1
|
Russell AH, Truman AW. Genome mining strategies for ribosomally synthesised and post-translationally modified peptides. Comput Struct Biotechnol J 2020; 18:1838-1851. [PMID: 32728407 PMCID: PMC7369419 DOI: 10.1016/j.csbj.2020.06.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/14/2023] Open
Abstract
Genome mining is a computational method for the automatic detection and annotation of biosynthetic gene clusters (BGCs) from genomic data. This approach has been increasingly utilised in natural product (NP) discovery due to the large amount of sequencing data that is now available. Ribosomally synthesised and post-translationally modified peptides (RiPPs) are a class of structurally complex NP with diverse bioactivities. RiPPs have recently been shown to occupy a much larger expanse of genomic and chemical space than previously appreciated, indicating that annotation of RiPP BGCs in genomes may have been overlooked in the past. This review provides an overview of the genome mining tools that have been specifically developed to aid in the discovery of RiPP BGCs, which have been built from an increasing knowledgebase of RiPP structures and biosynthesis. Given these recent advances, the application of targeted genome mining has great potential to accelerate the discovery of important molecules such as antimicrobial and anticancer agents whilst increasing our understanding about how these compounds are biosynthesised in nature.
Collapse
Affiliation(s)
- Alicia H Russell
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
2
|
De Novo Peptide Sequencing Reveals Many Cyclopeptides in the Human Gut and Other Environments. Cell Syst 2019; 10:99-108.e5. [PMID: 31864964 DOI: 10.1016/j.cels.2019.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/18/2019] [Accepted: 11/18/2019] [Indexed: 12/20/2022]
Abstract
Cyclic and branch cyclic peptides (cyclopeptides) represent a class of bioactive natural products that include many antibiotics and anti-tumor compounds. Despite the recent advances in metabolomics analysis, still little is known about the cyclopeptides in the human gut and their possible interactions due to a lack of computational analysis pipelines that are applicable to such compounds. Here, we introduce CycloNovo, an algorithm for automated de novo cyclopeptide analysis and sequencing that employs de Bruijn graphs, the workhorse of DNA sequencing algorithms, to identify cyclopeptides in spectral datasets. CycloNovo reconstructed 32 previously unreported cyclopeptides (to the best of our knowledge) in the human gut and reported over a hundred cyclopeptides in other environments represented by various spectra on Global Natural Products Social Molecular Network (GNPS). https://github.com/bbehsaz/cyclonovo.
Collapse
|
3
|
CycLS: Accurate, whole-library sequencing of cyclic peptides using tandem mass spectrometry. Bioorg Med Chem 2018; 26:1232-1238. [DOI: 10.1016/j.bmc.2018.01.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/27/2018] [Accepted: 01/30/2018] [Indexed: 01/20/2023]
|
4
|
Bóka B, Manczinger L, Kecskeméti A, Chandrasekaran M, Kadaikunnan S, Alharbi NS, Vágvölgyi C, Szekeres A. Ion trap mass spectrometry of surfactins produced by Bacillus subtilis SZMC 6179J reveals novel fragmentation features of cyclic lipopeptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1581-90. [PMID: 27321846 DOI: 10.1002/rcm.7592] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 05/21/2023]
Abstract
RATIONALE Surfactins are mixtures of cyclic lipopeptides consisting of variants of a heptapeptide and a linked β-hydroxy fatty acid with various chain lengths of 13-15 carbon atoms. A lactone bridge between the β-hydroxy functional group of the fatty acid and the carboxy terminal functional component of the peptide chain form their cyclic structures. Such lipopeptides, produced mainly by Bacillus species, possess several remarkable biological effects such as antitumor and antimicrobial activities, some of which are highly promising for utilization in plant disease biocontrol. The strain Bacillus subtilis SZMC 6179J was previously shown to exert significant antifungal properties against various phytopathogenic filamentous fungi; therefore, we characterized the structural features of the surfactins produced by this strain in order to explore the origin of the observed antagonistic effects of this potential biocontrol organism. METHODS Bacillus subtilis SZMC 6179J was used to produce surfactins, which were characterized by high-performance liquid chromatography/electrospray ionisation ion trap mass spectrometry (HPLC/ESI-ITMS) techniques after precipitation and extraction steps. RESULTS The 26 isoforms separated and identified represent three types of known surfactin variants and a fourth, previously unknown group characterised by the replacement of the leucine residue by valine in position 2. The relative amounts of this newly identified surfactin group were below 1%, and their cyclic structures were closed by C13-C15 hydroxy fatty acids. The structural assessment of the isoforms by MS(2) measurements led to the characterisation and description of a new fragmentation mechanism of surfactins. CONCLUSIONS The detected new natural lipoheptapeptide compounds with modified structures have significant potential for biotechnological and biocontrol applications. The complementary ITMS(2) data as well as the described internal fragmentation mechanism obtained from the sodiated surfactin molecules may further facilitate the structural elucidation of cyclic lipopeptides in the future. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bettina Bóka
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - László Manczinger
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Anita Kecskeméti
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Muthusamy Chandrasekaran
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| |
Collapse
|
5
|
Crittenden CM, Parker WR, Jenner ZB, Bruns KA, Akin LD, McGee WM, Ciccimaro E, Brodbelt JS. Exploitation of the Ornithine Effect Enhances Characterization of Stapled and Cyclic Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:856-863. [PMID: 26864791 DOI: 10.1007/s13361-016-1355-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/13/2016] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
A method to facilitate the characterization of stapled or cyclic peptides is reported via an arginine-selective derivatization strategy coupled with MS/MS analysis. Arginine residues are converted to ornithine residues through a deguanidination reaction that installs a highly selectively cleavable site in peptides. Upon activation by CID or UVPD, the ornithine residue cyclizes to promote cleavage of the adjacent amide bond. This Arg-specific process offers a unique strategy for site-selective ring opening of stapled and cyclic peptides. Upon activation of each derivatized peptide, site-specific backbone cleavage at the ornithine residue results in two complementary products: the lactam ring-containing portion of the peptide and the amine-containing portion. The deguanidination process not only provides a specific marker site that initiates fragmentation of the peptide but also offers a means to unlock the staple and differentiate isobaric stapled peptides.
Collapse
Affiliation(s)
| | - W Ryan Parker
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | - Zachary B Jenner
- Department of Chemistry and Biochemistry, Southwestern University, Georgetown, TX, 78626, USA
| | - Kerry A Bruns
- Department of Chemistry and Biochemistry, Southwestern University, Georgetown, TX, 78626, USA
| | - Lucas D Akin
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | - William M McGee
- Department of Chemistry, University of Texas, Austin, TX, 78712, USA
| | | | | |
Collapse
|
6
|
Mohimani H, Pevzner PA. Dereplication, sequencing and identification of peptidic natural products: from genome mining to peptidogenomics to spectral networks. Nat Prod Rep 2016; 33:73-86. [PMID: 26497201 PMCID: PMC5590107 DOI: 10.1039/c5np00050e] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Covering: 2000 to 2015. While recent breakthroughs in the discovery of peptide antibiotics and other Peptidic Natural Products (PNPs) raise a challenge for developing new algorithms for their analyses, the computational technologies for high-throughput PNP discovery are still lacking. We discuss the computational bottlenecks in analyzing PNPs and review recent advances in genome mining, peptidogenomics, and spectral networks that are now enabling the discovery of new PNPs via mass spectrometry. We further describe the connections between these advances and the new generation of software tools for PNP dereplication, de novo sequencing, and identification.
Collapse
Affiliation(s)
- Hosein Mohimani
- Department of Computer Science and Engineering, University of California, San Diego, USA.
| | - Pavel A Pevzner
- Department of Computer Science and Engineering, University of California, San Diego, USA.
| |
Collapse
|
7
|
Knolhoff AM, Zheng J, McFarland MA, Luo Y, Callahan JH, Brown EW, Croley TR. Identification and Structural Characterization of Naturally-Occurring Broad-Spectrum Cyclic Antibiotics Isolated from Paenibacillus. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1768-1779. [PMID: 26250559 DOI: 10.1007/s13361-015-1190-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/24/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
The rise of antimicrobial resistance necessitates the discovery and/or production of novel antibiotics. Isolated strains of Paenibacillus alvei were previously shown to exhibit antimicrobial activity against a number of pathogens, such as E. coli, Salmonella, and methicillin-resistant Staphylococcus aureus (MRSA). The responsible antimicrobial compounds were isolated from these Paenibacillus strains and a combination of low and high resolution mass spectrometry with multiple-stage tandem mass spectrometry was used for identification. A group of closely related cyclic lipopeptides was identified, differing primarily by fatty acid chain length and one of two possible amino acid substitutions. Variation in the fatty acid length resulted in mass differences of 14 Da and yielded groups of related MS(n) spectra. Despite the inherent complexity of MS/MS spectra of cyclic compounds, straightforward analysis of these spectra was accomplished by determining differences in complementary product ion series between compounds that differ in molecular weight by 14 Da. The primary peptide sequence assignment was confirmed through genome mining; the combination of these analytical tools represents a workflow that can be used for the identification of complex antibiotics. The compounds also share amino acid sequence similarity to a previously identified broad-spectrum antibiotic isolated from Paenibacillus. The presence of such a wide distribution of related compounds produced by the same organism represents a novel class of broad-spectrum antibiotic compounds.
Collapse
Affiliation(s)
- Ann M Knolhoff
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, HFS-707, 5100 Paint Branch Pkwy, College Park, MD, 20740, USA.
| | - Jie Zheng
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, HFS-707, 5100 Paint Branch Pkwy, College Park, MD, 20740, USA
| | - Melinda A McFarland
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, HFS-707, 5100 Paint Branch Pkwy, College Park, MD, 20740, USA
| | - Yan Luo
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, HFS-707, 5100 Paint Branch Pkwy, College Park, MD, 20740, USA
| | - John H Callahan
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, HFS-707, 5100 Paint Branch Pkwy, College Park, MD, 20740, USA
| | - Eric W Brown
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, HFS-707, 5100 Paint Branch Pkwy, College Park, MD, 20740, USA
| | - Timothy R Croley
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, HFS-707, 5100 Paint Branch Pkwy, College Park, MD, 20740, USA
| |
Collapse
|
8
|
Shim YY, Young LW, Arnison PG, Gilding E, Reaney MJT. Proposed systematic nomenclature for orbitides. JOURNAL OF NATURAL PRODUCTS 2015; 78:645-652. [PMID: 25785712 DOI: 10.1021/np500802p] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Orbitides are short (5-11 amino acid residue), ribosomally synthesized homodetic plant cyclic peptides characterized by N-to-C amide bonds rather than disulfide bonds. Orbitides can be discovered using mass spectrometry of plant extracts or by identifying DNA sequences coding for the precursor protein. The number of orbitides that have been characterized to date, by a number of different research groups, is modest. The nomenclatural system currently used for the Type VI cyclic peptides has been developed in an ad hoc fashion and is somewhat arbitrary. We propose a systematic naming system specifically for the Type VI cyclic peptides that reflects the taxonomic name of the species producing the orbitides and a numbering system that enables systematic representation of amino acid residues and modifications. The proposed naming system emulates the IUPAC Nomenclature for Natural Products and UniProt, both of which use abbreviations of taxonomic names for the compounds in question. Nomenclature for post-translational modifications also follows the IUPAC precedent, as well as the cyclic peptide literature. Furthermore, the proposed system aims to maintain agreement with the precedents set by the pre-existing literature. An example of the proposed nomenclature is provided using the methionine-containing homodetic peptides of Linum usitatissimum (flaxseed).
Collapse
Affiliation(s)
- Youn Young Shim
- †Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
- ‡Prairie Tide Chemicals Inc., 102 Melville Street, Saskatoon, Saskatchewan S7J 0R1, Canada
| | - Lester W Young
- †Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Paul G Arnison
- §Botanical Alternatives Inc., 176, 8B-3110 Eighth Street E, Saskatoon, Saskatchewan S7H 0W2, Canada
| | - Edward Gilding
- ⊥Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Martin J T Reaney
- †Department of Plant Sciences, University of Saskatchewan, 51 Campus Drive, Saskatoon, Saskatchewan S7N 5A8, Canada
- ‡Prairie Tide Chemicals Inc., 102 Melville Street, Saskatoon, Saskatchewan S7J 0R1, Canada
| |
Collapse
|
9
|
Tomek P, Hrouzek P, Kuzma M, Sýkora J, Fišer R, Černý J, Novák P, Bártová S, Šimek P, Hof M, Kavan D, Kopecký J. Cytotoxic Lipopeptide Muscotoxin A, Isolated from Soil Cyanobacterium Desmonostoc muscorum, Permeabilizes Phospholipid Membranes by Reducing Their Fluidity. Chem Res Toxicol 2015; 28:216-24. [DOI: 10.1021/tx500382b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Petr Tomek
- Department
of Phototrophic Microorganisms−Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic
- Auckland
Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, 1023 Auckland, New Zealand
| | - Pavel Hrouzek
- Department
of Phototrophic Microorganisms−Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic
- Faculty
of Science, Institute of Chemistry, University of South Bohemia, Branišovská
1760, 370 05 České
Budějovice, Czech Republic
| | - Marek Kuzma
- Laboratory
of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jan Sýkora
- Department
of Biophysical Chemistry, J. Heyrovský Institute of Physical
Chemistry, Academy of Sciences of the Czech Republic, Dolejškova
2155/3, 182 23 Prague
8, Czech Republic
| | - Radovan Fišer
- Department
of Genetics and Microbiology, Faculty of Sciences, Charles University, Viničná 5, 128 44 Prague 2, Czech Republic
| | - Jan Černý
- Department
of Cell Biology, Faculty of Sciences, Charles University, Viničná
7, 128 00 Prague
2, Czech Republic
| | - Petr Novák
- Laboratory
of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
- Department
of Biochemistry, Faculty of Sciences, Charles University, Hlavova 8, 128 40 Prague, Czech Republic
| | - Simona Bártová
- Laboratory
of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
- Department
of Analytical Chemistry, Institute of Chemical Technology, Technická
5, 166 28 Dejvice, Prague, Czech Republic
| | - Petr Šimek
- Institute
of Entomology, Biology Centre, Academy of Sciences of the Czech Republic, v.v.i., 370 05 České Budějovice, Czech Republic
| | - Martin Hof
- Department
of Biophysical Chemistry, J. Heyrovský Institute of Physical
Chemistry, Academy of Sciences of the Czech Republic, Dolejškova
2155/3, 182 23 Prague
8, Czech Republic
| | - Daniel Kavan
- Laboratory
of Molecular Structure Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Jiří Kopecký
- Department
of Phototrophic Microorganisms−Algatech, Institute of Microbiology, Academy of Sciences of the Czech Republic, Opatovický mlýn, 379 81 Třeboň, Czech Republic
| |
Collapse
|
10
|
Hoffmann T, Krug D, Hüttel S, Müller R. Improving natural products identification through targeted LC-MS/MS in an untargeted secondary metabolomics workflow. Anal Chem 2014; 86:10780-8. [PMID: 25280058 DOI: 10.1021/ac502805w] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tandem mass spectrometry is a widely applied and highly sensitive technique for the discovery and characterization of microbial natural products such as secondary metabolites from myxobacteria. Here, a data mining workflow based on MS/MS precursor lists targeting only signals related to bacterial metabolism is established using LC-MS data of crude extracts from shaking flask fermentations. The devised method is not biased toward specific compound classes or structural features and is capable of increasing the information content of LC-MS/MS analyses by directing fragmentation events to signals of interest. The approach is thus contrary to typical auto-MS(2) setups where precursor ions are usually selected according to signal intensity, which is regarded as a drawback for metabolite discovery applications when samples contain many overlapping signals and the most intense signals do not necessarily represent compounds of interest. In line with this, the method described here achieves improved MS/MS scan coverage for low-abundance precursor ions not captured by auto-MS(2) experiments and thereby facilitates the search for new secondary metabolites in complex biological samples. To underpin the effectiveness of the approach, the identification and structure elucidation of two new myxobacterial secondary metabolite classes is reported.
Collapse
Affiliation(s)
- Thomas Hoffmann
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University , Building C 2.3, D-66123 Saarbrücken, Germany
| | | | | | | |
Collapse
|
11
|
Bouslimani A, Sanchez LM, Garg N, Dorrestein PC. Mass spectrometry of natural products: current, emerging and future technologies. Nat Prod Rep 2014; 31:718-29. [PMID: 24801551 PMCID: PMC4161218 DOI: 10.1039/c4np00044g] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although mass spectrometry is a century old technology, we are entering into an exciting time for the analysis of molecular information directly from complex biological systems. In this Highlight, we feature emerging mass spectrometric methods and tools used by the natural product community and give a perspective of future directions where the mass spectrometry field is migrating towards over the next decade.
Collapse
Affiliation(s)
- Amina Bouslimani
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | | | | | | |
Collapse
|