1
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Cautereels J, Giribaldi J, Enjalbal C, Blockhuys F. Quantum chemical mass spectrometry: Ab initio study of b 2 -ion formation mechanisms for the singly protonated Gln-His-Ser tripeptide. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8778. [PMID: 32144813 DOI: 10.1002/rcm.8778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
RATIONALE Both amide bond protonation triggering peptide fragmentations and the controversial b2 -ion structures have been subjects of intense research. The involvement of histidine (H), with its imidazole side chain that induces specific dissociation patterns involving inter-side-chain (ISC) interactions, in b2 -ion formation was investigated, focusing on the QHS model tripeptide. METHODS To identify the effect of histidine on fragmentations issued from ISC interactions, QHS was selected for a comprehensive analysis of the pathways leading to the three possible b2 -ion structures, using quantum chemical calculations performed at the DFT/B3LYP/6-311+G* level of theory. Electrospray ionization ion trap mass spectrometry allowed the recording of MS2 and MS3 tandem mass spectra, whereas the Quantum Chemical Mass Spectrometry for Materials Science (QCMS2 ) method was used to predict fragmentation patterns. RESULTS Whereas it is very difficult to differentiate among protonated oxazolone, diketopiperazine, or lactam b2 -ions using MS2 and MS3 mass spectra, the calculations indicated that the QH b2 -ion (detected at m/z 266) is probably a mixture of the lactam and oxazolone structures formed after amide nitrogen protonation, making the formation of diketopiperazine less likely as it requires an additional step for its formation. CONCLUSIONS In contrast to glycine-histidine-containing b2 -ions, known to be issued from the backbone-imidazole cyclization, we found that interactions between the side chains were not obvious to perceive, neither from a thermodynamics nor from a fragmentation perspective, emphasizing the importance of the whole sequence on the dissociation behavior usually demonstrated from simple glycine-containing tripeptides.
Collapse
Affiliation(s)
- Julie Cautereels
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
| | | | | | - Frank Blockhuys
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
3
|
Bythell BJ. Comment on: "Quantum Chemical Mass Spectrometry: Verification and Extension of the Mobile Proton Model for Histidine" by Julie Cautereels and Frank Blockhuys, J. Am. Soc. Mass Spectrom. 28, 1227-1235 (2017). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2728-2730. [PMID: 28952060 DOI: 10.1007/s13361-017-1804-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Benjamin J Bythell
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO, 63121, USA.
| |
Collapse
|
4
|
Brown TA, Jackson BA, Bythell BJ, Stenson AC. Benefits of multidimensional fractionation for the study and characterization of natural organic matter. J Chromatogr A 2016; 1470:84-96. [DOI: 10.1016/j.chroma.2016.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/29/2016] [Accepted: 10/05/2016] [Indexed: 01/09/2023]
|
5
|
Nelson CR, Abutokaikah MT, Harrison AG, Bythell BJ. Proton Mobility in b₂ Ion Formation and Fragmentation Reactions of Histidine-Containing Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:487-497. [PMID: 26602904 DOI: 10.1007/s13361-015-1298-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
A detailed energy-resolved study of the fragmentation reactions of protonated histidine-containing peptides and their b2 ions has been undertaken. Density functional theory calculations were utilized to predict how the fragmentation reactions occur so that we might discern why the mass spectra demonstrated particular energy dependencies. We compare our results to the current literature and to synthetic b2 ion standards. We show that the position of the His residue does affect the identity of the subsequent b2 ion (diketopiperazine versus oxazolone versus lactam) and that energy-resolved CID can distinguish these isomeric products based on their fragmentation energetics. The histidine side chain facilitates every major transformation except trans-cis isomerization of the first amide bond, a necessary prerequisite to diketopiperazine b2 ion formation. Despite this lack of catalyzation, trans-cis isomerization is predicted to be facile. Concomitantly, the subsequent amide bond cleavage reaction is rate-limiting.
Collapse
Affiliation(s)
- Carissa R Nelson
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, MO, 63121, USA
| | - Maha T Abutokaikah
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, MO, 63121, USA
| | - Alex G Harrison
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, MO, 63121, USA.
| |
Collapse
|
6
|
Bythell BJ, Harrison AG. Formation of a(1) ions directly from oxazolone b(2) ions: an energy-resolved and computational study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:774-781. [PMID: 25810075 DOI: 10.1007/s13361-015-1080-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 06/04/2023]
Abstract
It is well-known that oxazolone b2 ions fragment extensively by elimination of CO to form a2 ions, which often fragment further to form a1 ions. Less well-known is that some oxazolone b2 ions may fragment directly to form a1 ions. The present study uses energy-resolved collision-induced dissociation experiments to explore the occurrence of the direct b2→a1 fragmentation reaction. The experimental results show that the direct b2→a1 reaction is generally observed when Gly is the C-terminal residue of the oxazolone. When the C-terminal residue is more complex, it is able to provide increased stability of the a2 product in the b2→a2 fragmentation pathway. Our computational studies of the relative critical reaction energies for the b2→a2 reaction compared with those for the b2→a1 reaction provide support that the critical reaction energies are similar for the two pathways when the C-terminal residue of the oxazolone is Gly. By contrast, when the nitrogen of the oxazolone ring in the b2 ion does not bear a hydrogen, as in the Ala-Sar and Tyr-Sar (Sar = N-methylglycine) oxazolone b2 ions, a1 ions are not formed but rather neutral imine elimination from the N-terminus of the b2 ion becomes a dominant fragmentation reaction. The M06-2X/6-31+G(d,p) density functional theory calculations are in general agreement with the experimental data for both types of reaction. In contrast, the B3LYP/6-31+G(d,p) model systematically underestimates the barriers of these SN2-like b2→a1 reaction. The difference between the two methods of barrier calculation are highly significant (P < 0.001) for the b2→a1 reaction, but only marginally significant (P = 0.05) for the b2→a2 reaction. The computations provide further evidence of the limitations of the B3LYP functional when describing SN2-like reactions.
Collapse
Affiliation(s)
- Benjamin J Bythell
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO, 63131, USA,
| | | |
Collapse
|
7
|
Bai H, Jiang W, Kotchey G, Saidi WA, Bythell BJ, Jarvis JM, Marshall AG, Robinson RS, Star A. Insight into the Mechanism of Graphene Oxide Degradation via the Photo-Fenton Reaction. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2014; 118:10519-10529. [PMID: 24860637 PMCID: PMC4025574 DOI: 10.1021/jp503413s] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 04/14/2014] [Indexed: 05/13/2023]
Abstract
Graphene represents an attractive two-dimensional carbon-based nanomaterial that holds great promise for applications such as electronics, batteries, sensors, and composite materials. Recent work has demonstrated that carbon-based nanomaterials are degradable/biodegradable, but little work has been expended to identify products formed during the degradation process. As these products may have toxicological implications that could leach into the environment or the human body, insight into the mechanism and structural elucidation remain important as carbon-based nanomaterials become commercialized. We provide insight into a potential mechanism of graphene oxide degradation via the photo-Fenton reaction. We have determined that after 1 day of treatment intermediate oxidation products (with MW 150-1000 Da) were generated. Upon longer reaction times (i.e., days 2 and 3), these products were no longer present in high abundance, and the system was dominated by graphene quantum dots (GQDs). On the basis of FTIR, MS, and NMR data, potential structures for these oxidation products, which consist of oxidized polycyclic aromatic hydrocarbons, are proposed.
Collapse
Affiliation(s)
- Hao Bai
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wentao Jiang
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Gregg
P. Kotchey
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wissam A. Saidi
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Benjamin J. Bythell
- National
High Magnetic Field Laboratory, Florida
State University, 1800
E. Paul Dirac Drive, Tallahassee, Florida 32310, United
States
| | - Jacqueline M. Jarvis
- National
High Magnetic Field Laboratory, Florida
State University, 1800
E. Paul Dirac Drive, Tallahassee, Florida 32310, United
States
| | - Alan G. Marshall
- National
High Magnetic Field Laboratory, Florida
State University, 1800
E. Paul Dirac Drive, Tallahassee, Florida 32310, United
States
- Department
of Chemistry and Biochemistry, Florida State
University, 95 Chieftain
Way, Tallahassee, Florida 32306, United States
| | - Renã
A. S. Robinson
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Manning TJ, Phillips D, Wylie G, Bythell B, Clark S, Ogburn R, Ledwitch K, Collis C, Patterson S, Lasseter L. Copper ion as a delivery platform for taxanes and taxane complexes. Bioorg Med Chem Lett 2014; 24:371-7. [DOI: 10.1016/j.bmcl.2013.10.073] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/30/2013] [Accepted: 10/31/2013] [Indexed: 10/26/2022]
|
9
|
Structural and some medicinal characteristics of the copper(II)–hydroxychloroquine complex. Bioorg Med Chem Lett 2013; 23:4453-8. [DOI: 10.1016/j.bmcl.2013.05.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/07/2013] [Accepted: 05/13/2013] [Indexed: 12/27/2022]
|
10
|
Kavan D, Kuzma M, Lemr K, Schug KA, Havlicek V. CYCLONE--a utility for de novo sequencing of microbial cyclic peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1177-1184. [PMID: 23702710 DOI: 10.1007/s13361-013-0652-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 04/19/2013] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
We have developed a de novo sequencing software tool (CYCLONE) and applied it for determination of cyclic peptides. The program uses a non-redundant database of 312 nonribosomal building blocks identified to date in bacteria and fungi (more than 230 additional residues in the database list were isobaric). The software was used to fully characterize the tandem mass spectrum of several cyclic peptides and provide sequence tags. The general strategy of the script was based on fragment ion pre-characterization to accomplish unambiguous b-ion series assignments. Showcase examples were a cyclic tetradepsipeptide beauverolide, a cyclic hexadepsipeptide roseotoxin A, a lasso-like hexapeptide pseudacyclin A, and a cyclic undecapeptide cyclosporin A. The extent of ion scrambling in smaller peptides was as low as 5 % of total ion current; this demonstrated the feasibility of CYCLONE de novo sequencing. The robustness of the script was also tested against database sets of various sizes and isotope-containing data. It can be downloaded from the http://ms.biomed.cas.cz/MSTools/ website. ᅟ
Collapse
Affiliation(s)
- Daniel Kavan
- Institute of Microbiology, v.v.i., Videnska 1083, CZ 14220, Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
11
|
Hao Q, Song T, Ng DCM, Quan Q, Siu CK, Chu IK. Arginine-Facilitated Isomerization: Radical-Induced Dissociation of Aliphatic Radical Cationic Glycylarginyl(iso)leucine Tripeptides. J Phys Chem B 2012; 116:7627-34. [DOI: 10.1021/jp301882p] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Qiang Hao
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Department
of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Tao Song
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Dominic C. M. Ng
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Quan Quan
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Chi-Kit Siu
- Department
of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Ivan K. Chu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|