1
|
Chang CH, Urban PL. Does the Formation of a Taylor Cone in a Pulsating Electrospray Directly Impact Mass Spectrometry Signals? ACS OMEGA 2024; 9:43211-43218. [PMID: 39464478 PMCID: PMC11500155 DOI: 10.1021/acsomega.4c07653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Electrospray ionization (ESI) remains the dominant technique in mass spectrometry (MS)-based analyses. Here, we investigated the relationship between a crucial aspect of ESI, the formation of the Taylor cone, and the MS ion current by utilizing a triple quadrupole (QqQ) mass spectrometer coupled with a streaming high-speed camera and a 3-ring electrode system. In one test, ion current over a 30-s plume gate (a ring electrode) opening was compared with the Taylor cone occurrence analyzed offline, with Spearman's correlation coefficients consistently near 0 despite parameter variations. In another test, real-time detection of Taylor cones was synchronized with QqQ-MS, selectively opening (de-energizing) the plume gate based on the Taylor cone status. This approach enabled matching the ion current with the Taylor cone occurrence. There was no apparent difference between the MS signals recorded in the presence and absence of a Taylor cone. Additionally, a Faraday plate was employed as a detector in offline experiments, revealing agreement between the frequency of liquid meniscus (Taylor cone) oscillation (∼1.92 kHz)-measured by high-speed imaging-and the frequency of spray current (∼1.93 kHz). We suggest that the lack of positive correlations in the MS experiments is due to intrinsic ion carryover during transit from the ion source to the detector and due to the insufficient data acquisition rate of the mass spectrometer, which erases short-term fluctuations of ion current.
Collapse
Affiliation(s)
- Ching-Han Chang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Pawel L. Urban
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
2
|
Li HI, Prabhu GRD, Buchowiecki K, Urban PL. High-Speed Schlieren Imaging of Vapor Formation in Electrospray Plume. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:244-254. [PMID: 38227955 DOI: 10.1021/jasms.3c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Previous mechanistic descriptions of electrosprays mostly focused on the dynamics of Taylor cones, initial droplets, and progeny droplets. However, vapor formation during droplet desolvation in an electrospray plume has not been discussed to a great extent. Here, we implement a double-pass on-axis schlieren high-speed imaging system to observe generation and propagation of vapors in an offline electrospray source under different conditions. Switching between turbulent and laminar vapor flow was observed for all of the scanned conditions, which may be attributed to randomly occurring disturbances in the sample flow inside the electrospray emitter. Calculation of mean vapor flow velocity and analysis of vapor flow patterns were performed using in-house developed image processing programs. Experiments performed at different electrospray voltages (0-6 kV), solvent flow rates (100-600 μL min-1), and methanol concentrations (50-100%), indicate only a weak dependency between electrospray voltage and mean vapor velocity, implying that the vapor is mostly neutral; thus, the vapor is not accelerated by electric field. On the other hand, electrospraying solutions of analytes (with mass 151 Da or 12 kDa) did not remarkably increase the overall vapor flow velocity. The source of vapor's velocity is attributed to the inertia of the electrospray droplets. Although there are some differences between a modern electrospray ionization (ESI) setup and the setup used in our experiment (e.g., using a higher flow rate and larger emitter), we believe the findings of our study can be projected to a modern ESI setup.
Collapse
Affiliation(s)
- Hou-I Li
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Gurpur Rakesh D Prabhu
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Krzysztof Buchowiecki
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| | - Pawel L Urban
- Department of Chemistry, National Tsing Hua University, 101, Section 2, Kuang-Fu Rd., Hsinchu 300044, Taiwan
| |
Collapse
|
3
|
Pursell ME, Sharif D, DeBastiani A, Li C, Majuta S, Li P, Valentine SJ. Development of cVSSI-APCI for the Improvement of Ion Suppression and Matrix Effects in Complex Mixtures. Anal Chem 2022; 94:9226-9233. [PMID: 35729103 PMCID: PMC9260805 DOI: 10.1021/acs.analchem.1c05136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The new ionization technique termed vibrating sharp-edge spray ionization (cVSSI) has been coupled with corona discharge to investigate atmospheric pressure chemical ionization (APCI) capabilities. The optimized source was evaluated for its ability to enhance ion signal intensity, overcome matrix effects, and limit ion suppression. The results have been compared with state-of-the-art ESI source performance as well as a new APCI-like source. In methanol, the ion signal intensity increased 10-fold and >10-fold for cocaine and the suppressed analytes, respectively. The ability to overcome ion suppression was improved from 2-fold to 16-fold for theophylline and vitamin D2, respectively. For aqueous samples, ion signal levels increased by two orders of magnitude for all analytes. In both solvent systems, the signal-to-noise ratios also increased for all suppressed analytes. One example of the characterization of low-ionizing (by ESI or cVSSI alone) species in the presence of high-ionizing species by direct analysis from a cotton swab is presented. The work is discussed with respect to the advantages of cVSSI-APCI for direct, in situ, and field analyses.
Collapse
Affiliation(s)
- Madison E. Pursell
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506
| | - Daud Sharif
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506
| | - Anthony DeBastiani
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506
| | - Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506
| | - Sandra Majuta
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506
| | - Stephen J. Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
4
|
Bonnar C, Popelka-Filcoff R, Kirkbride KP. Armed with the Facts: A Method for the Analysis of Smokeless Powders by Ambient Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1943-1956. [PMID: 32872785 DOI: 10.1021/jasms.0c00193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The work presented here follows several others in investigating what capabilities, if any, ambient mass spectrometry might have toward the analysis of compounds commonly associated with smokeless propellant powders. This family of instrumental techniques has attracted curiosity from the field of forensic science due to its desirable properties such as rapid collection of information-rich data, combined with minimal requirements for sample mass and preparation. Experiments were conducted with a "Direct Sample Analysis" ion source integrated with a time-of-flight mass spectrometer. The ionization behaviors of nitroglycerin, methyl and ethyl centralite, akardite, diphenylamine, nitrosodiphenylamine, and nitrated diphenylamine derivatives were investigated specifically, with accurate-mass data presented for each. Diphenylamine standards were used to demonstrate the performance of this instrument, which exhibited good response linearity across 1 order of magnitude and sub-nanogram detection limits. Thirty smokeless powder extracts, recovered from ammunition potentially in circulation within Australia, were analyzed to determine whether the technique is appropriate for rapid analysis of smokeless powder particles. Results demonstrated that the technique might be applied to compare individual particles with each other or to a database. Such a capability may be of value in the examination of explosive devices containing smokeless powder, postblast residues therefrom, or muzzle discharge from a close-range shooting. However, when efforts were made to detect residues from the hands of a volunteer shooter, only some returned positive results, and a high background signal from the sample collection stub indicates that detection using this instrument is thus far insufficiently reliable.
Collapse
Affiliation(s)
- Callum Bonnar
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Rachel Popelka-Filcoff
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
- School of Earth Sciences, Faculty of Science, The University of Melbourne, Melbourne, Victoria 3053, Australia
| | - K Paul Kirkbride
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
5
|
Crighton E, Weisenseel J, Bunce M, Musgrave IF, Trengove R, Maker G. Exploring the Application of the DSA-TOF, a Direct, High-resolution Time-of-Flight Mass Spectrometry Technique for the Screening of Potential Adulterated and Contaminated Herbal Medicines. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1713-1719. [PMID: 31209791 DOI: 10.1007/s13361-019-02256-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/15/2019] [Accepted: 05/20/2019] [Indexed: 06/09/2023]
Abstract
Global consumption of complementary and alternative medicines, including herbal medicines, has increased substantially, and recent reports of adulteration demonstrate the need for high throughput and extensive pharmacovigilance to ensure product safety and quality. Three different standard reference materials and five previously analyzed herbal medicines have been used as a proof of concept for the application of adulteration/contamination screening using a Direct Sample Analysis (DSA) ion source with TOF MS on the Perkin Elmer AxION 2 TOF. This technique offers the advantages of minimum sample preparation, rapid analysis, and mass accuracies of 5 ppm. The DSA TOF analysis correlates well with the previous analysis on the initial sample set (which found undeclared herbal ingredients), with the added advantage of detecting previously untargeted compounds, including species-specific flavonoids and alkaloids. The rapid analysis using the DSA-TOF facilitates screening for hundreds of compounds in minutes with minimal sample preparation, generating a comprehensive profile for each sample. Graphical Abstract.
Collapse
Affiliation(s)
- Elly Crighton
- Separation Science and Metabolomics Laboratory, Murdoch University, South St, Murdoch, WA, 6150, Australia
- Medical, Molecular and Forensic Sciences, Murdoch University, South St, Murdoch, WA, 6150, Australia
| | - Jason Weisenseel
- PerkinElmer Environmental Health, 710 Bridgeport Ave., Shelton, CT, 06484, USA
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Kent St, Bentley, WA, 6102, Australia
| | - Ian F Musgrave
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Robert Trengove
- Separation Science and Metabolomics Laboratory, Murdoch University, South St, Murdoch, WA, 6150, Australia
| | - Garth Maker
- Separation Science and Metabolomics Laboratory, Murdoch University, South St, Murdoch, WA, 6150, Australia.
- Medical, Molecular and Forensic Sciences, Murdoch University, South St, Murdoch, WA, 6150, Australia.
| |
Collapse
|
6
|
Moore A, Foss J, Juhascik M, Botch-Jones S, Kero F. Rapid screening of opioids in seized street drugs using ambient ionization high resolution time-of-flight mass spectrometry. Forensic Chem 2019. [DOI: 10.1016/j.forc.2019.100149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Affiliation(s)
- Patricia M Peacock
- First State IR, LLC , 118 Susan Drive, Hockessin, Delaware 19707, United States
| | - Wen-Jing Zhang
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
8
|
The detection of NBOMe designer drugs on blotter paper by high resolution time-of-flight mass spectrometry (TOFMS) with and without chromatography. Forensic Sci Int 2016; 267:89-95. [DOI: 10.1016/j.forsciint.2016.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 11/15/2022]
|
9
|
Winter GT, Wilhide JA, LaCourse WR. Visualization of Ambient Mass Spectrometry with the Use of Schlieren Photography. J Vis Exp 2016. [PMID: 27404400 DOI: 10.3791/54195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This manuscript outlines how to visualize mass spectrometry ambient ionization sources using schlieren photography. In order to properly optimize the mass spectrometer, it is necessary to characterize and understand the physical principles of the source. Most commercial ambient ionization sources utilize jets of nitrogen, helium, or atmospheric air to facilitate the ionization of the analyte. As a consequence, schlieren photography can be used to visualize the gas streams by exploiting the differences in refractive index between the streams and ambient air for visualization in real time. The basic setup requires a camera, mirror, flashlight, and razor blade. When properly configured, a real time image of the source is observed by watching its reflection. This allows for insight into the mechanism of action in the source, and pathways to its optimization can be elucidated. Light is shed on an otherwise invisible situation.
Collapse
Affiliation(s)
- Gregory T Winter
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County
| | - Joshua A Wilhide
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County
| | - William R LaCourse
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County;
| |
Collapse
|
10
|
Winter GT, Wilhide JA, LaCourse WR. Molecular Ionization-Desorption Analysis Source (MIDAS) for Mass Spectrometry: Thin-Layer Chromatography. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:352-358. [PMID: 26471042 DOI: 10.1007/s13361-015-1289-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
Molecular ionization-desorption analysis source (MIDAS), which is a desorption atmospheric pressure chemical ionization (DAPCI) type source, for mass spectrometry has been developed as a multi-functional platform for the direct sampling of surfaces. In this article, its utility for the analysis of thin-layer chromatography (TLC) plates is highlighted. Amino acids, which are difficult to visualize without staining reagents or charring, were detected and identified directly from a TLC plate. To demonstrate the full potential of MIDAS, all active ingredients from an analgesic tablet, separated on a TLC plate, were successfully detected using both positive and negative ion modes. The identity of each of the compounds was confirmed from their mass spectra and compared against standards. Post separation, the chemical signal (blue permanent marker) as reference marks placed at the origin and solvent front were used to calculate retention factor (Rf) values from the resulting ion chromatogram. The quantitative capabilities of the device were exhibited by scanning caffeine spots on a TLC plate of increasing sample amount. A linear curve based on peak are, R2 = 0.994, was generated for seven spots ranging from 50 to 1000 ng of caffeine per spot.
Collapse
Affiliation(s)
- Gregory T Winter
- University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | |
Collapse
|