1
|
Redeker FA, O’Malley K, McMahon WP, Jorabchi K. Solution Cathode Glow Discharge Coupled to Atmospheric Pressure Chemical Ionization for Elemental Detection of S and P in Organic Compounds. SPECTROCHIMICA ACTA. PART B, ATOMIC SPECTROSCOPY 2024; 212:106858. [PMID: 38292419 PMCID: PMC10824527 DOI: 10.1016/j.sab.2024.106858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We report a post-plasma chemical ionization approach to evaluate solution cathode glow discharge (SCGD) for S and P elemental analysis. Here, the SCGD serves as a reactor to produce chemical vapors for S and P from organic compounds containing these elements, while a corona discharge operated in negative mode is used to ionize the products. The approach creates long-lived ions in atmospheric pressure, enabling direct investigation of chemical vapor products via mass spectrometric and ion mobility separations. The investigations indicate that SCGD converts S and P to H2SO4 and H3PO4, respectively. These species are then ionized as HSO4HNO3 - and H3PO4NO3HNO3- via reactions with NO3HNO3- produced by corona discharge. The response factors for P among several small molecules varies within 10% of the average response from the compounds, suggesting a reasonable species-independent characteristic. The response factors for S show larger variations among compounds, indicating a higher dependence of chemical vapor generation efficiency on analytes' chemical structures. Detection limits of 15 and 29 ng/mL are achieved for P and S detection, respectively. These figures are limited by background equivalent concentrations and low ion flux in the utilized ion mobility-time of flight mass spectrometer, indicating potential for significant improvements. In particular, the specificity of clustering for S and P-containing ions produced in this approach suggest facile analysis of S and P using quadrupole-based mass spectrometers for improved analytical performance.
Collapse
Affiliation(s)
- Frenio A. Redeker
- Department of Chemistry, Georgetown University, 37 and O streets, NW, Washington, DC 20057, USA
| | - Kelsey O’Malley
- Department of Chemistry, Georgetown University, 37 and O streets, NW, Washington, DC 20057, USA
| | | | - Kaveh Jorabchi
- Department of Chemistry, Georgetown University, 37 and O streets, NW, Washington, DC 20057, USA
| |
Collapse
|
2
|
Yan M, Zhang N, Li X, Xu J, Lei H, Ma Q. Integrating Post-Ionization Separation via Differential Mobility Spectrometry into Direct Analysis in Real Time Mass Spectrometry for Toy Safety Screening. Anal Chem 2024; 96:265-271. [PMID: 38153235 DOI: 10.1021/acs.analchem.3c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Direct analysis in real time (DART) enables direct desorption and ionization of analytes, bypassing the time-consuming chromatographic separation traditionally required for mass spectrometry (MS) analysis. However, DART-MS suffers from matrix interference of complex samples, resulting in compromised detection sensitivity and quantitation accuracy. In this study, DART-MS was combined with differential mobility spectrometry (DMS) to provide an additional dimension of post-ionization ion mobility separation within a millisecond time scale, compensating for the lack of separation in DART-MS analysis. As proof-of-concept, primary aromatic amines (PAAs), a class of potentially hazardous chemicals, were analyzed in various toy products, including bubble solutions, finger paints, and plush toys. In addition to commercial Dip-it glass rod and metal mesh sampling tools, a customized rapid extractive evaporation device was designed for the accelerated extraction and sensitive analysis of solid toy samples. The incorporation of DMS in DART-MS analysis enabled the rapid separation and differentiation of isomeric analytes, leading to improved accuracy and reliability. The developed protocols were optimized and validated, achieving good linearity with correlation coefficients greater than 0.99 and acceptable repeatability with relative standard deviations less than 10%. Moreover, satisfactory sensitivity was realized with limits of detection and quantitation ranges of 0.2-5 and 1-20 μg/kg (μg/L) for the 11 PAA analytes. The established methodology was applied for the analysis of real toy samples (n = 18), which confirmed its appealing potential for toy safety screening and consumer health protection.
Collapse
Affiliation(s)
- Mengmeng Yan
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- Beijing Anti-Doping Laboratory, Beijing Sport University, Beijing 100091, China
| | - Nan Zhang
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaoxu Li
- School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215021, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124221, China
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qiang Ma
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| |
Collapse
|
3
|
Lamont L, Hadavi D, Bowman AP, Flinders B, Cooper‐Shepherd D, Palmer M, Jordens J, Mengerink Y, Honing M, Langridge J, Porta Siegel T, Vreeken RJ, Heeren RMA. High-resolution ion mobility spectrometry-mass spectrometry for isomeric separation of prostanoids after Girard's reagent T derivatization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9439. [PMID: 36415963 PMCID: PMC10078546 DOI: 10.1002/rcm.9439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Isomeric separation of prostanoids is often a challenge and requires chromatography and time-consuming sample preparation. Multiple prostanoid isomers have distinct in vivo functions crucial for understanding the inflammation process, including prostaglandins E2 (PGE2 ) and D2 (PGD2 ). High-resolution ion mobility spectrometry (IMS) based on linear ion transport in low-to-moderate electric fields and nonlinear ion transport in strong electric fields emerges as a broad approach for rapid separations prior to mass spectrometry. METHODS Derivatization with Girard's reagent T (GT) was used to overcome inefficient ionization of prostanoids in negative ionization mode due to poor deprotonation of the carboxylic acid group. Three high-resolution IMS techniques, namely linear cyclic IMS, linear trapped IMS, and nonlinear high-field asymmetric waveform IMS, were compared for the isomeric separation and endogenous detection of prostanoids present in intestinal tissue. RESULTS Direct infusion of GT-derivatized prostanoids proved to increase the ionization efficiency in positive ionization mode by a factor of >10, which enabled detection of these molecules in endogenous concentration levels. The high-resolution IMS comparison revealed its potential for rapid isomeric analysis of biologically relevant prostanoids. Strengths and weaknesses of both linear and nonlinear IMS are discussed. Endogenous prostanoid detection in intestinal tissue extracts demonstrated the applicability of our approach in biomedical research. CONCLUSIONS The applied derivatization strategy offers high sensitivity and improved stereoisomeric separation for screening of complex biological systems. The high-resolution IMS comparison indicated that the best sensitivity and resolution are achieved by linear and nonlinear IMS, respectively.
Collapse
Affiliation(s)
- Lieke Lamont
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Darya Hadavi
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Andrew P. Bowman
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Bryn Flinders
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | | | | | - Jan Jordens
- DSM Materials Science CenterGeleenMDThe Netherlands
| | | | - Maarten Honing
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | | | - Tiffany Porta Siegel
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Rob J. Vreeken
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
- Janssen R&DBeerseBelgium
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
4
|
Latif M, Chen X, Gandhi VD, Larriba-Andaluz C, Gamez G. Field-Switching Repeller Flowing Atmospheric-Pressure Afterglow Drift Tube Ion Mobility Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:635-648. [PMID: 35235331 DOI: 10.1021/jasms.1c00309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a field-switching (FS) technique is employed with a flowing atmospheric pressure afterglow (FAPA) source in drift tube ion mobility spectrometry (DTIMS). The premise is to incorporate a tip-repeller electrode as a substitute for the Bradbury-Nielsen gate (BNG) so as to overcome corresponding disadvantages of the BNG, including the gate depletion effect (GDE). The DTIMS spectra were optimized in terms of peak shape and full width by inserting an aperture at the DTIMS inlet that was used to control the neutral molecules' penetration into the separation region, thus preventing neutral-ion reactions inside. The FAPA and repeller's experimental operating conditions including drift and plasma gas flow rates, pulse injection times, repeller positioning and voltage, FAPA current, and effluent angle were optimized. Ion mobility spectra of selected compounds were captured, and the corresponding reduced mobility values were calculated and compared with the literature. The 6-fold improvements in limit of detection (LOD) compared with previous work were obtained for 2,6-DTBP and acetaminophen. The enhanced performance of the FS-FAPA-DTIMS was also investigated as a function of the GDE when compared with FAPA-DTIMS containing BNG.
Collapse
Affiliation(s)
- Mohsen Latif
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Mechanical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Xi Chen
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Mechanical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Viraj D Gandhi
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Mechanical Engineering, Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907, United States
| | - Carlos Larriba-Andaluz
- Department of Mechanical and Energy Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Gerardo Gamez
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
5
|
Lebedev AV. Peculiarities of 2,6-Di-tert-butylpyridine Protonation: Mobility of Protonated Molecules. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821130074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Latif M, Zhang D, Gamez G. Flowing atmospheric-pressure afterglow drift tube ion mobility spectrometry. Anal Chim Acta 2021; 1163:338507. [PMID: 34024423 DOI: 10.1016/j.aca.2021.338507] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
In this work, the flowing atmospheric-pressure afterglow (FAPA) ambient desorption/ionization source has been coupled with stand-alone Drift Tube Ion Mobility Spectrometry (DTIMS) for the first time. A tip repeller electrode, modified to allow higher bias potential still below the Townsend's breakdown, was implemented at the FAPA/DTIMS interface to overcome the opposing potentials and facilitate ion transmission. The effect of the lab-built DTIMS and FAPA's operating conditions (such as plasma voltage, current, gas flow rate, repeller's potential and positioning, FAPA orientation, etc.) on the signal of selected analytes was studied, for both gas-phase injection and desorption. The FAPA reactant ion peak (RIP) reduced mobility coefficient (K0) corresponds to protonated water clusters (H2O)nH+. The FAPA-DTIMS spectra of several selected compounds showed that their K0 agrees with literature values. Moreover, quantitative characterization of acetaminophen and 2,6-di-tert-butylpyridine (2,6-DTBP) based on desorption or gas-phase injection yield limits of detection (LODs) of 0.03 μg and 18 ppb, respectively.
Collapse
Affiliation(s)
- Mohsen Latif
- Department of Chemistry and Biochemistry, Texas Tech University, TX, 79409-1061, Lubbock, USA
| | - Dong Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, TX, 79409-1061, Lubbock, USA
| | - Gerardo Gamez
- Department of Chemistry and Biochemistry, Texas Tech University, TX, 79409-1061, Lubbock, USA.
| |
Collapse
|
7
|
Nayek S, Aguilar R, Juel LA, Verbeck GF. Metallic nanoparticle production and exposure/deposition system for toxicological research applications using zebrafish. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:094101. [PMID: 33003788 DOI: 10.1063/5.0013428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Metallic nanoparticles (NPs) have been accepted for various applications ranging from cosmetics to medicine. However, no method has been established in the scientific community that is capable of analyzing various metals, sizes, and levels of exposures without the concern of background chemical contaminations. We present here a system utilizing soft-landing ion mobility (SLIM) exposures of laser ablated metallic clusters capable of operating pressures of reduced vacuum (1 Torr) up to ambient (760 Torr) in the presence of a buffer gas. Clusters experience kinetic energies of less than 1 eV upon exiting the SLIM, allowing for the exposure of NPs to take place in a passive manner. While there is no mass-selection of cluster sizes in this work, it does show for the first time the creation and soft-landing of nanoclusters at ambient pressures. Factors such as area coverage and percentage distribution were studied, as well as the different effects that varying surfaces may cause in the agglomeration of the clusters. Furthermore, the system was successfully used to study the effects of silver nanoparticle exposure and determine the specific organs the NPs accumulate in using zebrafish (Danio rerio) as a model organism. This method provides a novel way to synthesize NPs and expose biological organisms for various toxicological analysis.
Collapse
Affiliation(s)
- Subhayu Nayek
- Department of Biological Sciences, University of North Texas, Denton, Texas 76201, USA
| | - Roberto Aguilar
- Department of Chemistry, University of North Texas, Denton, Texas 76201, USA
| | - Lauren A Juel
- Department of Chemistry, University of North Texas, Denton, Texas 76201, USA
| | - Guido F Verbeck
- Department of Biological Sciences, University of North Texas, Denton, Texas 76201, USA
| |
Collapse
|
8
|
An S, Liu S, Cao J, Lu S. Nitrogen-Activated Oxidation in Nitrogen Direct Analysis in Real Time Mass Spectrometry (DART-MS) and Rapid Detection of Explosives Using Thermal Desorption DART-MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2092-2100. [PMID: 31368004 DOI: 10.1007/s13361-019-02279-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Direct analysis in real time mass spectrometry (DART-MS) was used to analyze an array of explosives including nitro-based explosives, peroxide explosives, and energetic heterocyclic compounds with different DART discharge gases (helium, argon, and nitrogen). Profound analyte oxidation was observed for particular compounds (TNT (9) and 2, 4-DNT (10)), whose mass spectra were completely dominated by the oxidation products when nitrogen was substituted for helium in DART analysis. This interesting phenomenon suggested that a highly oxidative environment provided by N2 DART ion source. A possible mechanism involved in nitrogen DART was proposed which may help further understanding the different chemistry involved in the ionization process. This work also presents a thermal desorption DART (TD-DART) configuration that can enable rapid, specific analysis of explosives from swipes. The screening of swipes with three different compositions (fiberglass, Hybond N+ membrane, and filter paper) showed that fiberglass swipe has the best performance which was then used for the subsequent TD-DART analysis. A direct comparison of TD-DART with traditional DART demonstrated that TD-DART indeed gives better response than traditional DART (provided that the distance between the DART source and mass spectrometer is the same) and will have wider applications than traditional DART.
Collapse
Affiliation(s)
- ShuQi An
- Key Laboratory of Cluster Science, Ministry of Education of China; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; School of Chemistry, Beijing Institute of Technology, Beijing, 100081, China
| | - Shuai Liu
- Key Laboratory of Cluster Science, Ministry of Education of China; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; School of Chemistry, Beijing Institute of Technology, Beijing, 100081, China
| | - Jie Cao
- Key Laboratory of Cluster Science, Ministry of Education of China; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; School of Chemistry, Beijing Institute of Technology, Beijing, 100081, China.
| | - ShiFang Lu
- Key Laboratory of Cluster Science, Ministry of Education of China; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials; School of Chemistry, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
9
|
Song L, Chuah WC, Lu X, Remsen E, Bartmess JE. Ionization Mechanism of Positive-Ion Nitrogen Direct Analysis in Real Time. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:640-650. [PMID: 29392686 DOI: 10.1007/s13361-017-1885-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 06/07/2023]
Abstract
Nitrogen can be an inexpensive alternative to helium used by direct analysis in real time (DART), especially in consideration of the looming helium shortage. Therefore, the ionization mechanism of positive-ion N2 DART has been systematically investigated. Our experiments suggest that a range of metastable nitrogen species with a variety of internal energies existed and all of them were less energetic than metastable helium atoms. However, compounds with ionization energies (IE) equal to or lower than 10.2 eV (all organic compounds except the extremely small ones) can be efficiently ionized. Because N2 DART was unable to efficiently ionize ambient moisture and common organic solvents such as methanol and acetonitrile, the most important ionization mechanism was direct Penning ionization followed by self-protonation of polar compounds generating [M+H]+ ions. On the other hand, N2 DART was able to efficiently ionize ammonia, which was beneficial in the ionization of hydrogen-bonding compounds with proton affinities (PA) weaker than ammonia generating [M+NH4]+ ions and large PAHs generating [M+H]+ ions through proton transfer. N2 DART was also able to efficiently ionize NO, which led to the ionization of nonpolar compounds such as alkanes and small aromatics generating [M-(2m+1)H]+ (m=0,1…) ions. Lastly, metastable nitrogen species was also able to produce oxygen atoms, which resulted in increased oxygen adducts as the polarity of organic compounds decreased. In comparison with He DART, N2 DART was approximately one order of magnitude less sensitive in generating [M+H]+ ions, but could be more sensitive in generating [M+NH4]+ ions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Liguo Song
- Department of Chemistry, Western Illinois University, Macomb, IL, 61455, USA.
| | - Wei Chean Chuah
- Department of Chemistry, Western Illinois University, Macomb, IL, 61455, USA
| | - Xinyi Lu
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Edward Remsen
- Mund-Lagowski Department of Chemistry and Biochemistry, Bradley University, Peoria, IL, 61625, USA
| | - John E Bartmess
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
10
|
Pavlovich MJ, Musselman B, Hall AB. Direct analysis in real time-Mass spectrometry (DART-MS) in forensic and security applications. MASS SPECTROMETRY REVIEWS 2018; 37:171-187. [PMID: 27271453 DOI: 10.1002/mas.21509] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/28/2016] [Indexed: 05/10/2023]
Abstract
Over the last decade, direct analysis in real time (DART) has emerged as a viable method for fast, easy, and reliable "ambient ionization" for forensic analysis. The ability of DART to generate ions from chemicals that might be present at the scene of a criminal activity, whether they are in the gas, liquid, or solid phase, with limited sample preparation has made the technology a useful analytical tool in numerous forensic applications. This review paper summarizes many of those applications, ranging from the analysis of trace evidence to security applications, with a focus on providing the forensic scientist with a resource for developing their own applications. The most common uses for DART in forensics are in studying seized drugs, drugs of abuse and their metabolites, bulk and detonated explosives, toxic chemicals, chemical warfare agents, inks and dyes, and commercial plant and animal products that have been adulterated for economic gain. This review is meant to complement recent reviews that have described the fundamentals of the ionization mechanism and the general use of DART. We describe a wide range of forensic applications beyond the field of analyzing drugs of abuse, which dominates the literature, including common experimental and data analysis methods. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:171-187, 2018.
Collapse
Affiliation(s)
- Matthew J Pavlovich
- Department of Chemistry and Chemical Biology, Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston 02115, Massachusetts
| | | | - Adam B Hall
- Department of Chemistry and Chemical Biology, Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston 02115, Massachusetts
| |
Collapse
|
11
|
Zang X, Pérez JJ, Jones CM, Monge ME, McCarty NA, Stecenko AA, Fernández FM. Comparison of Ambient and Atmospheric Pressure Ion Sources for Cystic Fibrosis Exhaled Breath Condensate Ion Mobility-Mass Spectrometry Metabolomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1489-1496. [PMID: 28364225 DOI: 10.1007/s13361-017-1660-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/01/2017] [Accepted: 03/12/2017] [Indexed: 06/07/2023]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The vast majority of the mortality is due to progressive lung disease. Targeted and untargeted CF breath metabolomics investigations via exhaled breath condensate (EBC) analyses have the potential to expose metabolic alterations associated with CF pathology and aid in assessing the effectiveness of CF therapies. Here, transmission-mode direct analysis in real time traveling wave ion mobility spectrometry time-of-flight mass spectrometry (TM-DART-TWIMS-TOF MS) was tested as a high-throughput alternative to conventional direct infusion (DI) electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI) methods, and a critical comparison of the three ionization methods was conducted. EBC was chosen as the noninvasive surrogate for airway sampling over expectorated sputum as EBC can be collected in all CF subjects regardless of age and lung disease severity. When using pooled EBC collected from a healthy control, ESI detected the most metabolites, APCI a log order less, and TM-DART the least. TM-DART-TWIMS-TOF MS was used to profile metabolites in EBC samples from five healthy controls and four CF patients, finding that a panel of three discriminant EBC metabolites, some of which had been previously detected by other methods, differentiated these two classes with excellent cross-validated accuracy. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Xiaoling Zang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - José J Pérez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Christina M Jones
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- National Institute of Standards and Technology, Chemical Science Division, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| | - María Eugenia Monge
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD, Ciudad de Buenos Aires, Argentina
| | - Nael A McCarty
- Emory+Children's Center for Cystic Fibrosis and Airways Disease Research and Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
- Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Arlene A Stecenko
- Emory+Children's Center for Cystic Fibrosis and Airways Disease Research and Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
12
|
Winter GT, Wilhide JA, LaCourse WR. Visualization of Ambient Mass Spectrometry with the Use of Schlieren Photography. J Vis Exp 2016. [PMID: 27404400 DOI: 10.3791/54195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This manuscript outlines how to visualize mass spectrometry ambient ionization sources using schlieren photography. In order to properly optimize the mass spectrometer, it is necessary to characterize and understand the physical principles of the source. Most commercial ambient ionization sources utilize jets of nitrogen, helium, or atmospheric air to facilitate the ionization of the analyte. As a consequence, schlieren photography can be used to visualize the gas streams by exploiting the differences in refractive index between the streams and ambient air for visualization in real time. The basic setup requires a camera, mirror, flashlight, and razor blade. When properly configured, a real time image of the source is observed by watching its reflection. This allows for insight into the mechanism of action in the source, and pathways to its optimization can be elucidated. Light is shed on an otherwise invisible situation.
Collapse
Affiliation(s)
- Gregory T Winter
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County
| | - Joshua A Wilhide
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County
| | - William R LaCourse
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County;
| |
Collapse
|
13
|
Smoluch M, Mielczarek P, Silberring J. Plasma-based ambient ionization mass spectrometry in bioanalytical sciences. MASS SPECTROMETRY REVIEWS 2016; 35:22-34. [PMID: 25988731 DOI: 10.1002/mas.21460] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 12/24/2014] [Indexed: 05/28/2023]
Abstract
Plasma-based ambient ionization mass spectrometry techniques are gaining growing interest due to their specific features, such as the need for little or no sample preparation, its high analysis speed, and the ambient experimental conditions. Samples can be analyzed in gas, liquid, or solid forms. These techniques allow for a wide range of applications, like warfare agent detection, chemical reaction control, mass spectrometry imaging, polymer identification, and food safety monitoring, as well as applications in biomedical science, e.g., drug and pharmaceutical analysis, medical diagnostics, biochemical analysis, etc. Until now, the main drawback of plasma-based techniques is their quantitative aspect, but a lot of efforts have been done to improve this obstacle.
Collapse
Affiliation(s)
- Marek Smoluch
- Faculty of Materials Science and Ceramics, Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Przemyslaw Mielczarek
- Faculty of Materials Science and Ceramics, Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Jerzy Silberring
- Faculty of Materials Science and Ceramics, Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Sklodowskiej St. 34, 41-819, Zabrze, Poland
| |
Collapse
|
14
|
Winter GT, Wilhide JA, LaCourse WR. Characterization of a Direct Sample Analysis (DSA) Ambient Ionization Source. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1502-1507. [PMID: 26091890 DOI: 10.1007/s13361-015-1175-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 06/04/2023]
Abstract
Water cluster ion intensity and distribution is affected by source conditions in direct sample analysis (DSA) ionization. Parameters investigated in this paper include source nozzle diameter, gas flow rate, and source positions relative to the mass spectrometer inlet. Schlieren photography was used to image the gas flow profile exiting the nozzle. Smaller nozzle diameters and higher flow rates produced clusters of the type [H + (H(2)O)(n)](+) with greater n and higher intensity than larger nozzles and lower gas flow rates. At high gas flow rates, the gas flow profile widened compared with the original nozzle diameter. At lower flow rates, the amount of expansion was reduced, which suggests that lowering the flow rate may allow for improvements in sampling spatial resolution.
Collapse
Affiliation(s)
- Gregory T Winter
- University of Maryland, Baltimore County, Baltimore, MD, 21250, USA
| | | | | |
Collapse
|
15
|
|
16
|
Maurer MM, Donohoe GC, Valentine SJ. Advances in ion mobility-mass spectrometry instrumentation and techniques for characterizing structural heterogeneity. Analyst 2015; 140:6782-98. [PMID: 26114255 DOI: 10.1039/c5an00922g] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Enabling IM-MS instrumentation and techniques for characterizing sample structural heterogeneity have developed rapidly over the last five years.
Collapse
Affiliation(s)
- Megan M. Maurer
- C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | - Gregory C. Donohoe
- C. Eugene Bennett Department of Chemistry
- West Virginia University
- Morgantown
- USA
| | | |
Collapse
|