1
|
Bertrand E, Gabelica V. Thermometer Ions, Internal Energies, and In-Source Fragmentation in Ambient Ionization. MASS SPECTROMETRY REVIEWS 2025. [PMID: 39871425 DOI: 10.1002/mas.21924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/29/2025]
Abstract
Ionization and fragmentation are at the core of mass spectrometry. But they are not necessarily separated in space, as in-source fragmentation can also occur. Here, we survey the literature published since our 2005 review on the internal energy and fragmentation in electrospray ionization sources. We present new thermometer molecules to diagnose and quantify source heating, provide tables of recommended threshold (E0) and appearance energies (Eapp) for the survival yield method, and attempt to compare the softness of a variety of ambient pressure ionization sources. The droplet size distribution and desolvation dynamics play a major role: lower average internal energies are obtained when the ions remain protected by a solvation shell and spend less time nakedly exposed to activating conditions in the transfer interface. Methods based on small droplet formation without charging can thus be softer than electrospray. New dielectric barrier discharge sources can gas-phase ionize small molecules while conferring barely more internal energy than electrospray ionization. However, the tuning of the entire source interface often has an even greater influence on ion internal energies and fragmentation than on the ionization process itself. We hope that this review will facilitate further research to control and standardize in-source ion activation conditions, and to ensure the transferability of data and research results in mass spectrometry.
Collapse
Affiliation(s)
- Emilie Bertrand
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Valérie Gabelica
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Kertesz V, Cahill JF. Spatially resolved absolute quantitation in thin tissue by mass spectrometry. Anal Bioanal Chem 2021; 413:2619-2636. [PMID: 33140126 DOI: 10.1007/s00216-020-02964-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mass spectrometry (MS) has become the de facto tool for routine quantitative analysis of biomolecules. MS is increasingly being used to reveal the spatial distribution of proteins, metabolites, and pharmaceuticals in tissue and interest in this area has led to a number of novel spatially resolved MS technologies. Most spatially resolved MS measurements are qualitative in nature due to a myriad of potential biases, such as sample heterogeneity, sampling artifacts, and ionization effects. As applications of spatially resolved MS in the pharmacological and clinical fields increase, demand has become high for quantitative MS imaging and profiling data. As a result, several varied technologies now exist that provide differing levels of spatial and quantitative information. This review provides an overview of MS profiling and imaging technologies that have demonstrated quantitative analysis from tissue. Focus is given on the fundamental processes affecting quantitative analysis in an array of MS imaging and profiling technologies and methods to address these biases.Graphical abstract.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| | - John F Cahill
- Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA.
| |
Collapse
|
3
|
Ding X, Liu K, Shi Z. LASER DESORPTION/ABLATION POSTIONIZATION MASS SPECTROMETRY: RECENT PROGRESS IN BIOANALYTICAL APPLICATIONS. MASS SPECTROMETRY REVIEWS 2021; 40:566-605. [PMID: 32770707 DOI: 10.1002/mas.21649] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Lasers have long been used in the field of mass spectrometric analysis for characterization of condensed matter. However, emission of neutrals upon laser irradiation surpasses the number of ions. Typically, only one in about one million analytes ejected by laser desorption/ablation is ionized, which has fueled the quest for postionization methods enabling ionization of desorbed neutrals to enhance mass spectrometric detection schemes. The development of postionization techniques can be an endeavor that integrates multiple disciplines involving photon energy transfer, electrochemistry, gas discharge, etc. The combination of lasers of different parameters and diverse ion sources has made laser desorption/ablation postionization (LD/API) a growing and lively research community, including two-step laser mass spectrometry, laser ablation atmospheric pressure photoionization mass spectrometry, and those coupled to ambient mass spectrometry. These hyphenated techniques have shown potentials in bioanalytical applications, with major inroads to be made in simultaneous location and quantification of pharmaceuticals, toxins, and metabolites in complex biomatrixes. This review is intended to provide a timely comprehensive view of the broadening bioanalytical applications of disparate LD/API techniques. We also have attempted to discuss these applications according to the classifications based on the postionization methods and to encapsulate the latest achievements in the field of LD/API by highlighting some of the very best reports in the 21st century. © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Xuelu Ding
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Kun Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Zhenyan Shi
- Department of Pharmaceutical Analysis, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
4
|
Kertesz V, Cahill JF, Srijanto BR, Collier CP, Vavrek M, Chen B. Integrated laser ablation-dropletProbe-mass spectrometry for absolute drug quantitation, metabolite detection, and distribution in tissue. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9202. [PMID: 34545636 DOI: 10.1002/rcm.9202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Spatially resolved and accurate quantitation of drug-related compounds in tissue is a much-needed capability in drug discovery research. Here, application of an integrated laser ablation-dropletProbe-mass spectrometry surface sampling system (LADP-MS) is reported, which achieved absolute quantitation of propranolol measured from <500 × 500 μm thin tissue samples. METHODS Mouse liver and kidney thin tissue sections were coated with parylene C and analyzed for propranolol by a laser ablation/liquid extraction workflow. Non-coated adjacent sections were microdissected for validation and processed using standard bulk tissue extraction protocols. High-performance liquid chromatography with positive ion mode electrospray ionization tandem mass spectrometry was applied to detect the drug and its metabolites. RESULTS Absolute propranolol concentration in ~500 × 500 μm tissue regions measured by the two methods agreed within ±8% and had a relative standard deviation within ±17%. Quantitation down to ~400 × 400 μm tissue regions was shown, and this resolution was also used for automated mapping of propranolol and phase II hydroxypropranolol glucuronide metabolites in kidney tissue. CONCLUSIONS This study exemplifies the capabilities of integrated laser ablation-dropletProbe-mass spectrometry (LADP-MS) for high resolution absolute drug quantitation analysis of thin tissue sections. This capability will be valuable for applications needing to quantitatively understand the spatial distribution of small molecules in tissue.
Collapse
Affiliation(s)
- Vilmos Kertesz
- Bioanalytical Mass Spectrometry Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - John F Cahill
- Bioanalytical Mass Spectrometry Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Bernadeta R Srijanto
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Charles P Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Marissa Vavrek
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Bingming Chen
- Department of Pharmacokinetics, Pharmacodynamics, and Drug Metabolism, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
5
|
ZHANG XL, ZHANG H, WANG XC, HUANG KK, WANG D, CHEN HW. Advances in Ambient Ionization for Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61122-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Affiliation(s)
- Patricia M Peacock
- First State IR, LLC , 118 Susan Drive, Hockessin, Delaware 19707, United States
| | - Wen-Jing Zhang
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sarah Trimpin
- Department of Chemistry, Wayne State University , 5101 Cass Avenue, Detroit, Michigan 48202, United States
| |
Collapse
|
7
|
Cahill JF, Kertesz V, Van Berkel GJ. Laser dissection sampling modes for direct mass spectral analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:611-9. [PMID: 26842582 DOI: 10.1002/rcm.7477] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 05/12/2023]
Abstract
RATIONALE Laser microdissection coupled directly with mass spectrometry provides the capability of on-line analysis of substrates with high spatial resolution, high collection efficiency, and freedom on shape and size of the sampling area. Establishing the merits and capabilities of the different sampling modes that the system provides is necessary in order to select the best sampling mode for characterizing analytically challenging samples. METHODS The capabilities of laser ablation spot sampling, laser ablation raster sampling, and laser 'cut and drop' sampling modes of a hybrid optical microscopy/laser ablation liquid vortex capture electrospray ionization mass spectrometry system were compared for the analysis of single cells and tissue. RESULTS Single Chlamydomonas reinhardtii cells were monitored for their monogalactosyldiacylglycerol (MGDG) and diacylglyceryltrimethylhomo-Ser (DGTS) lipid content using the laser spot sampling mode, which was capable of ablating individual cells (~4-15 μm) even when agglomerated together. Turbid Allium Cepa cells (~150 μm) having unique shapes difficult to precisely measure using the other sampling modes could be ablated in their entirety using laser raster sampling. Intact microdissections of specific regions of a cocaine-dosed mouse brain tissue were compared using laser 'cut and drop' sampling. Since in laser 'cut and drop' sampling whole and otherwise unmodified sections are captured into the probe, 100% collection efficiencies were achieved. Laser ablation spot sampling has the highest spatial resolution of any sampling mode, while laser ablation raster sampling has the highest sampling area adaptability of the sampling modes. CONCLUSIONS Laser ablation spot sampling has the highest spatial resolution of any sampling mode, useful in this case for the analysis of single cells. Laser ablation raster sampling was best for sampling regions with unique shapes that are difficult to measure using other sampling modes. Laser 'cut and drop' sampling can be used for cases where the highest sensitivity is needed, for example, monitoring drugs present in trace amounts in tissue.
Collapse
Affiliation(s)
- John F Cahill
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| | - Vilmos Kertesz
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| | - Gary J Van Berkel
- Mass Spectrometry and Laser Spectroscopy Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6131, USA
| |
Collapse
|
8
|
Affiliation(s)
- Julia Laskin
- Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K8-88, Richland, WA 99352
| | - Ingela Lanekoff
- Department of Chemistry-BMC, Uppsala University, Box 599, 751 24 Uppsala, Sweden
| |
Collapse
|
9
|
Cahill JF, Kertesz V, Van Berkel GJ. Characterization and Application of a Hybrid Optical Microscopy/Laser Ablation Liquid Vortex Capture/Electrospray Ionization System for Mass Spectrometry Imaging with Sub-micrometer Spatial Resolution. Anal Chem 2015; 87:11113-21. [PMID: 26492186 DOI: 10.1021/acs.analchem.5b03293] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A commercial optical microscope, laser microdissection instrument was coupled with an electrospray ionization mass spectrometer via a low profile liquid vortex capture probe to yield a hybrid optical microscopy/mass spectrometry imaging system. The instrument has bright-field and fluorescence microscopy capabilities in addition to a highly focused UV laser beam that is utilized for laser ablation of samples. With this system, material laser ablated from a sample using the microscope was caught by a liquid vortex capture probe and transported in solution for analysis by electrospray ionization mass spectrometry. Both lane scanning and spot sampling mass spectral imaging modes were used. The smallest area the system was able to ablate was ∼0.544 μm × ∼0.544 μm, achieved by oversampling of the smallest laser ablation spot size that could be obtained (∼1.9 μm). With use of a model photoresist surface, known features as small as ∼1.5 μm were resolved. The capabilities of the system with real world samples were demonstrated first with a blended polymer thin film containing poly(2-vinylpyridine) and poly(N-vinylcarbazole). Using spot sampling imaging, sub-micrometer sized features (0.62, 0.86, and 0.98 μm) visible by optical microscopy were clearly distinguished in the mass spectral images. A second real world example showed the imaging of trace amounts of cocaine in mouse brain thin tissue sections. With use of a lane scanning mode with ∼6 μm × ∼6 μm data pixels, features in the tissue as small as 15 μm in size could be distinguished in both the mass spectral and optical images.
Collapse
Affiliation(s)
- John F Cahill
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6131, United States
| | - Vilmos Kertesz
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6131, United States
| | - Gary J Van Berkel
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6131, United States
| |
Collapse
|