1
|
Cao Y, Tao Z, Tian Y, Chen KE, Zhang L, Ren J, Xiao H, Zhang Q, Liu W, Cao C. A handheld contactless conductivity detector for monitoring the desalting of low-volume virus and cell samples. Biosens Bioelectron 2023; 237:115482. [PMID: 37406479 DOI: 10.1016/j.bios.2023.115482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Desalting of biosamples is crucial for analytical techniques intolerant to abundant salts. However, there is no simple tool to monitor the desalting of low-volume biosamples so far. Here we developed a handheld capacitively coupled contactless conductivity detector (hC4D) as a miniaturized device to measure the conductivity of 75 μL biosamples. Polyether-ether-ketone (PEEK) tubing was selected as the sample reservoir for sample loading via a pipette. Another pipetting of air pushed the sample solution out of the tubing to recollect the sample. Owing to the low sample consumption and easy sample recollection, hC4D is advantageous for testing expensive biosamples, such as viruses and cells. In addition, the whole process of sample injection, conductivity measurement, recollection, and calibration of conductivity can be completed within 1 min. To verify the feasibility of hC4D, we monitored the desalting progress of gel filtration (GF) of 200 μL blood samples, ultrafiltration (UF) of 300 μL virus samples, and dialysis of 7 mL cell samples. Three rounds of GF and UF completely removed the salts but led to poor sample recovery. In contrast, low concentrations of residual salts remained and better recovery was achieved after two rounds of GF and UF. We further utilized the hC4D to monitor the dialysis and tuned the salt concentration in the cell sample, such that we maintained the viability of cells in a low conductivity environment. These results indicated that hC4D is a promising tool for optimizing the desalting procedure of low-volume biosamples.
Collapse
Affiliation(s)
- Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhimin Tao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youli Tian
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ke-Er Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Lu Zhang
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Xiao
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
2
|
Li Y, Jia K, Pan Y, Han J, Chen J, Wang Y, Ma X, Chen H, Wang S, Xie D, Xiong C, Nie Z. Pocket-Size Wireless Nanoelectrospray Ionization Mass Spectrometry for Metabolic Analysis of Salty Biofluids and Single Cells. Anal Chem 2023; 95:4612-4618. [PMID: 36862115 DOI: 10.1021/acs.analchem.2c04268] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Analysis of volume-limited biological samples such as single cells and biofluids not only benefits clinical purposes but also promotes fundamental research in life sciences. Detection of these samples, however, imposes strict requirements on measurement performance because of the minimal volume and concentrated salts of the samples. Herein, we developed a self-cleaning nanoelectrospray ionization device powered by a pocket-size "MasSpec Pointer" (MSP-nanoESI) for metabolic analysis of salty biological samples with limited volume. The self-cleaning effect induced by Maxwell-Wagner electric stress helps with keeping the borosilicate glass capillary tip free from clogging and thus increasing salt tolerance. This device possesses a high sample economy (about 0.1 μL per test) due to its pulsed high voltage supply, sampling method (dipping the nanoESI tip into analyte solution), and contact-free electrospray ionization (ESI) (the electrode does not touch the analyte solution during ESI). High repeatable results could be acquired by the device with a relative standard deviation (RSD) of 1.02% for voltage output and 12.94% for MS signals of caffeine standard. Single MCF-7 cells were metabolically analyzed directly from phosphate buffered saline, and two types of untreated cerebrospinal fluid from hydrocephalus patients were distinguished with 84% accuracy. MSP-nanoESI gets rid of the bulky apparatus and could be held in hand or put into one's pocket for transportation, and it could operate for more than 4 h without recharge. We believe this device will boost scientific research and clinical usage of volume-limited biological samples with high-concentration salts in a low-cost, convenient, and rapid manner.
Collapse
Affiliation(s)
- Yuze Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixin Pan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Junyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiran Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobing Ma
- Aerospace Information Research Institute, Chinese Academy of Sciences Beijing 100094, China
| | - Hongwei Chen
- Department of Neurosurgery for Cerebrospinal Fluid Diseases, Aviation General Hospital, Beijing 100012, China
| | - Shengjie Wang
- Department of Neurosurgery for Cerebrospinal Fluid Diseases, Aviation General Hospital, Beijing 100012, China
| | - Dongcheng Xie
- Department of Neurosurgery for Cerebrospinal Fluid Diseases, Aviation General Hospital, Beijing 100012, China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zongxiu Nie
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Wu W, Zhang D, Chen K, Zhou P, Zhao M, Qiao L, Su B. Highly Efficient Desalting by Silica Isoporous Membrane-Based Microfluidic Chip for Electrospray Ionization Mass Spectrometry. Anal Chem 2018; 90:14395-14401. [DOI: 10.1021/acs.analchem.8b03934] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wanhao Wu
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Dongxue Zhang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Kexin Chen
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ping Zhou
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Meijiao Zhao
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Liang Qiao
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Tubaon RM, Haddad PR, Quirino JP. Sample Clean‐up Strategies for ESI Mass Spectrometry Applications in Bottom‐up Proteomics: Trends from 2012 to 2016. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700011] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/09/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Ria Marni Tubaon
- Australian Centre for Research on Separation Science School of Physical Sciences‐Chemistry University of Tasmania Hobart Tasmania Australia
| | - Paul R. Haddad
- Australian Centre for Research on Separation Science School of Physical Sciences‐Chemistry University of Tasmania Hobart Tasmania Australia
| | - Joselito P. Quirino
- Australian Centre for Research on Separation Science School of Physical Sciences‐Chemistry University of Tasmania Hobart Tasmania Australia
| |
Collapse
|
5
|
Peng J, Tang F, Zhou R, Xie X, Li S, Xie F, Yu P, Mu L. New techniques of on-line biological sample processing and their application in the field of biopharmaceutical analysis. Acta Pharm Sin B 2016; 6:540-551. [PMID: 27818920 PMCID: PMC5071623 DOI: 10.1016/j.apsb.2016.05.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 11/17/2022] Open
Abstract
Biological sample pretreatment is an important step in biological sample analysis. Due to the diversity of biological matrices, the analysis of target substances in these samples presents significant challenges to sample processing. To meet these emerging demands on biopharmaceutical analysis, this paper summarizes several new techniques of on-line biological sample processing: solid phase extraction, solid phase micro-extraction, column switching, limited intake filler, molecularly imprinted solid phase extraction, tubular column, and micro-dialysis. We describe new developments, principles, and characteristics of these techniques, and the application of liquid chromatography–mass spectrometry (LC–MS) in biopharmaceutical analysis with these new techniques in on-line biological sample processing.
Collapse
Affiliation(s)
- Jie Peng
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Fang Tang
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Rui Zhou
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Xiang Xie
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Sanwang Li
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Feifan Xie
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Peng Yu
- School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
- Corresponding author. Tel./fax: +86 731 88912400.
| | - Lingli Mu
- Medical College, Hunan Normal University, Changsha 410006, China
- Corresponding author. Tel./fax: +86 731 82650446.
| |
Collapse
|
6
|
Haupt‐Renaud P, Jiang L, Marcus RK. Preliminary assessment of the modification of polystyrene‐divinylbenzene resin with lipid‐tethered ligands for selective separations. J Sep Sci 2016; 39:3868-3879. [DOI: 10.1002/jssc.201600627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Paul Haupt‐Renaud
- Department of Chemistry, Clemson University Biosystems Research Complex Clemson SC USA
| | - Liuwei Jiang
- Department of Chemistry, Clemson University Biosystems Research Complex Clemson SC USA
| | | |
Collapse
|
7
|
Bartman CE, Metwally H, Konermann L. Effects of Multidentate Metal Interactions on the Structure of Collisionally Activated Proteins: Insights from Ion Mobility Spectrometry and Molecular Dynamics Simulations. Anal Chem 2016; 88:6905-13. [DOI: 10.1021/acs.analchem.6b01627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Claire E. Bartman
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Haidy Metwally
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
8
|
Manard BT, Jones SMH, Marcus RK. Capillary-channeled polymer (C-CP) fibers for the rapid extraction of proteins from urine matrices prior to detection with MALDI-MS. Proteomics Clin Appl 2015; 9:522-30. [PMID: 25450308 DOI: 10.1002/prca.201400081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/10/2014] [Accepted: 11/25/2014] [Indexed: 11/07/2022]
Abstract
PURPOSE While MS is a powerful tool for biomarker determinations, the high salt content and the small molecules present in urine poses incredible challenges. Separation/extraction methods must be employed for the isolation of target species at relevant concentrations. Micropipette tips packed with capillary-channeled polymer (C-CP) fibers are employed for the SPE of proteins from a synthetic and a certified urine matrix. EXPERIMENTAL DESIGN Extractions are performed utilizing a very simple centrifugation method to spin-down species through the C-CP fiber tips. Proteins adsorb to the hydrophobic polypropylene fibers and are eluted in a solvent suitable for MALDI-MS analysis. Figures of merit are determined for representative compounds β2-microglobulin, retinol binding protein, and transferrin. RESULTS The optimum protein processing included a 100 μL aqueous rinse and an elution solvent composition was 10 μL of 55:45 ACN:water (with triflouroacetic acid). MALDI-MS responses for the target proteins are improved from nondetectable levels to eventually yield LOD ranging from 5 to 180 nM in 1 μL aliquots. CONCLUSION AND CLINICAL RELEVANCE C-CP fiber tips offer a plethora of advantages including low materials costs, high throughput, microvolume processing, and the determination of sub-nanogram quantities of analyte; allowing determination of biomarkers that are otherwise undetectable in urine matrices.
Collapse
Affiliation(s)
| | - Sarah M H Jones
- Department of Chemistry, Clemson University, Clemson, SC, USA
| | | |
Collapse
|
9
|
Metwally H, McAllister RG, Konermann L. Exploring the Mechanism of Salt-Induced Signal Suppression in Protein Electrospray Mass Spectrometry Using Experiments and Molecular Dynamics Simulations. Anal Chem 2015; 87:2434-42. [DOI: 10.1021/ac5044016] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Haidy Metwally
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Robert G. McAllister
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
10
|
Jiang L, Schadock-Hewitt AJ, Zhang LX, Marcus RK. Evaluation of synthesized lipid tethered ligands for surface functionalization of polypropylene capillary-channeled polymer fiber stationary phases. Analyst 2015; 140:1523-34. [DOI: 10.1039/c4an02091j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straight forward approach to the synthesis of ligand tethered ligands (LTLs) circumvents the purchase of less-robust, PEG-phospholipids.
Collapse
Affiliation(s)
- Liuwei Jiang
- Clemson University
- Department of Chemistry
- Biosystems Research Complex
- Clemson
- USA
| | | | - Lynn X. Zhang
- Clemson University
- Department of Chemistry
- Biosystems Research Complex
- Clemson
- USA
| | - R. Kenneth Marcus
- Clemson University
- Department of Chemistry
- Biosystems Research Complex
- Clemson
- USA
| |
Collapse
|
11
|
Yue X, Vahidi S, Konermann L. Insights into the mechanism of protein electrospray ionization from salt adduction measurements. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:1322-1331. [PMID: 24839193 DOI: 10.1007/s13361-014-0905-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 04/03/2014] [Indexed: 06/03/2023]
Abstract
The mechanisms whereby protein ions are liberated from charged droplets during electrospray ionization (ESI) remain under investigation. Compact conformers electrosprayed from aqueous solution in positive ion mode likely follow the charged residue model (CRM), which envisions analyte release after solvent evaporation to dryness. The concentration of nonvolatile salts such as NaCl increases sharply within vanishing CRM droplets, promoting nonspecific pairing of Cl(-) and Na(+) with charged groups on the protein surface. For unfolded proteins, it has been proposed that ion formation occurs via the chain ejection model (CEM). During the CEM proteins are expelled from the droplet long before complete solvent evaporation has taken place. Here we examine whether salt adduction levels support the view that folded and unfolded proteins follow different ESI mechanisms. Solvent evaporation during the CEM is expected to be less extensive and, hence, the salt concentration at the point of protein release should be substantially lower than for the CRM. CEM ions should therefore exhibit lower adduction levels than CRM species. We explore the adduction behavior of several proteins that were chosen to allow comparative studies on folded and unfolded structures in the same solution. In-source activation eliminates chloride adducts via HCl release, generating protein ions that are heterogeneously charged because of sodiation and protonation. Sodiation levels measured under such conditions provide estimates of the salt adduction behavior experienced by the "nascent" analyte ions. Sodiation levels are significantly reduced for unfolded proteins, supporting the view that these species are indeed formed via the CEM.
Collapse
Affiliation(s)
- Xuanfeng Yue
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | | | | |
Collapse
|