1
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
2
|
Bowser BL, Robinson RAS. Enhanced Multiplexing Technology for Proteomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:379-400. [PMID: 36854207 DOI: 10.1146/annurev-anchem-091622-092353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The identification of thousands of proteins and their relative levels of expression has furthered understanding of biological processes and disease and stimulated new systems biology hypotheses. Quantitative proteomics workflows that rely on analytical assays such as mass spectrometry have facilitated high-throughput measurements of proteins partially due to multiplexing. Multiplexing allows proteome differences across multiple samples to be measured simultaneously, resulting in more accurate quantitation, increased statistical robustness, reduced analysis times, and lower experimental costs. The number of samples that can be multiplexed has evolved from as few as two to more than 50, with studies involving more than 10 samples being denoted as enhanced multiplexing or hyperplexing. In this review, we give an update on emerging multiplexing proteomics techniques and highlight advantages and limitations for enhanced multiplexing strategies.
Collapse
Affiliation(s)
- Bailey L Bowser
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA;
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Neurology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Memory and Alzheimer's Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Chemical Biology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
- Vanderbilt Brain Institute, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Borotto NB, Graham KA. Fragmentation and Mobility Separation of Peptide and Protein Ions in a Trapped-Ion Mobility Device. Anal Chem 2021; 93:9959-9964. [PMID: 34258993 DOI: 10.1021/acs.analchem.1c01188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ion mobility separations (IMS) have increasingly been coupled with mass spectrometry to increase peak capacity and deconvolute complex mass spectra in proteomics workflows. IMS separations can be integrated prior to or following the collisional activation step. Post-activation IMS separations have demonstrated many advantages, yet few instrument platforms are capable of this feat. Here, we present the fragmentation of peptide ions within a commercially available trapped-ion mobility spectrometry device. Fragmentation is initiated prior to mobility analysis enabling the separation of generated product ions. The added separation step deconvolutes product ion spectra and permits improved annotation of product ions. Furthermore, we demonstrate the isolation and fragmentation of mobility separated product ions with the downstream quadrupole and collisional cell. When applied to melittin and ubiquitin, this ion mobility assisted pseudo-MS3 fragmentation approach generates sequence coverage ∼50% greater than that of typical MS2 analyses. We envision this ion-mobility-assisted fragmentation technique as the foundation of a powerful new pseudo-MS3 workflow for application toward middle- or top-down proteomics.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Katherine A Graham
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
4
|
Pumford AD, Arul AB, Ford KI, Robinson RAS. Automation of On-Resin Enrichment of S-Nitrosylated Proteins for Oxidized Cysteine-Selective cPILOT. VANDERBILT UNDERGRADUATE RESEARCH JOURNAL : VURJ 2021; 11:43-51. [PMID: 35615079 PMCID: PMC9129232 DOI: 10.15695/vurj.v11i1.5096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
S-Nitrosylation (SNO) is a cysteine post-translational modification that increases with normal aging and is present in Alzheimer's disease and other aging-related illnesses. Detection of SNO-modified proteins can be challenging; however, we previously developed a robust quantitative proteomics approach termed "Oxidized Cysteine-Selective combined precursor isobaric labeling and isobaric tagging (OxcyscPILOT)" that allows for detection of endogenous SNO-modified proteins. OxcyscPILOT involves enrichment of SNO-modified proteins using a thiol-based resin. This enrichment is performed manually, and wash steps with the resin require numerous stages and buffer reagents. The goal of this study is to transfer the manual protocol to an automated liquid handler system in order to reduce wash steps, increase sample throughput, and minimize experimental error. In order to accomplish this, we evaluated the Biomek i7 liquid handler automated workstation and a Positive Pressure ALP (PPA) apparatus to conduct automated on-resin enrichment. Our findings provide starting pressure conditions for the use of PPA in an automated OxcyscPILOT proteomics workflow that could be transferred to other robotic liquid handling systems.
Collapse
|
5
|
Peng Y, Gao P, Shi L, Chen L, Liu J, Long J. Central and Peripheral Metabolic Defects Contribute to the Pathogenesis of Alzheimer's Disease: Targeting Mitochondria for Diagnosis and Prevention. Antioxid Redox Signal 2020; 32:1188-1236. [PMID: 32050773 PMCID: PMC7196371 DOI: 10.1089/ars.2019.7763] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Significance: Epidemiological studies indicate that metabolic disorders are associated with an increased risk for Alzheimer's disease (AD). Metabolic remodeling occurs in the central nervous system (CNS) and periphery, even in the early stages of AD. Mitochondrial dysfunction has been widely accepted as a molecular mechanism underlying metabolic disorders. Therefore, focusing on early metabolic changes, especially from the perspective of mitochondria, could be of interest for early AD diagnosis and intervention. Recent Advances: We and others have identified that the levels of several metabolites are fluctuated in the periphery before their accumulation in the CNS, which plays an important role in the pathogenesis of AD. Mitochondrial remodeling is likely one of the earliest signs of AD, linking nutritional imbalance to cognitive deficits. Notably, by improving mitochondrial function, mitochondrial nutrients efficiently rescue cellular metabolic dysfunction in the CNS and periphery in individuals with AD. Critical Issues: Peripheral metabolic disorders should be intensively explored and evaluated for the early diagnosis of AD. The circulating metabolites derived from mitochondrial remodeling represent novel potential diagnostic biomarkers for AD that are more readily detected than CNS-oriented biomarkers. Moreover, mitochondrial nutrients provide a promising approach to preventing and delaying AD progression. Future Directions: Abnormal mitochondrial metabolism in the CNS and periphery is involved in AD pathogenesis. More clinical studies provide evidence for the suitability and reliability of circulating metabolites and cytokines for the early diagnosis of AD. Targeting mitochondria to rewire cellular metabolism is a promising approach to preventing AD and ameliorating AD-related metabolic disorders.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Peipei Gao
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Le Shi
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiangang Long
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Aggarwal S, Kumar A, Jamwal S, Midha MK, Talukdar NC, Yadav AK. HyperQuant-A Computational Pipeline for Higher Order Multiplexed Quantitative Proteomics. ACS OMEGA 2020; 5:10857-10867. [PMID: 32455206 PMCID: PMC7240821 DOI: 10.1021/acsomega.0c00515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Quantitative proteomics has evolved considerably over the last decade with the advent of higher order multiplexing (HOM) techniques. With the development of methods such as-multitagging, cPILOT, hyperplexing, BONPlex, and MITNCAT, the HOM technique is rapidly taking the center stage in multiplexed quantitative proteomics. These studies combined MS1 and MS2 labels in a single experiment enabling higher sample throughput. While HOM is highly promising, the computational analysis is still a big challenge, as the available tools cannot harness its power completely. We have developed a new quantitative pipeline, HyperQuant to aid in accurately quantitating complex HOM data. The pipeline uses identification results from either MaxQuant or any other search engine and quantitation results from QuantWizIQ. The Mapper and Combiner modules of HyperQuant allow facile integration of the labeled data, along with peptide spectrum match (PSM) intensity/ratio integration for proteins, respectively, for each PSM label combination. This also includes appropriate combination of replicates/fractions before summarizing the protein intensity/ratio, leading to robust quantitation. To the best of our knowledge, this is the first tool for the quantitation of HOM data with flexibility for any combination of MS1 and MS2 labels. We demonstrate its utility in analyzing two 18-plex data sets from the hyperplexing and the BONplex studies. The tool is open source and freely available for noncommercial use. HyperQuant is a highly valuable tool that will help in advancing the field of multiplexed quantitative proteomics.
Collapse
Affiliation(s)
- Suruchi Aggarwal
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad−Gurgaon
Expressway, Faridabad 121001, Haryana, India
- Division
of Life Sciences, Institute of Advanced
Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
- Department
of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam 781001, India
| | - Ajay Kumar
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad−Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Shilpa Jamwal
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad−Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Mukul Kumar Midha
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad−Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Narayan Chandra Talukdar
- Division
of Life Sciences, Institute of Advanced
Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
- Department
of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam 781001, India
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad−Gurgaon
Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
7
|
King CD, Robinson RAS. Evaluating Combined Precursor Isotopic Labeling and Isobaric Tagging Performance on Orbitraps To Study the Peripheral Proteome of Alzheimer's Disease. Anal Chem 2020; 92:2911-2916. [PMID: 31940168 PMCID: PMC7932850 DOI: 10.1021/acs.analchem.9b01974] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Combined precursor isotopic labeling and isobaric tagging (cPILOT) is an enhanced multiplexing strategy currently capable of analyzing up to 24 samples simultaneously. This capability is especially helpful when studying multiple tissues and biological replicates in models of disease, such as Alzheimer's disease (AD). Here, cPILOT was used to study proteomes from heart, liver, and brain tissues in a late-stage amyloid precursor protein/presenilin-1 (APP/PS-1) human transgenic double-knock-in mouse model of AD. The original global cPILOT assay developed on an Orbitrap Velos instrument was transitioned to an Orbitrap Fusion Lumos instrument. The advantages of faster scan rates, lower limits of detection, and synchronous precursor selection on the Fusion Lumos afford greater numbers of isobarically tagged peptides to be quantified in comparison to the Orbitrap Velos. Parameters such as LC gradient, m/z isolation window, dynamic exclusion, targeted mass analyses, and synchronous precursor scan were optimized leading to >600 000 PSMs, corresponding to 6074 proteins. Overall, these studies inform of system-wide changes in brain, heart, and liver proteins from a mouse model of AD.
Collapse
Affiliation(s)
- Christina D King
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Renã A S Robinson
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States
- Department of Neurology , Vanderbilt University Medical Center , Nashville , Tennessee 37232 , United States
- Vanderbilt Memory & Alzheimer's Center , Vanderbilt University Medical Center , Nashville , Tennessee 37212 , United States
- Vanderbilt Institute of Chemical Biology , Vanderbilt University , Nashville , Tennessee 37232 , United States
- Vanderbilt Brain Institute , Vanderbilt University , Nashville , Tennessee 37232 , United States
| |
Collapse
|
8
|
Buchowiecka AK. Modified cysteine S-phosphopeptide standards for mass spectrometry-based proteomics. Amino Acids 2019; 51:1365-1375. [DOI: 10.1007/s00726-019-02773-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/18/2019] [Indexed: 02/06/2023]
|
9
|
Aggarwal S, Talukdar NC, Yadav AK. Advances in Higher Order Multiplexing Techniques in Proteomics. J Proteome Res 2019; 18:2360-2369. [DOI: 10.1021/acs.jproteome.9b00228] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Suruchi Aggarwal
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Third Milestone, Faridabad − Gurgaon Expressway, Faridabad, Haryana 121001, India
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam 781001, India
| | - Narayan C. Talukdar
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam 781001, India
| | - Amit K. Yadav
- Drug Discovery Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Third Milestone, Faridabad − Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
10
|
Affiliation(s)
- Albert B. Arul
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Renã A. S. Robinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Memory & Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, Tennessee 37212, United States
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| |
Collapse
|
11
|
Stepler KE, Robinson RAS. The Potential of ‘Omics to Link Lipid Metabolism and Genetic and Comorbidity Risk Factors of Alzheimer’s Disease in African Americans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:1-28. [DOI: 10.1007/978-3-030-05542-4_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Dyer RR, Ford KI, Robinson RAS. The roles of S-nitrosylation and S-glutathionylation in Alzheimer's disease. Methods Enzymol 2019; 626:499-538. [PMID: 31606089 PMCID: PMC6908309 DOI: 10.1016/bs.mie.2019.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a debilitating dementia with complex pathophysiological alterations including modifications to endogenous cysteine. S-nitrosylation (SNO) is a well-studied posttranslational modification (PTM) in the context of AD while S-glutathionylation (PSSG) remains less studied. Excess reactive oxygen and reactive nitrogen species (ROS/RNS) directly or indirectly generate SNO and PSSG. SNO is dysregulated in AD and plays a pervasive role in processes such as protein function, cell signaling, metabolism, and apoptosis. Despite some studies into the role of SNO in AD, multiple identified SNO proteins lack deep investigation and SNO modifications outside of brain tissues are limited, leaving the full role of SNO in AD to be elucidated. PSSG homeostasis is perturbed in AD and may affect a myriad of cellular processes. Here we overview the role of nitric oxide (NO) in AD, discuss proteomic methodologies to investigate SNO and PSSG, and review SNO and PSSG in AD. A more thorough understanding of SNO, PSSG, and other cysteinyl PTMs in AD will be helpful for the development of novel therapeutics against neurodegenerative diseases.
Collapse
Affiliation(s)
- Ryan R Dyer
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Katarena I Ford
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Renã A S Robinson
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt Memory & Alzheimer's Center, Nashville, TN, United States; Vanderbilt Institute of Chemical Biology, Nashville, TN, United States; Vanderbilt Brain Institute, Nashville, TN, United States.
| |
Collapse
|
13
|
Frost DC, Rust CJ, Robinson RAS, Li L. Increased N,N-Dimethyl Leucine Isobaric Tag Multiplexing by a Combined Precursor Isotopic Labeling and Isobaric Tagging Approach. Anal Chem 2018; 90:10664-10669. [PMID: 30095893 DOI: 10.1021/acs.analchem.8b01301] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Multiplex isobaric tags have become valuable tools for high-throughput quantitative analysis of complex biological samples in discovery-based proteomics studies. Hybrid labeling strategies that pair stable isotope mass difference labeling with multiplex isobaric tag-based quantification further facilitate these studies by greatly increasing multiplexing capability. In this work, we present a cost-effective chemical labeling approach that couples duplex stable isotope dimethyl labeling with our custom 12-plex N,N-dimethyl leucine (DiLeu) isobaric tags in a combined precursor isotopic labeling and isobaric tagging (cPILOT) strategy that is compatible with a wide variety of biological samples and permits 24-plex quantification in a single LC-MS/MS experiment. We demonstrate the utility of the DiLeu cPILOT approach by labeling yeast digests and performing proof-of-principle quantification experiments on the Orbitrap Fusion Lumos.
Collapse
Affiliation(s)
- Dustin C Frost
- School of Pharmacy , University of Wisconsin-Madison , 777 Highland Avenue , Madison , Wisconsin 53705 , United States
| | - Clayton J Rust
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Renã A S Robinson
- Department of Chemistry , Vanderbilt University , 5423 Stevenson Center , Nashville , Tennessee 37235 , United States
| | - Lingjun Li
- School of Pharmacy , University of Wisconsin-Madison , 777 Highland Avenue , Madison , Wisconsin 53705 , United States.,Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
14
|
Leitner A. A review of the role of chemical modification methods in contemporary mass spectrometry-based proteomics research. Anal Chim Acta 2018; 1000:2-19. [DOI: 10.1016/j.aca.2017.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
|
15
|
Setner B, Szewczuk Z. New ionization tags based on the structure of the 5-azoniaspiro[4.4]nonyl tag for a sensitive peptide sequencing by mass spectrometry. Anal Bioanal Chem 2017; 410:1311-1321. [PMID: 29214541 PMCID: PMC5775984 DOI: 10.1007/s00216-017-0771-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/08/2017] [Accepted: 11/15/2017] [Indexed: 12/13/2022]
Abstract
Quaternary ammonium salts (QAS), both linear and bicyclic, are often utilized to improve the mass spectrometry (MS) analysis of peptides by fixing a permanent positive charge on the analyzed molecule. However, during collision-induced dissociation (CID) experiments, QAS undergo unwanted side reactions-Hofmann elimination as well as a tertiary amine loss- rendering the data interpretation complicated. In this work, we present 2-thia- and 2-oxa-5-azoniaspiro[4.4]nonyl groups as heterocyclic derivatives of the highly stable ionization group, 5-azoniaspiro[4.4]nonyl, for a sensitive peptide analysis by MS. Due to the permanent positive charge, labeled peptides are characterized by enhanced ionization efficiency during electrospray mass spectrometry (ESI-MS) conditions. Moreover, interpretation of the CID fragmentation of labeled peptides is facilitated since a series of generated fragmentation ions enable a complete sequence coverage. Introduction of a heteroatom into the 5-azoniaspiro[4.4]nonyl scaffold allows for liberation of a stable reporter ion which could be used in selected reaction monitoring (SRM)-targeted quantification experiments. Additionally, we synthesized a deuterated analog of the tag for LC-SRM-targeted quantitative analysis. The obtained results indicate the general usefulness of the proposed heterocyclic quaternary ammonium ionization tag for sequencing and quantification of peptides. Graphical abstract New reagents based on the structure of the 5-azoniaspiro[4.4]nonyl tag for peptide analysis by tandem mass spectrometry.
Collapse
Affiliation(s)
- Bartosz Setner
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50383, Wrocław, Poland.
| | - Zbigniew Szewczuk
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50383, Wrocław, Poland
| |
Collapse
|
16
|
Borotto NB, McClory PJ, Martin BR, Håkansson K. Targeted Annotation of S-Sulfonylated Peptides by Selective Infrared Multiphoton Dissociation Mass Spectrometry. Anal Chem 2017; 89:8304-8310. [PMID: 28708386 DOI: 10.1021/acs.analchem.7b01461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein S-sulfinylation (R-SO2-) and S-sulfonylation (R-SO3-) are irreversible oxidative post-translational modifications of cysteine residues. Greater than 5% of cysteines are reported to occupy these higher oxidation states, which effectively inactivate the corresponding thiols and alter the electronic and physical properties of modified proteins. Such higher oxidation states are reached after excessive exposure to cellular oxidants, and accumulate across different disease states. Despite widespread and functionally relevant cysteine oxidation across the proteome, there are currently no robust methods to profile higher order cysteine oxidation. Traditional data-dependent liquid chromatography/tandem mass spectrometry (LC/MS/MS) methods generally miss low-occupancy modifications in complex analyses. Here, we present a data-independent acquisition (DIA) LC/MS-based approach, leveraging the high IR absorbance of sulfoxides at 10.6 μm, for selective dissociation and discovery of S-sulfonated peptides. Across peptide standards and protein digests, we demonstrate selective infrared multiphoton dissociation (IRMPD) of S-sulfonated peptides in the background of unmodified peptides. This selective DIA IRMPD LC/MS-based approach allows identification and annotation of S-sulfonated peptides across complex mixtures while providing sufficient sequence information to localize the modification site.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Phillip J McClory
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Brent R Martin
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
17
|
Duan J, Gaffrey MJ, Qian WJ. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines. MOLECULAR BIOSYSTEMS 2017; 13:816-829. [PMID: 28357434 PMCID: PMC5493446 DOI: 10.1039/c6mb00861e] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein thiols play a crucial role in redox signaling, in the regulation of enzymatic activity and protein function, and in maintaining redox homeostasis in living systems. The unique chemical reactivity of the thiol group makes protein cysteines susceptible to reactions with reactive oxygen and nitrogen species that form various reversible and irreversible post-translational modifications (PTMs). The reversible PTMs in particular are major components of redox signaling and are involved in the regulation of various cellular processes under physiological and pathological conditions. The biological significance of these redox PTMs in both healthy and disease states has been increasingly recognized. Herein, we review recent advances in quantitative proteomic approaches for investigating redox PTMs in complex biological systems, including general considerations of sample processing, chemical or affinity enrichment strategies, and quantitative approaches. We also highlight a number of redox proteomic approaches that enable effective profiling of redox PTMs for specific biological applications. Although technical limitations remain, redox proteomics is paving the way to a better understanding of redox signaling and regulation in both healthy and disease states.
Collapse
Affiliation(s)
- Jicheng Duan
- Integrative Omics Group, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | |
Collapse
|
18
|
King CD, Dudenhoeffer JD, Gu L, Evans AR, Robinson RAS. Enhanced Sample Multiplexing of Tissues Using Combined Precursor Isotopic Labeling and Isobaric Tagging (cPILOT). J Vis Exp 2017. [PMID: 28518113 DOI: 10.3791/55406] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is an increasing demand to analyze many biological samples for disease understanding and biomarker discovery. Quantitative proteomics strategies that allow simultaneous measurement of multiple samples have become widespread and greatly reduce experimental costs and times. Our laboratory developed a technique called combined precursor isotopic labeling and isobaric tagging (cPILOT), which enhances sample multiplexing of traditional isotopic labeling or isobaric tagging approaches. Global cPILOT can be applied to samples originating from cells, tissues, bodily fluids, or whole organisms and gives information on relative protein abundances across different sample conditions. cPILOT works by 1) using low pH buffer conditions to selectively dimethylate peptide N-termini and 2) using high pH buffer conditions to label primary amines of lysine residues with commercially-available isobaric reagents (see Table of Materials/Reagents). The degree of sample multiplexing available is dependent on the number of precursor labels used and the isobaric tagging reagent. Here, we present a 12-plex analysis using light and heavy dimethylation combined with six-plex isobaric reagents to analyze 12 samples from mouse tissues in a single analysis. Enhanced multiplexing is helpful for reducing experimental time and cost and more importantly, allowing comparison across many sample conditions (biological replicates, disease stage, drug treatments, genotypes, or longitudinal time-points) with less experimental bias and error. In this work, the global cPILOT approach is used to analyze brain, heart, and liver tissues across biological replicates from an Alzheimer's disease mouse model and wild-type controls. Global cPILOT can be applied to study other biological processes and adapted to increase sample multiplexing to greater than 20 samples.
Collapse
Affiliation(s)
| | | | | | - Adam R Evans
- Large Molecule Analytical Development, Pharmaceutical Development & Manufacturing Science, Janssen Research and Development
| | | |
Collapse
|
19
|
Dyer RR, Gu L, Robinson RAS. S-Nitrosylation in Alzheimer’s Disease Using Oxidized Cysteine-Selective cPILOT. NEUROMETHODS 2017. [DOI: 10.1007/978-1-4939-7119-0_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Robinson RAS, Amin B, Guest PC. Multiplexing Biomarker Methods, Proteomics and Considerations for Alzheimer’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 974:21-48. [DOI: 10.1007/978-3-319-52479-5_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Gu L, Robinson RAS. Proteomic approaches to quantify cysteine reversible modifications in aging and neurodegenerative diseases. Proteomics Clin Appl 2016; 10:1159-1177. [PMID: 27666938 DOI: 10.1002/prca.201600015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/13/2016] [Accepted: 09/23/2016] [Indexed: 01/11/2023]
Abstract
Cysteine is a highly reactive amino acid and is subject to a variety of reversible post-translational modifications (PTMs), including nitrosylation, glutathionylation, palmitoylation, as well as formation of sulfenic acid and disulfides. These modifications are not only involved in normal biological activities, such as enzymatic catalysis, redox signaling, and cellular homeostasis, but can also be the result of oxidative damage. Especially in aging and neurodegenerative diseases, oxidative stress leads to aberrant cysteine oxidations that affect protein structure and function leading to neurodegeneration as well as other detrimental effects. Methods that can identify cysteine modifications by type, including the site of modification, as well as the relative stoichiometry of the modification can be very helpful for understanding the role of the thiol proteome and redox homeostasis in the context of disease. Cysteine reversible modifications however, are challenging to investigate as they are low abundant, diverse, and labile especially under endogenous conditions. Thanks to the development of redox proteomic approaches, large-scale quantification of cysteine reversible modifications is possible. These approaches cover a range of strategies to enrich, identify, and quantify cysteine reversible modifications from biological samples. This review will focus on nongel-based redox proteomics workflows that give quantitative information about cysteine PTMs and highlight how these strategies have been useful for investigating the redox thiol proteome in aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Liqing Gu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Renã A S Robinson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Niwayama S, Zabet-Moghaddam M, Kurono S, Kattanguru P, Shaikh AL. Synthesis of d-labeled and unlabeled ethyl succinic anhydrides and application to quantitative analysis of peptides by isotope differential mass spectrometry. Bioorg Med Chem Lett 2016; 26:5073-5077. [PMID: 27624079 DOI: 10.1016/j.bmcl.2016.08.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/19/2016] [Accepted: 08/24/2016] [Indexed: 11/18/2022]
Abstract
Ethyl succinic anhydride and its d5-labeled version have been synthesized and applied to quantitative analysis of peptides in combination with MALDI or ESI mass spectrometry. These modifiers react with amino groups in the N-termini and lysine side chains in proteins, and therefore the combination of these modifiers was shown to be a useful tool for quantification of peptides and hence for proteomics research.
Collapse
Affiliation(s)
- Satomi Niwayama
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; Department of Ophthalmology and Visual Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan.
| | - Masoud Zabet-Moghaddam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Sadamu Kurono
- Joint Research Laboratory of Molecular Signature Analysis, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan; Laboratory and Specialty Chemicals Division, Wako Pure Chemical Industries, Ltd, 3-1-2 Doshomachi, Chuo-ku, Osaka, Osaka 540-8605, Japan
| | - Pullaiah Kattanguru
- Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan
| | - Aarif L Shaikh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
23
|
Gu L, Robinson RAS. High-throughput endogenous measurement of S-nitrosylation in Alzheimer's disease using oxidized cysteine-selective cPILOT. Analyst 2016; 141:3904-15. [PMID: 27152368 PMCID: PMC4904844 DOI: 10.1039/c6an00417b] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible cysteine modifications play important physiological roles such as modulating enzymatic catalysis, maintaining redox homeostasis and conducting cellular signaling. These roles can be critical in the context of disease. Oxidative modifications such as S-nitrosylation (SNO) are signatures of neurodestruction in conditions of oxidative stress however are also indicators of neuroprotection and normal signaling in cellular environments with low concentrations of reactive oxygen and nitrogen species. SNO is a dynamic and low abundance modification and requires sensitive and selective analytical methods for its detection in biological tissues. Here we present an enhanced multiplexing strategy to study SNO in complex mixtures arising from tissues. This method, termed oxidized cysteine-selective cPILOT (OxcyscPILOT), allows simultaneous analysis of SNO-modified peptides in 12 samples. OxcyscPILOT has three primary steps: (1) blocking of free thiols by a cysteine-reactive reagent, (2) enrichment of peptides containing SNO on a solid phase resin, and (3) isotopic labeling and isobaric tagging of enriched peptides on the solid phase resin. This approach offers the advantage of allowing total protein abundance levels to be measured simultaneously with endogenous SNO levels and measurement of SNO levels across four biological replicates in a single analysis. Furthermore, the relative amount of SNO on a specific cysteine site can also be determined. A well-known model of Alzheimer's disease, the APP/PS-1 transgenic mouse model, was selected for demonstration of the method as several SNO-modified proteins have previously been reported in brain and synaptosomes from AD subjects. OxcyscPILOT analysis resulted in identification of 138 SNO-modified cysteines in brain homogenates that correspond to 135 proteins. Many of these SNO-modified proteins were only present in wild-type or AD mice, whereas 93 proteins had SNO signals in both WT and AD. Pathway analysis links SNO-modified proteins to various biological pathways especially metabolism and signal transduction, consistent with previous reports in the literature. The OxcyscPILOT strategy provides enhanced multiplexing capability to current redox proteomics methods to study oxidative modifications of cysteine.
Collapse
Affiliation(s)
- Liqing Gu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
24
|
Gu L, Robinson RAS. A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: oxidized cysteine-selective dimethylation (OxcysDML). Anal Bioanal Chem 2016; 408:2993-3004. [PMID: 26800981 DOI: 10.1007/s00216-016-9307-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/14/2015] [Accepted: 01/04/2016] [Indexed: 02/01/2023]
Abstract
Cysteine is widely involved in redox signaling pathways through a number of reversible and irreversible modifications. Reversible modifications (e.g., S-glutathionylation, S-nitrosylation, disulfide bonds, and sulfenic acid) are used to protect proteins from oxidative attack and maintain cellular homeostasis, while irreversible oxidations (e.g., sulfinic acid and sulfonic acid) serve as hallmarks of oxidative stress. Proteomic analysis of cysteine-enriched peptides coupled with reduction of oxidized thiols can be used to measure the oxidation states of cysteine, which is helpful for elucidating the role that oxidative stress plays in biology and disease. As an extension of our previously reported cysDML method, we have developed oxidized cysteine-selective dimethylation (OxcysDML), to investigate the site-specific total oxidation of cysteine residues in biologically relevant samples. OxcysDML employs (1) blocking of free thiols by a cysteine-reactive reagent, (2) enrichment of peptides containing reversibly oxidized cysteine by a solid phase resin, and (3) isotopic labeling of peptide amino groups to quantify cysteine modifications arising from different biological conditions. On-resin enrichment and labeling minimizes sample handing time and improves efficiency in comparison with other redox proteomic methods. OxcysDML is also inexpensive and flexible, as it can accommodate the exploration of various cysteine modifications. Here, we applied the method to liver tissues from a late-stage Alzheimer's disease (AD) mouse model and wild-type (WT) controls. Because we have previously characterized this proteome using the cysDML approach, we are able here to probe deeper into the redox status of cysteine in AD. OxcysDML identified 1129 cysteine sites (from 527 proteins), among which 828 cysteine sites underwent oxidative modifications. Nineteen oxidized cysteine sites had significant alteration levels in AD and represent proteins involved in metabolic processes. Overall, we have demonstrated OxcysDML as a simple, rapid, robust, and inexpensive redox proteomic approach that is useful for gaining deeper insight into the proteome of AD.
Collapse
Affiliation(s)
- Liqing Gu
- Department of Chemistry, University of Pittsburgh, 111 Eberly Hall, 200 University Drive, Pittsburgh, PA, 15260, USA
| | - Renã A S Robinson
- Department of Chemistry, University of Pittsburgh, 111 Eberly Hall, 200 University Drive, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
25
|
Castillo MJ, McShane AJ, Cai M, Shen Y, Wang L, Yao X. Nonisotopic reagents for a cost-effective increase in sample throughput of targeted quantitative proteomics. Anal Chem 2015; 87:9209-16. [PMID: 26291548 DOI: 10.1021/acs.analchem.5b01727] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The new technology of ultrathroughput MS (uMS) transforms the intrinsic capability of analyte multiplexing in mass spectrometry (MS) to sample multiplexing. Core technological advantages of uMS rely on the decoupled use of isotopic quantitation reference and nonisotopic mass coding of samples. These advantages include: (1) high sample-throughput potential, (2) utilization of minimal amounts of expensive stable isotopes for the quantitation reference, and (3) unleashing of the open-source exploration of the chemical structure diversity of nonisotopic reagents to significantly enhance the MS detectability of analytes. A particular uMS method, ultrathroughput multiple reaction monitoring (uMRM), is reported for one-experiment quantitation of a surrogate peptide (SVILLGR) of prostate specific antigen (PSA) in multiple serum samples. Following derivatization of the pair of spiked, isotopic reference (SVILLGR*) and endogenous, native peptide in each sample, all samples were pooled for a step of simultaneous enrichment and cleanup of derivatized peptide pairs using immobilized antibody. The MS analysis of the pooled sample reported the quantity and sample origin of the surrogate peptide. Several analyses with different sample throughput were presented, with the highest being 15-in-1. Screening of nonisotopic reagents used combinatorial libraries of peptidyl compounds, and the reagent selection was based on the derivatization effectiveness and the capability of MS signal enhancement for the peptide. The precision, accuracy, and linearity of the uMRM MS technology were found to be comparable with standard isotope dilution MRM MS.
Collapse
Affiliation(s)
- Mary Joan Castillo
- Department of Chemistry and ‡Institute for Systems Genomics, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Adam J McShane
- Department of Chemistry and ‡Institute for Systems Genomics, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Min Cai
- Department of Chemistry and ‡Institute for Systems Genomics, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Yuanyuan Shen
- Department of Chemistry and ‡Institute for Systems Genomics, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Lei Wang
- Department of Chemistry and ‡Institute for Systems Genomics, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Xudong Yao
- Department of Chemistry and ‡Institute for Systems Genomics, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
26
|
Evans AR, Gu L, Guerrero R, Robinson RAS. Global cPILOT analysis of the APP/PS-1 mouse liver proteome. Proteomics Clin Appl 2015; 9:872-84. [PMID: 25620666 DOI: 10.1002/prca.201400149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/20/2014] [Accepted: 01/21/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE A quantitative proteomics strategy called combined precursor isotopic labeling and isobaric tagging (cPILOT) was designed to discover alterations in the amyloid precursor protein/presenilin-1 (APP/PS-1) mouse liver proteome. The multiplexing strategy allows simultaneous quantitation of 12 samples in a single experiment. EXPERIMENTAL DESIGN For cPILOT samples, six APP/PS-1 and six heterozygous mouse livers were modified using precursor dimethylation (pH 2.5) followed by isobaric tagging (pH 8.0). Samples were pooled, fractioned with strong cation exchange, and analyzed using RPLC-MS(3) for protein identification and relative quantitation. In order to increase proteome coverage, a two-tiered data collection strategy was employed. Six duplex precursor dimethylation experiments were also performed to verify cPILOT protein quantitation. RESULTS The combination of cPILOT with precursor dimethylation data resulted in 2437 total liver proteins identified and 77 differentially expressed proteins in APP/PS-1 liver. Differentially expressed proteins are involved in metabolic processes such as B-oxidation, pyruvate metabolism, and glucose regulation. CONCLUSIONS AND CLINICAL RELEVANCE cPILOT expands protein quantitation using isobaric tags and can be applied to any clinical laboratory interested in enhanced multiplexing strategies. Differentially expressed proteins in APP/PS-1 mouse liver suggest the potential use of ketone bodies to alleviate metabolic dysregulation in Alzheimer's disease brain. Our work also suggests alterations in the alanine cycle potentially leading to hyperammonia production, may contribute to Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Adam R Evans
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Liqing Gu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rodolfo Guerrero
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Renã A S Robinson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|