1
|
Liu XR, Zhang MM, Gross ML. Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications. Chem Rev 2020; 120:4355-4454. [PMID: 32319757 PMCID: PMC7531764 DOI: 10.1021/acs.chemrev.9b00815] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Proteins adopt different higher-order structures (HOS) to enable their unique biological functions. Understanding the complexities of protein higher-order structures and dynamics requires integrated approaches, where mass spectrometry (MS) is now positioned to play a key role. One of those approaches is protein footprinting. Although the initial demonstration of footprinting was for the HOS determination of protein/nucleic acid binding, the concept was later adapted to MS-based protein HOS analysis, through which different covalent labeling approaches "mark" the solvent accessible surface area (SASA) of proteins to reflect protein HOS. Hydrogen-deuterium exchange (HDX), where deuterium in D2O replaces hydrogen of the backbone amides, is the most common example of footprinting. Its advantage is that the footprint reflects SASA and hydrogen bonding, whereas one drawback is the labeling is reversible. Another example of footprinting is slow irreversible labeling of functional groups on amino acid side chains by targeted reagents with high specificity, probing structural changes at selected sites. A third footprinting approach is by reactions with fast, irreversible labeling species that are highly reactive and footprint broadly several amino acid residue side chains on the time scale of submilliseconds. All of these covalent labeling approaches combine to constitute a problem-solving toolbox that enables mass spectrometry as a valuable tool for HOS elucidation. As there has been a growing need for MS-based protein footprinting in both academia and industry owing to its high throughput capability, prompt availability, and high spatial resolution, we present a summary of the history, descriptions, principles, mechanisms, and applications of these covalent labeling approaches. Moreover, their applications are highlighted according to the biological questions they can answer. This review is intended as a tutorial for MS-based protein HOS elucidation and as a reference for investigators seeking a MS-based tool to address structural questions in protein science.
Collapse
Affiliation(s)
| | | | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA, 63130
| |
Collapse
|
2
|
Khristenko N, Amato J, Livet S, Pagano B, Randazzo A, Gabelica V. Native Ion Mobility Mass Spectrometry: When Gas-Phase Ion Structures Depend on the Electrospray Charging Process. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1069-1081. [PMID: 30924079 DOI: 10.1007/s13361-019-02152-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 06/09/2023]
Abstract
Ion mobility spectrometry (IMS) has become popular to characterize biomolecule folding. Numerous studies have shown that proteins that are folded in solution remain folded in the gas phase, whereas proteins that are unfolded in solution adopt more extended conformations in the gas phase. Here, we discuss how general this tenet is. We studied single-stranded DNAs (human telomeric cytosine-rich sequences with CCCTAA repeats), which fold into an intercalated motif (i-motif) structure in a pH-dependent manner, thanks to the formation of C-H+-C base pairs. As i-motif formation is favored at low ionic strength, we could investigate the ESI-IMS-MS behavior of i-motif structures at pH ~ 5.5 over a wide range of ammonium acetate concentrations (15 to 100 mM). The control experiments consisted of either the same sequence at pH ~ 7.5, wherein the sequence is unfolded, or sequence variants that cannot form i-motifs (CTCTAA repeats). The surprising results came from the control experiments. We found that the ionic strength of the solution had a greater effect on the compactness of the gas-phase structures than the solution folding state. This means that electrosprayed ions keep a memory of the charging process, which is influenced by the electrolyte concentration. We discuss these results in light of the analyte partitioning between the droplet interior and the droplet surface, which in turn influences the probability of being ionized via a charged residue-type pathway or a chain extrusion-type pathway.
Collapse
Affiliation(s)
- Nina Khristenko
- Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle, Université de Bordeaux, Inserm & CNRS (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131, Naples, Italy
| | - Sandrine Livet
- Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle, Université de Bordeaux, Inserm & CNRS (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607, Pessac, France
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131, Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131, Naples, Italy
| | - Valérie Gabelica
- Laboratoire Acides Nucléiques: Régulations Naturelle et Artificielle, Université de Bordeaux, Inserm & CNRS (ARNA, U1212, UMR5320), IECB, 2 rue Robert Escarpit, 33607, Pessac, France.
| |
Collapse
|
3
|
Jovanović M, Peter-Katalinić J. Preliminary mass spectrometry characterization studies of galectin-3 samples, prior to carbohydrate-binding studies using Affinity mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:129-136. [PMID: 27791284 DOI: 10.1002/rcm.7775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/11/2016] [Accepted: 10/24/2016] [Indexed: 05/22/2023]
Abstract
RATIONALE Investigation of non-covalent complexes of proteins using Affinity Mass Spectrometry (AMS) represents a major challenge in modern biomedical research. However, many experimental obstacles can make AMS data analysis complex. Additionally, sample purity and size of the protein may still pose significant challenges. METHODS Matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometry (MS) was used for initial mapping of protein samples. nanoESI (electrospray ionization) quadrupole-time-of-flight (QTOF) MS was used for mapping of protein samples under native conditions and subsequent AMS studies. The human galectin-3 protein sample was expressed in E. coli. RESULTS Full length galectin-3 was difficult to work with, due to several truncated forms observed after the purification procedures. On the other hand, galectin-3C produced excellent quality nanoESI-MS spectra. A covalent adduct of lactose was found to be located on residue Lys 176. Functional AMS control studies indicated that galectin-3 interactions with oligosaccharides may be dependent on its charge. CONCLUSIONS Mass spectrometry represents a valuable tool that can be efficiently used for structural characterization of protein samples prior to functional analyses. By means of accurate mass measurements, many protein truncations can be identified based on mass alone. Analysis of covalent adducts is more challenging. Finally, for AMS studies, careful use of controls may reveal charge-dependence of protein-oligosaccharide interactions. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Marko Jovanović
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Strasse 31, D-48149, Münster, Germany
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51 000, Rijeka, Croatia
| | - Jasna Peter-Katalinić
- Institute of Medical Physics and Biophysics, University of Münster, Robert-Koch-Strasse 31, D-48149, Münster, Germany
| |
Collapse
|
4
|
Metwally H, McAllister RG, Popa V, Konermann L. Mechanism of Protein Supercharging by Sulfolane and m-Nitrobenzyl Alcohol: Molecular Dynamics Simulations of the Electrospray Process. Anal Chem 2016; 88:5345-54. [DOI: 10.1021/acs.analchem.6b00650] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Haidy Metwally
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Robert G. McAllister
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Vlad Popa
- Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Lars Konermann
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department
of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
5
|
Lee JW, Kim HI. Investigating acid-induced structural transitions of lysozyme in an electrospray ionization source. Analyst 2015; 140:661-9. [PMID: 25429398 DOI: 10.1039/c4an01794c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of acids on the structure of lysozyme (Lyz) during electrospray ionization (ESI) was studied by comparing the solution and gas-phase structures of Lyz. Investigation using circular dichroism spectroscopy and small-angle X-ray scattering demonstrated that the folded conformation of Lyz was maintained in pH 2.2 solutions containing different acids. On the other hand, analysis of the charge state distributions and ion mobility (IM) distributions, combined with molecular dynamics simulations, demonstrated that the gas phase structures of Lyz depend on the pKa of the acid used to acidify the protein solution. Formic acid and acetic acid, which are weak acids (pKa > 3.5), induce unfolding of Lyz during ESI, presumably because the undissociated weak acids provide protons to maintain the acidic groups within Lyz protonated and prevent the formation of salt bridges. However, HCl suppressed the formation of the unfolded conformers because the acid is already dissociated in solution, and chloride anions within the ESI droplet can interact with Lyz to reduce the intramolecular electrostatic repulsion. These trends in the IM distributions are observed for all charge states, demonstrating the significance of the acid effect on the structure of Lyz during ESI.
Collapse
Affiliation(s)
- Jong Wha Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea.
| | | |
Collapse
|
6
|
Zhang H, Lu H, Chingin K, Chen H. Stabilization of Proteins and Noncovalent Protein Complexes during Electrospray Ionization by Amino Acid Additives. Anal Chem 2015; 87:7433-8. [DOI: 10.1021/acs.analchem.5b01643] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hua Zhang
- Jiangxi Key Laboratory for
Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang, Jiangxi 330013, P.R. China
| | - Haiyan Lu
- Jiangxi Key Laboratory for
Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang, Jiangxi 330013, P.R. China
| | - Konstantin Chingin
- Jiangxi Key Laboratory for
Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang, Jiangxi 330013, P.R. China
| | - Huanwen Chen
- Jiangxi Key Laboratory for
Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang, Jiangxi 330013, P.R. China
| |
Collapse
|
7
|
Han L, Ruotolo BT. Ion Mobility-Mass Spectrometry Differentiates Protein Quaternary Structures Formed in Solution and in Electrospray Droplets. Anal Chem 2015; 87:6808-13. [PMID: 26075825 DOI: 10.1021/acs.analchem.5b01010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electrospray ionization coupled to mass spectrometry is a key technology for determining the stoichiometries of multiprotein complexes. Despite highly accurate results for many assemblies, challenging samples can generate signals for artifact protein-protein binding born of the crowding forces present within drying electrospray droplets. Here, for the first time, we study the formation of preferred protein quaternary structures within such rapidly evaporating nanodroplets. We use ion mobility and tandem mass spectrometry to investigate glutamate dehydrogenase dodecamers and serum amyloid P decamers as a function of protein concentration, along with control experiments using carefully chosen protein analogues, to both establish the formation of operative mechanisms and assign the bimodal conformer populations observed. Further, we identify an unprecedented symmetric collision-induced dissociation pathway that we link directly to the quaternary structures of the precursor ions selected.
Collapse
Affiliation(s)
- Linjie Han
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
8
|
Lee JW, Kim HI. Solvent-induced structural transitions of lysozyme in an electrospray ionization source. Analyst 2015; 140:3573-80. [PMID: 25854591 DOI: 10.1039/c5an00235d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structural characterization of proteins using electrospray ionization mass spectrometry (ESI-MS) has become an important method for understanding protein structural dynamics. The correlation between the structures of proteins in solution and gas phase needs to be understood for the application of ESI-MS to protein structural studies. Hen egg white lysozyme (Lyz) is a small protein with a stable compact structure in solution. Although it was known that denatured Lyz in solution undergoes compaction during transfer into the gas phase via ESI, detailed characterization of the process was not available. In the present study, we show that the organic cosolvent, which denatures Lyz in solution, induces the collapse of the extended Lyz structure into compact structures during ESI. This process is further facilitated by the presence of acids, whose conjugate bases can interact with Lyz to reduce its charge state and the electrostatic repulsion between its charged residues (Analyst, 2015, 140, 661-669). Exposure of ESI droplets to acid and solvent vapors confirms that the overall process most probably occurs in the charged droplets from ESI. This study provides a detailed understanding of the possible influence of the solvent environment on protein structure during transfer into the gas phase.
Collapse
Affiliation(s)
- Jong Wha Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea
| | | |
Collapse
|
9
|
Sanhueza CA, Cartmell J, El-Hawiet A, Szpacenko A, Kitova EN, Daneshfar R, Klassen JS, Lang DE, Eugenio L, Ng KKS, Kitov PI, Bundle DR. Evaluation of a focused virtual library of heterobifunctional ligands for Clostridium difficile toxins. Org Biomol Chem 2015; 13:283-98. [DOI: 10.1039/c4ob01838a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Higher activity glycopeptoid ligands for two largeClostridium difficiletoxins TcdA and TcdB were discoveredviamodular fragment-based design and virtual screening.
Collapse
Affiliation(s)
| | | | - Amr El-Hawiet
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | - Adam Szpacenko
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | | | | | | - Dean E. Lang
- Department of Biological Sciences
- University of Calgary
- Calgary
- Canada
| | - Luiz Eugenio
- Department of Biological Sciences
- University of Calgary
- Calgary
- Canada
| | - Kenneth K.-S. Ng
- Department of Biological Sciences
- University of Calgary
- Calgary
- Canada
| | - Pavel I. Kitov
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | |
Collapse
|
10
|
Yue X, Vahidi S, Konermann L. Insights into the mechanism of protein electrospray ionization from salt adduction measurements. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1322-1331. [PMID: 24839193 DOI: 10.1007/s13361-014-0905-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/03/2014] [Indexed: 06/03/2023]
Abstract
The mechanisms whereby protein ions are liberated from charged droplets during electrospray ionization (ESI) remain under investigation. Compact conformers electrosprayed from aqueous solution in positive ion mode likely follow the charged residue model (CRM), which envisions analyte release after solvent evaporation to dryness. The concentration of nonvolatile salts such as NaCl increases sharply within vanishing CRM droplets, promoting nonspecific pairing of Cl(-) and Na(+) with charged groups on the protein surface. For unfolded proteins, it has been proposed that ion formation occurs via the chain ejection model (CEM). During the CEM proteins are expelled from the droplet long before complete solvent evaporation has taken place. Here we examine whether salt adduction levels support the view that folded and unfolded proteins follow different ESI mechanisms. Solvent evaporation during the CEM is expected to be less extensive and, hence, the salt concentration at the point of protein release should be substantially lower than for the CRM. CEM ions should therefore exhibit lower adduction levels than CRM species. We explore the adduction behavior of several proteins that were chosen to allow comparative studies on folded and unfolded structures in the same solution. In-source activation eliminates chloride adducts via HCl release, generating protein ions that are heterogeneously charged because of sodiation and protonation. Sodiation levels measured under such conditions provide estimates of the salt adduction behavior experienced by the "nascent" analyte ions. Sodiation levels are significantly reduced for unfolded proteins, supporting the view that these species are indeed formed via the CEM.
Collapse
Affiliation(s)
- Xuanfeng Yue
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | | | | |
Collapse
|
11
|
Xu N, Chingin K, Chen H. Ionic strength of electrospray droplets affects charging of DNA oligonucleotides. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:103-107. [PMID: 24446269 DOI: 10.1002/jms.3311] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/12/2013] [Accepted: 11/14/2013] [Indexed: 06/03/2023]
Abstract
The fundamental aspects of charging in electrospray ionization (ESI) are hotly debated. In the present study, ESI charging of DNA oligonucleotides was explored in both positive (ESI+) and negative (ESI-) polarity using mass spectrometry detection. Single-stranded 12-mer CCCCAATTCCCC in buffer solution (aqueous NH4Ac, 100 mM) produced similar charge state distribution (CSD) in either ESI+ or ESI-. Similarity of CSD in ESI+ and ESI- was also observed for the double-stranded 12-mer CGCGAATTCGCG. By adding typical low-vapor reagents (e.g. m-nitro benzyl alcohol, m-NBA; sulfolane) into the same buffer solution (<0.5% w/v), both CCCCAATTCCCC and CGCGAATTCGCG revealed strong supercharging (SC) effect in ESI-, while very little or no SC effect was observed in ESI+. With either sulfolane or m-NBA, the CGCGAATTCGCG duplex dissociated into single strands in ESI-. No SC was observed in both ESI+ and ESI- for thermally denatured CGCGAATTCGCG duplex in NH4 Ac buffer without the reagents. These findings are difficult to reconcile with the earlier model, which attributes SC in aqueous buffer solution to the conformational changes of analytes. Our observations suggest that the ionic strength of ESI droplets strongly affects the CSD of biopolymers such as DNA oligonucleotides and that SC effect is related to the depletion of ionic strength during the ESI process.
Collapse
Affiliation(s)
- Ning Xu
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China Institute of Technology, Nanchang, 330013, P.R. China
| | | | | |
Collapse
|
12
|
Konermann L, Vahidi S, Sowole MA. Mass Spectrometry Methods for Studying Structure and Dynamics of Biological Macromolecules. Anal Chem 2013; 86:213-32. [DOI: 10.1021/ac4039306] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| | - Modupeola A. Sowole
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7 Canada
| |
Collapse
|
13
|
Murase T, Eugenio L, Schorr M, Hussack G, Tanha J, Kitova EN, Klassen JS, Ng KKS. Structural basis for antibody recognition in the receptor-binding domains of toxins A and B from Clostridium difficile. J Biol Chem 2013; 289:2331-43. [PMID: 24311789 DOI: 10.1074/jbc.m113.505917] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents.
Collapse
Affiliation(s)
- Tomohiko Murase
- From the Department of Biological Sciences and Alberta Glycomics Centre, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hedges JB, Vahidi S, Yue X, Konermann L. Effects of Ammonium Bicarbonate on the Electrospray Mass Spectra of Proteins: Evidence for Bubble-Induced Unfolding. Anal Chem 2013; 85:6469-76. [DOI: 10.1021/ac401020s] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jason B. Hedges
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Siavash Vahidi
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Xuanfeng Yue
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| |
Collapse
|
15
|
Testa L, Brocca S, Santambrogio C, D'Urzo A, Habchi J, Longhi S, Uversky VN, Grandori R. Extracting structural information from charge-state distributions of intrinsically disordered proteins by non-denaturing electrospray-ionization mass spectrometry. INTRINSICALLY DISORDERED PROTEINS 2013; 1:e25068. [PMID: 28516012 PMCID: PMC5424789 DOI: 10.4161/idp.25068] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/02/2013] [Accepted: 05/16/2013] [Indexed: 11/23/2022]
Abstract
Intrinsically disordered proteins (IDPs) exert key biological functions but tend to escape identification and characterization due to their high structural dynamics and heterogeneity. The possibility to dissect conformational ensembles by electrospray-ionization mass spectrometry (ESI-MS) offers an attracting possibility to develop a signature for this class of proteins based on their peculiar ionization behavior. This review summarizes available data on charge-state distributions (CSDs) obtained for IDPs by non-denaturing ESI-MS, with reference to globular or chemically denatured proteins. The results illustrate the contributions that direct ESI-MS analysis can give to the identification of new putative IDPs and to their conformational investigation.
Collapse
Affiliation(s)
- Lorenzo Testa
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan, Italy
| | - Annalisa D'Urzo
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan, Italy
| | - Johnny Habchi
- Aix-Marseille Université; CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB); Marseille, France
| | - Sonia Longhi
- Aix-Marseille Université; CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB); Marseille, France
| | - Vladimir N Uversky
- Department of Molecular Medicine; College of Medicine; University of South Florida; Tampa, FL USA.,Institute for Biological Instrumentation; Russian Academy of Sciences; Pushchino, Moscow Region, Russia
| | - Rita Grandori
- Department of Biotechnology and Biosciences; University of Milano-Bicocca; Milan, Italy
| |
Collapse
|