1
|
van Dyck JF, Burns JR, Le Huray KIP, Konijnenberg A, Howorka S, Sobott F. Sizing up DNA nanostructure assembly with native mass spectrometry and ion mobility. Nat Commun 2022; 13:3610. [PMID: 35750666 PMCID: PMC9232653 DOI: 10.1038/s41467-022-31029-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
Recent interest in biological and synthetic DNA nanostructures has highlighted the need for methods to comprehensively characterize intermediates and end products of multimeric DNA assembly. Here we use native mass spectrometry in combination with ion mobility to determine the mass, charge state and collision cross section of noncovalent DNA assemblies, and thereby elucidate their structural composition, oligomeric state, overall size and shape. We showcase the approach with a prototypical six-subunit DNA nanostructure to reveal how its assembly is governed by the ionic strength of the buffer, as well as how the mass and mobility of heterogeneous species can be well resolved by careful tuning of instrumental parameters. We find that the assembly of the hexameric, barrel-shaped complex is guided by positive cooperativity, while previously undetected higher-order 12- and 18-mer assemblies are assigned to defined larger-diameter geometric structures. Guided by our insight, ion mobility-mass spectrometry is poised to make significant contributions to understanding the formation and structural diversity of natural and synthetic oligonucleotide assemblies relevant in science and technology.
Collapse
Affiliation(s)
- Jeroen F van Dyck
- Biomolecular & Analytical Mass Spectrometry, Chemistry Department, University of Antwerp, Antwerpen, Belgium
| | - Jonathan R Burns
- Department of Chemistry & Institute of Structural and Molecular Biology, University College London, London, UK
| | - Kyle I P Le Huray
- School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Albert Konijnenberg
- Biomolecular & Analytical Mass Spectrometry, Chemistry Department, University of Antwerp, Antwerpen, Belgium.,Thermo Fisher Scientific, Eindhoven, The Netherlands
| | - Stefan Howorka
- Department of Chemistry & Institute of Structural and Molecular Biology, University College London, London, UK.
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, Chemistry Department, University of Antwerp, Antwerpen, Belgium. .,School of Molecular and Cellular Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
2
|
Abstract
Charge detection mass spectrometry (CDMS) is a single-particle technique where the masses of individual ions are determined from simultaneous measurement of their mass-to-charge ratio (m/z) and charge. Masses are determined for thousands of individual ions, and then the results are binned to give a mass spectrum. Using this approach, accurate mass distributions can be measured for heterogeneous and high-molecular-weight samples that are usually not amenable to analysis by conventional mass spectrometry. Recent applications include heavily glycosylated proteins, protein complexes, protein aggregates such as amyloid fibers, infectious viruses, gene therapies, vaccines, and vesicles such as exosomes.
Collapse
Affiliation(s)
- Martin F Jarrold
- Chemistry Department, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47404, United States
| |
Collapse
|
3
|
Harper CC, Brauer DD, Francis MB, Williams ER. Direct observation of ion emission from charged aqueous nanodrops: effects on gaseous macromolecular charging. Chem Sci 2021; 12:5185-5195. [PMID: 34168773 PMCID: PMC8179642 DOI: 10.1039/d0sc05707j] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/25/2021] [Indexed: 01/04/2023] Open
Abstract
Mechanistic information about how gaseous ions are formed from charged droplets has been difficult to establish because direct observation of nanodrops in a size range relevant to gaseous macromolecular ion formation by optical or traditional mass spectrometry methods is challenging owing to their small size and heterogeneity. Here, the mass and charge of individual aqueous nanodrops between 1-10 MDa (15-32 nm diameter) with ∼50-300 charges are dynamically monitored for 1 s using charge detection mass spectrometry. Discrete losses of minimally solvated singly charged ions occur, marking the first direct observation of ion emission from aqueous nanodrops in late stages of droplet evaporation relevant to macromolecular ion formation in native mass spectrometry. Nanodrop charge depends on the identity of constituent ions, with pure water nanodrops charged slightly above the Rayleigh limit and aqueous solutions containing alkali metal ions charged progressively below the Rayleigh limit with increasing cation size. MS2 capsid ions (∼3.5 MDa; ∼27 nm diameter) are more highly charged from aqueous ammonium acetate than from its biochemically preferred, 100 mM NaCl/10 mM Na phosphate solution, consistent with ion emission reducing the nanodrop and resulting capsid charge. The extent of charging indicates that the capsid partially collapses inside the nanodrops prior to the charging and formation of the dehydrated gaseous ions. These results demonstrate that ion emission can affect macromolecular charging and that conformational changes to macromolecular structure can occur in nanodrops prior to the formation of naked gaseous ions.
Collapse
Affiliation(s)
- Conner C Harper
- Department of Chemistry, University of California Berkeley California 94720-1460 USA
| | - Daniel D Brauer
- Department of Chemistry, University of California Berkeley California 94720-1460 USA
| | - Matthew B Francis
- Department of Chemistry, University of California Berkeley California 94720-1460 USA
| | - Evan R Williams
- Department of Chemistry, University of California Berkeley California 94720-1460 USA
| |
Collapse
|
4
|
Antoine R. Weighing synthetic polymers of ultra-high molar mass and polymeric nanomaterials: What can we learn from charge detection mass spectrometry? RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34 Suppl 2:e8539. [PMID: 31353622 DOI: 10.1002/rcm.8539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Advances in soft ionization techniques for mass spectrometry (MS) of polymeric materials make it possible to determine the masses of intact molecular ions exceeding megadaltons. Interfacing MS with separation and fragmentation methods has additionally led to impressive advances in the ability to structurally characterize polymers. Even if the gap to the megadalton range has been bridged by MS for polymers standards, the MS-based analysis for more complex polymeric materials is still challenging. Charge detection mass spectrometry (CDMS) is a single-molecule method where the mass and the charge of each ion are directly determined from individual measurements. The entire molecular mass distribution of a polymer sample can be thus accurately measured. Described in this perspective paper is how molecular weight distribution as well as charge distribution can provide new insights into the structural and compositional studies of synthetic polymers and polymeric nanomaterials in the megadalton to gigadalton range of molecular weight. The recent multidimensional CDMS studies involving couplings with separation and dissociation techniques will be presented. And, finally, an outlook for the future avenues of the CDMS technique in the field of synthetic polymers of ultra-high molar mass and polymeric nanomaterials will be provided.
Collapse
Affiliation(s)
- Rodolphe Antoine
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, F-69622, Lyon, France
| |
Collapse
|
5
|
Halim MA, Bertorelle F, Doussineau T, Antoine R. Direct determination of molecular weight distribution of calf-thymus DNAs and study of their fragmentation under ultrasonic and low-energy infrared irradiations. A charge detection mass spectrometry investigation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33 Suppl 1:35-39. [PMID: 29885254 DOI: 10.1002/rcm.8204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE Calf-thymus (CT-DNA) is widely used as a binding agent. The commercial samples are known to be "highly polymerized DNA" samples. CT-DNA is known to be fragile in particular upon ultrasonic wave irradiation. Degradation products could have dramatic consequences on its bio-sensing activity, and an accurate determination of the molecular weight distribution and stability of commercial samples is highly demanded. METHODS We investigated the sensitivity of charge detection mass spectrometry (CDMS), a single-molecule MS method, both with single-pass and ion trap CDMS ("Benner" trap) modes to the determination of the composition and stability (under multiphoton IR irradiation) of calf-thymus DNAs. We also investigated the changes in molecular weight distributions in the course of sonication by irradiating ultrasonic waves to CT-DNA. RESULTS We report, for the first time, the direct molecular weight (MW) distribution of DNA sodium salt from calf-thymus revealing two populations at high (~10 MDa) and low (~3 MDa) molecular weights. We evidence a transition between the high-MW to the low-MW distribution, confirming that the low-MW distribution results from degradation of CT-DNA. Finally, we report also IRMPD experiments carried out on trapped single-stranded linear DNAs from calf-thymus allowing extraction of their activation energy for unimolecular dissociation. CONCLUSIONS We show that single-pass CDMS is a direct, efficient and accurate MS-based approach to determine the composition of calf-thymus DNAs. Furthermore, ion trap CDMS allows us to evaluate the stability (both under multiphoton IR irradiation and in the course of sonication by irradiating ultrasonic wave) of calf-thymus DNAs.
Collapse
Affiliation(s)
- Mohammad A Halim
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, Univ Lyon, F-69622, Lyon, France
| | - Franck Bertorelle
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, Univ Lyon, F-69622, Lyon, France
| | - Tristan Doussineau
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, Univ Lyon, F-69622, Lyon, France
| | - Rodolphe Antoine
- Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, UMR 5306, Univ Lyon, F-69622, Lyon, France
| |
Collapse
|
6
|
Draper BE, Anthony SN, Jarrold MF. The FUNPET-a New Hybrid Ion Funnel-Ion Carpet Atmospheric Pressure Interface for the Simultaneous Transmission of a Broad Mass Range. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2160-2172. [PMID: 30112619 DOI: 10.1007/s13361-018-2038-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
An atmospheric pressure interface transports ions from ambient pressure to the low-pressure environment of a mass spectrometer. A capillary coupled to an ion funnel is widely used. However, conventional ion funnels do little to negate the large amount of energy picked up by high-mass ions from the gas flow through the capillary. There has been little work done on the effects of gas flow on ion transmission, and the previous studies have all been limited to low-mass, low-charge ions. In this work, we account for the effects of gas flow, diffusion, and electric fields (static and oscillating) on ion trajectories and use simulations to design a new hybrid ion funnel-ion carpet (FUNPET) interface that transmits a broad mass range with a single set of instrument conditions. The design incorporates a virtual jet disruptor where pressure buildup and counter flow dissipate the supersonic jet that results from gas flow into the interface. This, and the small exit aperture that can be used with the FUNPET, reduces the gas flow into the next stage of differential pumping. The virtual jet disruptor thermalizes ions with a broad range of masses (1 kDa to 1 GDa), and once thermalized, they are transmitted into next region of the mass spectrometer with low excess kinetic energy. The FUNPET interface is easy to fabricate from flexible printed circuit board and a support frame made by 3D printing. The performance of the interface was evaluated using charge detection mass spectrometry. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Benjamin E Draper
- Chemistry Department, Indiana University, Bloomington, IN, 47405, USA
| | - Staci N Anthony
- Chemistry Department, Indiana University, Bloomington, IN, 47405, USA
| | - Martin F Jarrold
- Chemistry Department, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
7
|
Harper CC, Elliott AG, Lin HW, Williams ER. Determining Energies and Cross Sections of Individual Ions Using Higher-Order Harmonics in Fourier Transform Charge Detection Mass Spectrometry (FT-CDMS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1861-1869. [PMID: 29860679 DOI: 10.1007/s13361-018-1987-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
A general method for in situ measurements of the energy of individual ions trapped and weighed using charge detection mass spectrometry (CDMS) is described. Highly charged (> 300 e), individual polyethylene glycol (PEG) ions are trapped and oscillate within an electrostatic trap, producing a time domain signal. A segmented Fourier transform (FT) of this signal yields the temporal evolution of the fundamental and harmonic frequencies of ion motion throughout the 500-ms trap time. The ratio of the fundamental frequency and second harmonic (HAR) depends on the ion energy, which is an essential parameter for measuring ion mass in CDMS. This relationship is calibrated using simulated ion signals, and the calibration is compared to the HAR values measured for PEG ion signals where the ion energy was also determined using an independent method that requires that the ions be highly charged (> 300 e). The mean error of 0.6% between the two measurements indicates that the HAR method is an accurate means of ion energy determination that does not depend on ion size or charge. The HAR is determined dynamically over the entire trapping period, making it possible to observe the change in ion energy that takes place as solvent evaporates from the ion and collisions with background gas occur. This method makes it possible to measure mass changes, either from solvent evaporation or from molecular fragmentation (MSn), as well as the cross sections of ions measured using CDMS. Graphical Abstract.
Collapse
Affiliation(s)
- Conner C Harper
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Andrew G Elliott
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Haw-Wei Lin
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, CA, 94720-1460, USA.
| |
Collapse
|
8
|
Elliott AG, Harper CC, Lin HW, Williams ER. Mass, mobility and MS n measurements of single ions using charge detection mass spectrometry. Analyst 2018. [PMID: 28636005 DOI: 10.1039/c7an00618g] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Charge detection mass spectrometry is used to measure the mass, charge, MSn and mobility of an individual ion produced by electrospray ionization of a 8 MDa polyethylene glycol sample. The charge detection mass spectrometer is an electrostatic ion trap that uses cone electrodes and a single tube detector and can detect ions for up to the full trapping time of 4.0 s. The time-domain signal induced on the detector tube by a single multiply charged ion can be complex owing to sequential fragmentation of the original precursor ion as well as increasing oscillation frequencies of the single ion owing to collisions with background gas that reduce the kinetic energy of the ion inside the trap. Simulations show that the ratio of the time for the ion to turn around inside the cone region of the trap to the time for the ion to travel through the detector tube is constant with m/z and increases with the ion energy per charge. By measuring this ratio, the kinetic energy of an ion can be obtained with good precision (∼1%) and this method to measure ion kinetic energies eliminates the necessity of ion energy selection prior to trapping for high precision mass measurement of large molecules in complex mixtures. This method also makes it possible to measure the masses of each sequential fragment ion formed from the original precursor ion. MS7 of a single multiply charged PEG molecule is demonstrated, and from these ion energy measurements and effects of collisions on the ion motion inside the trap, information about the ion mobility of the precursor ion and its fragments is obtained.
Collapse
Affiliation(s)
- Andrew G Elliott
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
| | - Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
| | - Haw-Wei Lin
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, USA.
| |
Collapse
|
9
|
How can native mass spectrometry contribute to characterization of biomacromolecular higher-order structure and interactions? Methods 2018; 144:3-13. [PMID: 29704661 DOI: 10.1016/j.ymeth.2018.04.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/03/2018] [Accepted: 04/21/2018] [Indexed: 01/16/2023] Open
Abstract
Native mass spectrometry (MS) is an emerging approach for characterizing biomacromolecular structure and interactions under physiologically relevant conditions. In native MS measurement, intact macromolecules or macromolecular complexes are directly ionized from a non-denaturing solvent, and key noncovalent interactions that hold the complexes together can be preserved for MS analysis in the gas phase. This technique provides unique multi-level structural information such as conformational changes, stoichiometry, topology and dynamics, complementing conventional biophysical techniques. Despite the maturation of native MS and greatly expanded range of applications in recent decades, further dissemination is needed to make the community aware of such a technique. In this review, we attempt to provide an overview of the current body of knowledge regarding major aspects of native MS and explain how such technique contributes to the characterization of biomacromolecular higher-order structure and interactions.
Collapse
|
10
|
Halim MA, Clavier C, Dagany X, Kerleroux M, Dugourd P, Dunbar RC, Antoine R. Infrared laser dissociation of single megadalton polymer ions in a gated electrostatic ion trap: the added value of statistical analysis of individual events. Phys Chem Chem Phys 2018; 20:11959-11966. [PMID: 29670983 DOI: 10.1039/c8cp00404h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we report the unimolecular dissociation mechanism of megadalton SO3-containing poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS) polymer cations and anions with the aid of infrared multiphoton dissociation coupled to charge detection ion trap mass spectrometry. A gated electrostatic ion trap ("Benner trap") is used to store and detect single gaseous polymer ions generated by positive and negative polarity in an electrospray ionization source. The trapped ions are then fragmented due to the sequential absorption of multiple infrared photons produced from a continuous-wave CO2 laser. Several fragmentation pathways having distinct signatures are observed. Highly charged parent ions characteristically adopt a distinctive "stair-case" pattern (assigned to the "fission" process) whereas low charge species take on a "funnel like" shape (assigned to the "evaporation" process). Also, the log-log plot of the dissociation rate constants as a function of laser intensity between PAMPS positive and negative ions is significantly different.
Collapse
Affiliation(s)
- Mohammad A Halim
- Institut Lumière Matière, UMR 5306, Université Claude Bernard Lyon 1, CNRS, F-69622 Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
11
|
Keifer DZ, Jarrold MF. Single-molecule mass spectrometry. MASS SPECTROMETRY REVIEWS 2017; 36:715-733. [PMID: 26873676 DOI: 10.1002/mas.21495] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/15/2016] [Indexed: 06/05/2023]
Abstract
In single-molecule mass spectrometry, the mass of each ion is measured individually; making it suitable for the analysis of very large, heterogeneous objects that cannot be analyzed by conventional means. A range of single-molecule mass spectrometry techniques has been developed, including time-of-flight with cryogenic detectors, a quadrupole ion trap with optical detection, single-molecule Fourier transform ion cyclotron resonance, charge detection mass spectrometry, quadrupole ion traps coupled to charge detector plates, and nanomechanical oscillators. In addition to providing information on mass and heterogeneity, these techniques have been used to study impact craters from cosmic dust, monitor the assembly of viruses, elucidate the fluorescence dynamics of quantum dots, and much more. This review focuses on the merits of each of these technologies, their limitations, and their applications. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 36:715-733, 2017.
Collapse
Affiliation(s)
- David Z Keifer
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401
| | - Martin F Jarrold
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN, 47401
| |
Collapse
|
12
|
Elliott AG, Harper CC, Lin HW, Susa AC, Xia Z, Williams ER. Simultaneous Measurements of Mass and Collisional Cross-Section of Single Ions with Charge Detection Mass Spectrometry. Anal Chem 2017. [PMID: 28621517 DOI: 10.1021/acs.analchem.7b01675] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The masses and mobilities of single multiply charged ions of cytochrome c, ubiquitin, myoglobin, and bovine serum albumin formed by electrospray ionization are measured using charge detection mass spectrometry (CDMS). Single ions are trapped and repeatedly measured as they oscillate inside an electrostatic ion trap with cone electrodes for up to the maximum trapping time set at 500 ms. The histograms of the many single ion oscillation frequencies have resolved peaks that correspond to the different charge states of each protein. The m/z of each ion is determined from the initial oscillation frequency histogram, and the evolution of the ion energy with time is obtained from the changing frequency. A short-time Fourier transform of the time-domain data indicates that the increase in ion frequency occurs gradually with time with occasional sudden jumps in frequency. The frequency jumps are similar for each protein and may be caused by collision-induced changes in the ion trajectory. The rate of the gradual frequency shift increases with protein mass and charge state. This gradual frequency change is due to ion energy loss from collisions with the background gas. The total energy lost by an ion is determined from the latter frequency shifts normalized to a 500 ms lifetime, and these values increase nearly linearly with measured collisional cross-sections for these protein ions. These results show that the mass and collisional cross-section of single multiply charged ions can be obtained from these CDMS measurements by using proteins with known collisional cross-sections for calibration.
Collapse
Affiliation(s)
- Andrew G Elliott
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Conner C Harper
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Haw-Wei Lin
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Anna C Susa
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Zijie Xia
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - Evan R Williams
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| |
Collapse
|
13
|
Keifer DZ, Pierson EE, Jarrold MF. Charge detection mass spectrometry: weighing heavier things. Analyst 2017; 142:1654-1671. [DOI: 10.1039/c7an00277g] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Charge detection mass spectrometry (CDMS) is a single molecule method where the mass of each ion is directly determined from individual measurements of its mass-to-charge ratio and charge.
Collapse
Affiliation(s)
| | - Elizabeth E. Pierson
- Department of Analytical Sciences
- Pharmaceutical Sciences and Clinical Supplies
- Merck Research Laboratories
- Merck & Co
- Inc
| | | |
Collapse
|
14
|
Chaduc I, Parvole J, Doussineau T, Antoine R, Désert A, Dugas PY, Ravaine S, Duguet E, Bourgeat-Lami E, Lansalot M. Towards a one-step method for preparing silica/polymer heterodimers and dimpled polymer particles. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|