instability of phosphohistidine (pHis) and lack of specific antibodies and methods to preserve and detect it. The recent synthesis of stable pHis analogs has enabled development of pHis-specific antibodies and their use has started to shed light onto this important, yet enigmatic posttranslational modification. We are beginning to understand that pHis has broader roles in protein and cellular function including; cell cycle regulation, phagocytosis, regulation of ion channel activity and metal ion coordination. Two mammalian histidine kinases (NME1 and NME2), two pHis phosphatases (PHPT1 and LHPP), and a handful of substrates were previously identified. These new tools have already led to the discovery of an additional phosphatase (PGAM5) and hundreds of putative substrates. New methodologies are also being developed to probe the pHis phosphoproteome and determine functional consequences, including negative ion mode mass spectroscopy and unnatural amino acid incorporation. These new tools and strategies have the potential to overcome the unique challenges that have been holding back our understanding of pHis in cell biology.
Collapse
Affiliation(s)
- Stephen Rush Fuhs
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
9
|
Riley NM, Bern M, Westphall MS, Coon JJ. Full-Featured Search Algorithm for Negative Electron-Transfer Dissociation. J Proteome Res 2016; 15:2768-76. [PMID: 27402189 DOI: 10.1021/acs.jproteome.6b00319] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Negative electron-transfer dissociation (NETD) has emerged as a premier tool for peptide anion analysis, offering access to acidic post-translational modifications and regions of the proteome that are intractable with traditional positive-mode approaches. Whole-proteome scale characterization is now possible with NETD, but proper informatic tools are needed to capitalize on advances in instrumentation. Currently only one database search algorithm (OMSSA) can process NETD data. Here we implement NETD search capabilities into the Byonic platform to improve the sensitivity of negative-mode data analyses, and we benchmark these improvements using 90 min LC-MS/MS analyses of tryptic peptides from human embryonic stem cells. With this new algorithm for searching NETD data, we improved the number of successfully identified spectra by as much as 80% and identified 8665 unique peptides, 24 639 peptide spectral matches, and 1338 proteins in activated-ion NETD analyses, more than doubling identifications from previous negative-mode characterizations of the human proteome. Furthermore, we reanalyzed our recently published large-scale, multienzyme negative-mode yeast proteome data, improving peptide and peptide spectral match identifications and considerably increasing protein sequence coverage. In all, we show that new informatics tools, in combination with recent advances in data acquisition, can significantly improve proteome characterization in negative-mode approaches.
Collapse
Affiliation(s)
- Nicholas M Riley
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Marshall Bern
- Protein Metrics, Inc. , San Carlos, California 94070, United States
| | - Michael S Westphall
- Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Genome Center of Wisconsin, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.,Department of Biomolecular Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Halim MA, Girod M, MacAleese L, Lemoine J, Antoine R, Dugourd P. 213 nm Ultraviolet Photodissociation on Peptide Anions: Radical-Directed Fragmentation Patterns. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:474-86. [PMID: 26545767 DOI: 10.1007/s13361-015-1297-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 05/25/2023]
Abstract
Characterization of acidic peptides and proteins is greatly hindered due to lack of suitable analytical techniques. Here we present the implementation of 213 nm ultraviolet photodissociation (UVPD) in high-resolution quadrupole-Orbitrap mass spectrometer in negative polarity for peptide anions. Radical-driven backbone fragmentation provides 22 distinctive fragment ion types, achieving the complete sequence coverage for all reported peptides. Hydrogen-deficient radical anion not only promotes the cleavage of Cα-C bond but also stimulates the breaking of N-Cα and C-N bonds. Radical-directed loss of small molecules and specific side chain of amino acids are detected in these experiments. Radical containing side chain of amino acids (Tyr, Ser, Thr, and Asp) may possibly support the N-Cα backbone fragmentation. Proline comprising peptides exhibit the unusual fragment ions similar to reported earlier. Interestingly, basic amino acids such as Arg and Lys also stimulated the formation of abundant b and y ions of the related peptide anions. Loss of hydrogen atom from the charge-reduced radical anion and fragment ions are rationalized by time-dependent density functional theory (TDDFT) calculation, locating the potential energy surface (PES) of ππ* and repulsive πσ* excited states of a model amide system.
Collapse
Affiliation(s)
- Mohammad A Halim
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Marion Girod
- Institut des Sciences Analytiques, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Luke MacAleese
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Jérôme Lemoine
- Institut des Sciences Analytiques, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Rodolphe Antoine
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France
| | - Philippe Dugourd
- Institut Lumière Matière, Université Lyon 1 - CNRS, Université de Lyon, 69622, Villeurbanne Cedex, France.
| |
Collapse
|
11
|
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
12
|
Riley NM, Rush MJP, Rose CM, Richards AL, Kwiecien NW, Bailey DJ, Hebert AS, Westphall MS, Coon JJ. The Negative Mode Proteome with Activated Ion Negative Electron Transfer Dissociation (AI-NETD). Mol Cell Proteomics 2015; 14:2644-60. [PMID: 26193884 DOI: 10.1074/mcp.m115.049726] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Indexed: 01/15/2023] Open
Abstract
The field of proteomics almost uniformly relies on peptide cation analysis, leading to an underrepresentation of acidic portions of proteomes, including relevant acidic posttranslational modifications. Despite the many benefits negative mode proteomics can offer, peptide anion analysis remains in its infancy due mainly to challenges with high-pH reversed-phase separations and a lack of robust fragmentation methods suitable for peptide anion characterization. Here, we report the first implementation of activated ion negative electron transfer dissociation (AI-NETD) on the chromatographic timescale, generating 7,601 unique peptide identifications from Saccharomyces cerevisiae in single-shot nLC-MS/MS analyses of tryptic peptides-a greater than 5-fold increase over previous results with NETD alone. These improvements translate to identification of 1,106 proteins, making this work the first negative mode study to identify more than 1,000 proteins in any system. We then compare the performance of AI-NETD for analysis of peptides generated by five proteases (trypsin, LysC, GluC, chymotrypsin, and AspN) for negative mode analyses, identifying as many as 5,356 peptides (1,045 proteins) with LysC and 4,213 peptides (857 proteins) with GluC in yeast-characterizing 1,359 proteins in total. Finally, we present the first deep-sequencing approach for negative mode proteomics, leveraging offline low-pH reversed-phase fractionation prior to online high-pH separations and peptide fragmentation with AI-NETD. With this platform, we identified 3,467 proteins in yeast with trypsin alone and characterized a total of 3,730 proteins using multiple proteases, or nearly 83% of the expressed yeast proteome. This work represents the most extensive negative mode proteomics study to date, establishing AI-NETD as a robust tool for large-scale peptide anion characterization and making the negative mode approach a more viable platform for future proteomic studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Joshua J Coon
- From the ‡Department of Chemistry, §Genome Center, and ¶Department of Biomolecular Chemistry University of Wisconsin, Madison, Wisconsin, 53706
| |
Collapse
|
13
|
Guo M, Pan Y, Zhang R, Cao Y, Chen J, Pan Y. The specific cleavage of lactone linkage to open-loop in cyclic lipopeptide during negative ESI tandem mass spectrometry: the hydrogen bond interaction effect of 4-ethyl guaiacol. PLoS One 2014; 9:e104835. [PMID: 25144459 PMCID: PMC4140680 DOI: 10.1371/journal.pone.0104835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/13/2014] [Indexed: 11/27/2022] Open
Abstract
Mass spectrometry is a valuable tool for the analysis and identification of chemical compounds, particularly proteins and peptides. Lichenysins G, the major cyclic lipopeptide of lichenysin, and the non-covalent complex of lichenysins G and 4-ethylguaiacol were investigated with negative ion ESI tandem mass spectrometry. The different fragmentation mechanisms for these compounds were investigated. Our study shows the 4-ethylguaiacol hydrogen bond with the carbonyl oxygen of the ester group in the loop of lichenysins G. With the help of this hydrogen bond interaction, the ring structure preferentially opens in lactone linkage rather than O-C bond of the ester-group to produce alcohol and ketene. Isothermal titration 1H-NMR analysis verified the hydrogen bond and determined the proportion of subject and ligand in the non-covalent complex to be 1∶1. Theoretical calculations also suggest that the addition of the ligand can affect the energy of the transition structures (TS) during loop opening.
Collapse
Affiliation(s)
- Mengzhe Guo
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Youlu Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Rong Zhang
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Yang Cao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jianzhong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Robinson MR, Moore KL, Brodbelt JS. Direct identification of tyrosine sulfation by using ultraviolet photodissociation mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1461-71. [PMID: 24845354 PMCID: PMC4108549 DOI: 10.1007/s13361-014-0910-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/30/2014] [Accepted: 04/05/2014] [Indexed: 05/25/2023]
Abstract
Sulfation is a common post-translational modification of tyrosine residues in eukaryotes; however, detection using traditional liquid chromatography-mass spectrometry (LC-MS) methods is challenging based on poor ionization efficiency in the positive ion mode and facile neutral loss upon collisional activation. In the present study, 193 nm ultraviolet photodissociation (UVPD) is applied to sulfopeptide anions to generate diagnostic sequence ions, which do not undergo appreciable neutral loss of sulfate even using higher energy photoirradiation parameters. At the same time, neutral loss of SO₃ is observed from the precursor and charge-reduced precursor ions, a spectral feature that is useful for differentiating tyrosine sulfation from the nominally isobaric tyrosine phosphorylation. LC-MS detection limits for UVPD analysis in the negative mode were determined to be around 100 fmol for three sulfated peptides, caerulein, cionin, and leu-enkephalin. The LC-UVPD-MS method was applied for analysis of bovine fibrinogen, and its key sulfated peptide was confidently identified.
Collapse
Affiliation(s)
- Michelle R Robinson
- Department of Chemistry, The University of Texas at Austin, 1 University Station A5300, Austin, TX, 78712, USA
| | | | | |
Collapse
|
15
|
Smith SA, Kalcic CL, Cui L, Reid GE. Femtosecond laser-induced ionization/dissociation tandem mass spectrometry (fsLID-MS/MS) of deprotonated phosphopeptide anions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2807-2817. [PMID: 24214867 DOI: 10.1002/rcm.6750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 09/24/2013] [Accepted: 09/25/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Radical-directed dissociation techniques provide structural information which is complementary to that from conventional collision-induced dissociation (CID). The analysis of phosphopeptide anions is warranted due to their relatively acidic character. As femtosecond laser-induced ionization/dissociation tandem mass spectrometry (fsLID-MS/MS) is uniquely initiated by field ionization, an investigation is warranted to determine whether fsLID may provide novel analytical utility for phosphopeptide anions. METHODS Twenty-three synthetic deprotonated phosphopeptide anions were introduced into a three-dimensional quadrupole ion trap mass spectrometer via electrospray ionization. The ion trap was interfaced with a near-IR (802 nm) ultrashort-pulsed (35 fs FWHM) ultrahigh-powered (peak power ~10(14) W/cm(2)) laser system. Performance comparisons are made with other techniques applied to phosphopeptide anion analysis, including CID, electron detachment dissociation (EDD), negative electron transfer dissociation (NETD), activated electron photodetachment dissociation (activated-EPD), and ultraviolet photodissociation (UVPD). RESULTS FsLID-MS/MS of multiply deprotonated phosphopeptide anions provides sequence information via phosphorylation-intact a/x ions in addition to other sequence ions, satellite ions, and side-chain losses. Novel fragmentation processes include selective c-ion formation N-terminal to Ser/Thr and a phosphorylation-specific correlation between xn -98 ion abundances and phosphorylation at the n(th) residue. Sequencing-quality data required about 30 s of signal averaging. fsLID-MS/MS of singly deprotonated phosphopeptides did not yield product anions with stable trajectories, despite significant depletion of the precursor. CONCLUSIONS Multiply deprotonated phosphopeptide anions were sequenced via negative-mode fsLID-MS/MS, with phosphosite localization facilitated by a/x ion series in addition to diagnostic x(n)-98 ions. fsLID-MS/MS is qualitatively competitive with other techniques. Further efficiency enhancements (e.g., implementation on a linear trap or/and higher pulse frequencies) may permit sequence analyses on chromatographic timescales.
Collapse
Affiliation(s)
- Scott A Smith
- RTSF Mass Spectrometry & Metabolomics Core, Michigan State University, East Lansing, MI, 48824, USA
| | | | | | | |
Collapse
|
16
|
Frey BL, Ladror DT, Sondalle SB, Krusemark CJ, Jue AL, Coon JJ, Smith LM. Chemical derivatization of peptide carboxyl groups for highly efficient electron transfer dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1710-21. [PMID: 23918461 PMCID: PMC3827969 DOI: 10.1007/s13361-013-0701-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/01/2013] [Accepted: 07/06/2013] [Indexed: 05/11/2023]
Abstract
The carboxyl groups of tryptic peptides were derivatized with a tertiary or quaternary amine labeling reagent to generate more highly charged peptide ions that fragment efficiently by electron transfer dissociation (ETD). All peptide carboxyl groups-aspartic and glutamic acid side-chains as well as C-termini-were derivatized with an average reaction efficiency of 99 %. This nearly complete labeling avoids making complex peptide mixtures even more complex because of partially-labeled products, and it allows the use of static modifications during database searching. Alkyl tertiary amines were found to be the optimal labeling reagent among the four types tested. Charge states are substantially higher for derivatized peptides: a modified tryptic digest of bovine serum albumin (BSA) generates ~90% of its precursor ions with z > 2, compared with less than 40 % for the unmodified sample. The increased charge density of modified peptide ions yields highly efficient ETD fragmentation, leading to many additional peptide identifications and higher sequence coverage (e.g., 70 % for modified versus only 43 % for unmodified BSA). The utility of this labeling strategy was demonstrated on a tryptic digest of ribosomal proteins isolated from yeast cells. Peptide derivatization of this sample produced an increase in the number of identified proteins, a >50 % increase in the sequence coverage of these proteins, and a doubling of the number of peptide spectral matches. This carboxyl derivatization strategy greatly improves proteome coverage obtained from ETD-MS/MS of tryptic digests, and we anticipate that it will also enhance identification and localization of post-translational modifications.
Collapse
Affiliation(s)
- Brian L. Frey
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, WI 53706
| | - Daniel T. Ladror
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, WI 53706
| | - Samuel B. Sondalle
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, WI 53706
| | - Casey J. Krusemark
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, WI 53706
| | - April L. Jue
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, WI 53706
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, 420 Henry Mall, Madison, WI 53706
- Genome Center of Wisconsin, University of Wisconsin—Madison, 425G Henry Mall, Madison, WI 53706
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, WI 53706
- Genome Center of Wisconsin, University of Wisconsin—Madison, 425G Henry Mall, Madison, WI 53706
| |
Collapse
|
17
|
Shaw JB, Kaplan DA, Brodbelt JS. Activated ion negative electron transfer dissociation of multiply charged peptide anions. Anal Chem 2013; 85:4721-8. [PMID: 23577957 DOI: 10.1021/ac4005315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report the implementation and evaluation of activated ion negative electron transfer dissociation (AI-NETD) in order to enhance the analytical capabilities of NETD for the elucidation of doubly deprotonated peptide anions. The analytical figures-of-merit and fragmentation characteristics are compared for NETD alone and with supplemental collisional activation of the charge reduced precursors or infrared photoactivation of the entire ion population during the NETD reaction period. The addition of supplemental collisional activation of charge reduced precursor ions or infrared photoactivation of the entire ion population concomitant with the NETD reaction period significantly improves sequencing capabilities for peptide anions as evidenced by the greater abundances of product ions and overall sequence coverage. Neither of these two AI-NETD methods significantly alters the net fragmentation efficiencies relative to NETD; however, the sequence ion conversion percentages with respect to formation of diagnostic product ions are notably higher. Supplemental infrared photoactivation outperforms collisional activation for most of the peptide fragmentation metrics evaluated.
Collapse
Affiliation(s)
- Jared B Shaw
- Department of Chemistry and Biochemistry, University of Texas, Austin, Texas 78712, United States
| | | | | |
Collapse
|
18
|
Stedwell CN, Patrick AL, Gulyuz K, Polfer NC. Screening for Phosphorylated and Nonphosphorylated Peptides by Infrared Photodissociation Spectroscopy. Anal Chem 2012; 84:9907-12. [DOI: 10.1021/ac3023058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Corey N. Stedwell
- Department of Chemistry, University of Florida, Post Office Box 117200, Gainesville, Florida
32611, United States
| | - Amanda L. Patrick
- Department of Chemistry, University of Florida, Post Office Box 117200, Gainesville, Florida
32611, United States
| | - Kerim Gulyuz
- Department of Chemistry, University of Florida, Post Office Box 117200, Gainesville, Florida
32611, United States
| | - Nicolas C. Polfer
- Department of Chemistry, University of Florida, Post Office Box 117200, Gainesville, Florida
32611, United States
| |
Collapse
|