1
|
Seo Y, Park J, Lee HJ, Kim M, Kang I, Son J, Oh MK, Min H. Development and validation of a method for analyzing the sialylated glycopeptides of recombinant erythropoietin in urine using LC-HRMS. Sci Rep 2023; 13:3860. [PMID: 36890204 PMCID: PMC9995342 DOI: 10.1038/s41598-023-31030-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Erythropoietin (EPO) is a glycoprotein hormone that stimulates red blood cell production. It is produced naturally in the body and is used to treat patients with anemia. Recombinant EPO (rEPO) is used illicitly in sports to improve performance by increasing the blood's capacity to carry oxygen. The World Anti-Doping Agency has therefore prohibited the use of rEPO. In this study, we developed a bottom-up mass spectrometric method for profiling the site-specific N-glycosylation of rEPO. We revealed that intact glycopeptides have a site-specific tetra-sialic glycan structure. Using this structure as an exogenous marker, we developed a method for use in doping studies. The profiling of rEPO N-glycopeptides revealed the presence of tri- and tetra-sialylated N-glycopeptides. By selecting a peptide with a tetra-sialic acid structure as the target, its limit of detection (LOD) was estimated to be < 500 pg/mL. Furthermore, we confirmed the detection of the target rEPO glycopeptide using three other rEPO products. We additionally validated the linearity, carryover, selectivity, matrix effect, LOD, and intraday precision of this method. To the best of our knowledge, this is the first report of a doping analysis using liquid chromatography/mass spectrometry-based detection of the rEPO glycopeptide with a tetra-sialic acid structure in human urine samples.
Collapse
Affiliation(s)
- Yoondam Seo
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.,Department of Chemical and Biological Engineering, Korea University, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jisoo Park
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Hyeon-Jeong Lee
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Minyoung Kim
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Inseon Kang
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.,Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Hophil Min
- Doping Control Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
2
|
Timms M, Ganio K, Steel R. Extraction of α-neurotoxins from equine plasma by receptor based affinity purification. Drug Test Anal 2020; 12:918-928. [PMID: 32246898 DOI: 10.1002/dta.2797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 01/16/2023]
Abstract
Venoms were first identified as potential doping agents by the racing industry in 2007 when three vials of cobra venom were seized during an inspection of a stable at Keeneland Racecourse in the USA. Venoms are a complex mixture of proteins, peptides, and other substances with a wide range of biological effects, including inhibiting the transmission of nervous and muscular impulses. As an example of this, cobratoxin, an α-neurotoxin found in cobra venom, is claimed to be an effective treatment for pain. Recent analysis of seized samples identified venom from two different species of snake. Proteomic analysis identified the first sample as cobra venom, while the second sample, in a vial labeled "Conotoxin", was identified as venom from a many banded krait. Cobratoxin, conotoxins, and bungarotoxins (a component of krait venom) are all α-neurotoxins, suggesting a common application for all three venom proteins as potential pain blocking medications. Using a peptide based on the nicotinic acetylcholine receptor, a one-step affinity purification method was developed for the detection of α-neurotoxins in plasma.
Collapse
Affiliation(s)
- Mark Timms
- Biological Research Unit, Racing Analytical Services Ltd, 400 Epsom Road, Flemington, Victoria, Australia, 3031
| | - Katherine Ganio
- Biological Research Unit, Racing Analytical Services Ltd, 400 Epsom Road, Flemington, Victoria, Australia, 3031
| | - Rohan Steel
- Biological Research Unit, Racing Analytical Services Ltd, 400 Epsom Road, Flemington, Victoria, Australia, 3031
| |
Collapse
|
3
|
Thomas A, Schänzer W, Thevis M. Immunoaffinity techniques coupled to mass spectrometry for the analysis of human peptide hormones: advances and applications. Expert Rev Proteomics 2017; 14:799-807. [PMID: 28758805 DOI: 10.1080/14789450.2017.1362338] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The accurate and comprehensive determination of peptide hormones from biological fluids has represented a considerable challenge to analytical chemists for decades. Besides long-established bioanalytical ligand binding assays (or ELISA, RIA, etc.), more and more mass spectrometry-based methods have been developed recently for purposes commonly referred to as targeted proteomics. Eventually the combination of both, analyte extraction by immunoaffinity and subsequent detection by mass spectrometry, has shown to synergistically enhance the test methods' performance characteristics. Areas covered: The review provides an overview about the actual state of existing methods and applications concerning the analysis of endogenous peptide hormones. Here, special focus is on recent developments considering the extraction procedures with immobilized antibodies, the subsequent separation of target analytes, and their detection by mass spectrometry. Expert commentary: Key aspects of procedures aiming at the detection and/or quantification of peptidic analytes in biological matrices have experienced considerable improvements in the last decade, particularly in terms of the assays' sensitivity, the option of multiplexing target compounds, automatization, and high throughput operation. Despite these advances and progress as expected to be seen in the near future, immunoaffinity purification coupled to mass spectrometry is not yet a standard procedure in routine analysis compared to ELISA/RIA.
Collapse
Affiliation(s)
- Andreas Thomas
- a Institute of Biochemistry/Center for Preventive Doping Research , German Sport University Cologne , Cologne , Germany
| | - Wilhelm Schänzer
- a Institute of Biochemistry/Center for Preventive Doping Research , German Sport University Cologne , Cologne , Germany
| | - Mario Thevis
- a Institute of Biochemistry/Center for Preventive Doping Research , German Sport University Cologne , Cologne , Germany.,b European Monitoring Center for Emerging Doping Agents (EuMoCEDA) , Cologne/Bonn , Germany
| |
Collapse
|
4
|
Jelkmann W. Watch out for a revival of peginesatide in sports. Drug Test Anal 2016; 9:157-160. [DOI: 10.1002/dta.1979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Wolfgang Jelkmann
- Institute of Physiology; University of Lübeck; D-23562 Lübeck Germany
| |
Collapse
|
5
|
Thevis M, Kuuranne T, Walpurgis K, Geyer H, Schänzer W. Annual banned-substance review: analytical approaches in human sports drug testing. Drug Test Anal 2016; 8:7-29. [PMID: 26767774 DOI: 10.1002/dta.1928] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/30/2022]
Abstract
The aim of improving anti-doping efforts is predicated on several different pillars, including, amongst others, optimized analytical methods. These commonly result from exploiting most recent developments in analytical instrumentation as well as research data on elite athletes' physiology in general, and pharmacology, metabolism, elimination, and downstream effects of prohibited substances and methods of doping, in particular. The need for frequent and adequate adaptations of sports drug testing procedures has been incessant, largely due to the uninterrupted emergence of new chemical entities but also due to the apparent use of established or even obsolete drugs for reasons other than therapeutic means, such as assumed beneficial effects on endurance, strength, and regeneration capacities. Continuing the series of annual banned-substance reviews, literature concerning human sports drug testing published between October 2014 and September 2015 is summarized and reviewed in reference to the content of the 2015 Prohibited List as issued by the World Anti-Doping Agency (WADA), with particular emphasis on analytical approaches and their contribution to enhanced doping controls.
Collapse
Affiliation(s)
- Mario Thevis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.,European Monitoring Center for Emerging Doping Agents, Cologne/Bonn, Germany
| | - Tiia Kuuranne
- Doping Control Laboratory, United Medix Laboratories, Höyläämötie 14, 00380, Helsinki, Finland
| | - Katja Walpurgis
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Hans Geyer
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Wilhelm Schänzer
- Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
6
|
Richards SL, Cawley AT, Cavicchioli R, Suann CJ, Pickford R, Raftery MJ. Aptamer based peptide enrichment for quantitative analysis of gonadotropin-releasing hormone by LC-MS/MS. Talanta 2016; 150:671-80. [PMID: 26838458 DOI: 10.1016/j.talanta.2016.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/06/2016] [Accepted: 01/06/2016] [Indexed: 12/13/2022]
Abstract
Over recent years threats to racing have expanded to include naturally occurring biological molecules, such as peptides and proteins, and their synthetic analogues. Traditionally, antibodies have been used to enable detection of these compounds as they allow purification and concentration of the analyte of interest. The rapid expansion of peptide-based therapeutics necessitates a similarly rapid development of suitable antibodies or other means of enrichment. Potential alternative enrichment strategies include the use of aptamers, which offer the significant advantage of chemical synthesis once the nucleic acid sequence is known. A method was developed for the enrichment, detection and quantitation of gonadotropin-releasing hormone (GnRH) in equine urine using aptamer-based enrichment and LC-MS/MS. The method achieved comparable limits of detection (1 pg/mL) and quantification (2.5 pg/mL) to previously published antibody-based enrichment methods. The intra- and inter-assay precision achieved was less than 10% at both 5 and 20 pg/mL, and displayed a working dynamic range of 2.5-100 pg/mL. Significant matrix enhancement (170 ± 8%) and low analytical recovery (29 ± 15%) was observed, although the use of an isotopically heavy labelled GnRH peptide, GnRH (Pro(13)C5,(15)N), as the internal standard provides compensation for these parameters. Within the current limits of detection GnRH was detectable up to 1h post administration in urine and identification of a urinary catabolite extended this detection window to 4h. Based on the results of this preliminary investigation we propose the use of aptamers as a viable alternative to antibodies in the enrichment of peptide targets from equine urine.
Collapse
Affiliation(s)
- S L Richards
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW 2000, Australia; Bioanalytical Mass Spectrometry Facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - A T Cawley
- Australian Racing Forensic Laboratory, Racing NSW, Sydney, NSW 2000, Australia; School of Chemistry, UNSW Australia, Sydney, NSW 2052, Australia
| | - R Cavicchioli
- School of Biotechnology and Biomedical Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - C J Suann
- Racing NSW, Sydney, NSW 2000, Australia
| | - R Pickford
- Bioanalytical Mass Spectrometry Facility, UNSW Australia, Sydney, NSW 2052, Australia
| | - M J Raftery
- Bioanalytical Mass Spectrometry Facility, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|