1
|
Lau JKC, Hopkinson AC, Siu KWM. Phosphate Migration versus the Loss of Phosphoric Acid in Protonated Phosphopeptides: A Computational Study. J Phys Chem B 2024; 128:504-514. [PMID: 38190618 DOI: 10.1021/acs.jpcb.3c06767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Residue-specific phosphorylation is a protein post-translational modification that regulates cellular functions. Experimental determination of the exact sites of protein phosphorylation provides an understanding of the signaling and processes at work for a given cellular state. Any experimental artifact that involves migration of the phosphate group during measurement is a concern, as the outcome can lead to erroneous conclusions that may confound studies on cellular signal transduction. Herein, we examine computationally the mechanism by which a phosphate group migrates from one serine residue to another serine in monoprotonated pentapeptides [BA-pSer-Gly-Ser-BB + H]+ → [BA-Ser-Gly-pSer-BB + H]+ (where BA and BB are different combinations of the three basic amino acids, histidine, lysine, and arginine). In addition to moving the phosphate group, the overall mechanism involves transferring a proton from the N-terminal amino acid, BA, to the C-terminal amino acid, BB. This is not a synchronous process, and there is a key high-energy intermediate, structure C, that is zwitterionic with both the basic amino acids protonated and the phosphate group attached to both serine residues and carrying a negative charge. The barriers to moving the phosphate group are calculated to be in the range of 219-274 kJ mol-1 at the B3LYP/6-31G(d) level. These barriers are systematically slightly lower and in good agreement with single-point energy calculations at both M06-2X/6-311++G(d,p) and MP2/6-31++G(d,p) levels. The competitive reaction, loss of phosphoric acid from the protonated pentapeptides, has a barrier in the range of 176-202 kJ mol-1 at the B3LYP/6-31G(d) level. Extension of the theory to M06-2X/6-311++G(d,p)//B3LYP/6-31G(d) and MP2/6-31++G(d,p)// B3LYP/6-31G(d) gives higher values for the loss of phosphoric acid, falling in the range of 196-226 kJ mol-1; these are comparable to the barriers against phosphate migration at the same levels of theory. For larger peptides His-pSer-(Gly)n-Ser-His, where n has values from 2 to 5, the barriers against the loss of phosphoric acid are higher than those against the phosphate group migration. This difference is most pronounced and significant when n = 4 and 5 (the differences are approximately 80 kJ mol-1 under the single-point energy calculations at the M06-2X and MP2 levels). Energy differences using two more recent functionals, M08-HX and MN15, on His-pSer-(Gly)n-Ser-His, where n = 1 and 5, are in good agreement with the M06-2X and MP2 calculations. These results provide the mechanistic rationale for phosphate migration versus other competing reactions in the gas phase under tandem mass spectrometry conditions.
Collapse
Affiliation(s)
- Justin Kai-Chi Lau
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Alan C Hopkinson
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - K W Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
2
|
Moyle AB, Wagner ND, Wagner WJ, Cheng M, Gross ML. Workflow for Validating Specific Amino Acid Footprinting Reagents for Protein Higher Order Structure Elucidation. Anal Chem 2023; 95:10119-10126. [PMID: 37351860 PMCID: PMC10476636 DOI: 10.1021/acs.analchem.3c01919] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Protein footprinting mass spectrometry probes protein higher order structure and dynamics by labeling amino acid side-chains or backbone amides as a function of solvent accessibility. One category of footprinting uses residue-specific, irreversible covalent modifications, affording flexibility of sample processing for bottom-up analysis. Although several specific amino acid footprinting technologies are becoming established in structural proteomics, there remains a need to assess fundamental properties of new reagents before their application. Often, footprinting reagents are applied to complex or novel protein systems soon after their discovery and sometimes without a thorough investigation of potential downsides of the reagent. In this work, we assemble and test a validation workflow that utilizes cyclic peptides and a model protein to characterize benzoyl fluoride, a recently published, next-generation nucleophile footprinter. The workflow includes the characterization of potential side-chain reactive groups, reaction "quench" efficacies, reagent considerations and caveats (e.g., buffer pH), residue-specific kinetics compared to those of established reagents, and protein-wide characterization of modification sites with considerations for proteolysis. The proposed workflow serves as a starting point for improved footprinting reagent discovery, validation, and introduction, the aspects of which we recommend before applying to unknown protein systems.
Collapse
Affiliation(s)
- Austin B. Moyle
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130 United States
| | - Nicole D. Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130 United States
| | - Wesley J. Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130 United States
| | - Ming Cheng
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130 United States
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130 United States
| |
Collapse
|
3
|
Borotto NB, Richards TK. Rapid Online Oxidation of Proteins and Peptides via Electrospray-Accelerated Ozonation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2078-2086. [PMID: 36194498 DOI: 10.1021/jasms.2c00182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mass spectrometry-based analyses of protein conformation continue to grow in utilization due their speed, low sample requirements, and applicability to most protein systems. These techniques typically rely on chemical derivatization of proteins and as with all label-based analyses must ensure the integrity of the protein conformation throughout the duration of the labeling reaction. Hydroxyl radical footprinting of proteins and the recently developed fast fluoroalkylation of proteins attempt to bypass this consideration via rapid reactions that occur on time scales faster than protein folding, but they often require microfluidic setups or electromagnetic radiation sources. In this work, we demonstrate that ozonation of proteins and peptides, which normally occurs in the second to minute time scales, can be accelerated to the submillisecond to millisecond time scale with an electrospray ionization source. This rapid ozonation results in selective labeling of tryptophan and methionine residues. When applied to cytochrome C and carbonic anhydrase, this labeling technique is sensitive to solution conditions and correlates with solution-phase analyses of conformation. While significant work is still needed to characterize this fast chemical labeling strategy, it requires no complicated sample handling, electromagnetic radiation sources, or microfluidic systems outside of the electrospray source and may represent a facile alternative to other rapid labeling technologies that are utilized today.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | | |
Collapse
|
4
|
Evaluation of NHS-Acetate and DEPC labelling for determination of solvent accessible amino acid residues in protein complexes. J Proteomics 2020; 222:103793. [PMID: 32348883 DOI: 10.1016/j.jprot.2020.103793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/27/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023]
Abstract
The activity of most proteins and protein complexes relies on the formation of defined three-dimensional structures. The analysis of these arrangements is therefore key for understanding their function and regulation in the cell. Besides the traditional structural techniques, structural mass spectrometry delivers insights into the various aspects of protein structure, including stoichiometry, protein-ligand interactions and solvent accessibility. The latter is usually obtained from labelling experiments. In this study, we evaluate two chemical labelling strategies using N-hydroxysuccinimidyl acetate and diethylpyrocarbonate as labelling reagents. We characterised the mass spectra of modified peptides and assessed labelling reactivity of individual amino acid residues in intact proteins. Importantly, we uncovered neutral losses from diethylpyrocarbonate modified amino acids improving the assignments of the peptide fragment spectra. We further established a quantitative labelling workflow to determine labelling percentage and unambiguously distinguish solvent accessible amino acid residues from stochastically labelled residues. Finally, we used ion mobility MS to explore whether labelled proteins maintain their structures and remain stable. We conclude that labelling using N-hydroxysuccinimidyl acetate and diethylpyrocarbonate delivers comparable results, however, N-hydroxysuccinimidyl acetate labelling is compatible with standard proteomic workflows while diethylpyrocarbonate labelling requires specialised experimental conditions and data analysis. SIGNIFICANCE: Covalent labelling is widely used to identify solvent accessible amino acid residues of proteins or protein complexes. However, with increasing sensitivity of available MS instrumentation, a high number of modified residues is usually observed making an unambiguous assignment of solvent accessible residues necessary. In this study, we establish a quantitative labelling workflow for two different labelling strategies to identify accessible amino acid residues. In addition, we characterise observed mass spectra of modified peptides and identified neutral loss of DEPC modified amino acid residues during HCD fragmentation improving their assignments.
Collapse
|
5
|
Limpikirati P, Pan X, Vachet RW. Covalent Labeling with Diethylpyrocarbonate: Sensitive to the Residue Microenvironment, Providing Improved Analysis of Protein Higher Order Structure by Mass Spectrometry. Anal Chem 2019; 91:8516-8523. [PMID: 31150223 DOI: 10.1021/acs.analchem.9b01732] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Covalent labeling with mass spectrometry is increasingly being used for the structural analysis of proteins. Diethylpyrocarbonate (DEPC) is a simple to use, commercially available covalent labeling reagent that can readily react with a range of nucleophilic residues in proteins. We find that in intact proteins weakly nucleophilic side chains (Ser, Thr, and Tyr) can be modified by DEPC in addition to other residues such as His, Lys, and Cys, providing very good structural resolution. We hypothesize that the microenvironment around these side chains, as formed by a protein's higher order structure, tunes their reactivity such that they can be labeled. To test this hypothesis, we compare DEPC labeling reactivity of Ser, Thr, and Tyr residues in intact proteins with peptide fragments from the same proteins. Results indicate that these residues almost never react with DEPC in free peptides, supporting the hypothesis that a protein's local microenvironment tunes the reactivity of these residues. From a close examination of the structural features near the reactive residues, we find that nearby hydrophobic residues are essential, suggesting that the enhanced reactivity of certain Ser, Thr, and Tyr residues occurs due to higher local concentrations of DEPC.
Collapse
Affiliation(s)
- Patanachai Limpikirati
- Department of Chemistry , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Xiao Pan
- Department of Chemistry , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Richard W Vachet
- Department of Chemistry , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| |
Collapse
|
6
|
Bailey LS, Alves M, Galy N, Patrick AL, Polfer NC. Mechanistic insights into intramolecular phosphate group transfer during collision induced dissociation of phosphopeptides. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:449-458. [PMID: 30860300 DOI: 10.1002/jms.4351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/22/2019] [Accepted: 03/04/2019] [Indexed: 05/28/2023]
Abstract
We report on the rearrangement chemistry of model phosphorylated peptides during collision-induced dissociation (CID), where intramolecular phosphate group transfers are observed from donor to acceptor residues. Such "scrambling" could result in inaccurate modification localization, potentially leading to misidentifications. Systematic studies presented herein provide mechanistic insights for the unusually high phosphate group rearrangements presented some time ago by Reid and coworkers (Proteomics 2013, 13 [6], 964-973). It is postulated here that a basic residue like histidine can play a key role in mediating the phosphate group transfer by deprotonating the serine acceptor site. The proposed mechanism is consistent with the observation that fast collisional activation by collision-cell CID and higher-energy collisional dissociation (HCD) can shut down rearrangement chemistry. Additionally, the rearrangement chemistry is highly dependent on the charge state of the peptide, mirroring previous studies that less rearrangement is observed under mobile proton conditions.
Collapse
Affiliation(s)
- Laura S Bailey
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Mélanie Alves
- Département de chimie, UFR 926, Sorbonne Université, Paris, France
| | - Nicolas Galy
- Département de chimie, Université Paul Sabatier, Toulouse, France
| | - Amanda L Patrick
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| | - Nicolas C Polfer
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Limpikirati P, Liu T, Vachet RW. Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions. Methods 2018; 144:79-93. [PMID: 29630925 PMCID: PMC6051898 DOI: 10.1016/j.ymeth.2018.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Using mass spectrometry (MS) to obtain information about a higher order structure of protein requires that a protein's structural properties are encoded into the mass of that protein. Covalent labeling (CL) with reagents that can irreversibly modify solvent accessible amino acid side chains is an effective way to encode structural information into the mass of a protein, as this information can be read-out in a straightforward manner using standard MS-based proteomics techniques. The differential reactivity of proteins under two or more conditions can be used to distinguish protein topologies, conformations, and/or binding sites. CL-MS methods have been effectively used for the structural analysis of proteins and protein complexes, particularly for systems that are difficult to study by other more traditional biochemical techniques. This review provides an overview of the non-specific CL approaches that have been combined with MS with a particular emphasis on the reagents that are commonly used, including hydroxyl radicals, carbenes, and diethylpyrocarbonate. We describe the reagent and protein factors that affect the reactivity of amino acid side chains. We also include details about experimental design and workflow, data analysis, recent applications, and some future prospects of CL-MS methods.
Collapse
Affiliation(s)
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States.
| |
Collapse
|
8
|
Kiselar J, Chance MR. High-Resolution Hydroxyl Radical Protein Footprinting: Biophysics Tool for Drug Discovery. Annu Rev Biophys 2018. [DOI: 10.1146/annurev-biophys-070317-033123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydroxyl radical footprinting (HRF) of proteins with mass spectrometry (MS) is a widespread approach for assessing protein structure. Hydroxyl radicals react with a wide variety of protein side chains, and the ease with which radicals can be generated (by radiolysis or photolysis) has made the approach popular with many laboratories. As some side chains are less reactive and thus cannot be probed, additional specific and nonspecific labeling reagents have been introduced to extend the approach. At the same time, advances in liquid chromatography and MS approaches permit an examination of the labeling of individual residues, transforming the approach to high resolution. Lastly, advances in understanding of the chemistry of the approach have led to the determination of absolute protein topologies from HRF data. Overall, the technology can provide precise and accurate measures of side-chain solvent accessibility in a wide range of interesting and useful contexts for the study of protein structure and dynamics in both academia and industry.
Collapse
Affiliation(s)
- Janna Kiselar
- Center for Proteomics and Bioinformatics, and Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Mark R. Chance
- Center for Proteomics and Bioinformatics, and Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
9
|
Laure C, Karamessini D, Milenkovic O, Charles L, Lutz JF. Coding in 2D: Using Intentional Dispersity to Enhance the Information Capacity of Sequence-Coded Polymer Barcodes. Angew Chem Int Ed Engl 2016; 55:10722-5. [DOI: 10.1002/anie.201605279] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/30/2016] [Indexed: 01/11/2023]
Affiliation(s)
- Chloé Laure
- Precision Macromolecular Chemistry Group; Institut Charles Sadron, CNRS-UPR 22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Denise Karamessini
- Precision Macromolecular Chemistry Group; Institut Charles Sadron, CNRS-UPR 22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Olgica Milenkovic
- University of Illinois; Department of Electrical and Computer Engineering; Urbana IL 61801 USA
| | - Laurence Charles
- Aix-Marseille Univ, CNRS; ICR, Institut de Chimie, Radicalaire; Marseille France
| | - Jean-François Lutz
- Precision Macromolecular Chemistry Group; Institut Charles Sadron, CNRS-UPR 22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|
10
|
Laure C, Karamessini D, Milenkovic O, Charles L, Lutz JF. Coding in 2D: Using Intentional Dispersity to Enhance the Information Capacity of Sequence-Coded Polymer Barcodes. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chloé Laure
- Precision Macromolecular Chemistry Group; Institut Charles Sadron, CNRS-UPR 22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Denise Karamessini
- Precision Macromolecular Chemistry Group; Institut Charles Sadron, CNRS-UPR 22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| | - Olgica Milenkovic
- University of Illinois; Department of Electrical and Computer Engineering; Urbana IL 61801 USA
| | - Laurence Charles
- Aix-Marseille Univ, CNRS; ICR, Institut de Chimie, Radicalaire; Marseille France
| | - Jean-François Lutz
- Precision Macromolecular Chemistry Group; Institut Charles Sadron, CNRS-UPR 22; 23 rue du Loess 67034 Strasbourg Cedex 2 France
| |
Collapse
|