1
|
Singla A, Boucher A, Wallom KL, Lebens M, Kohler JJ, Platt FM, Yrlid U. Cholera intoxication of human enteroids reveals interplay between decoy and functional glycoconjugate ligands. Glycobiology 2023; 33:801-816. [PMID: 37622990 PMCID: PMC10629719 DOI: 10.1093/glycob/cwad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/31/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Prior research on cholera toxin (CT) binding and intoxication has relied on human colonic cancer derived epithelial cells. While these transformed cell lines have been beneficial, they neither derive from small intestine where intoxication occurs, nor represent the diversity of small intestinal epithelial cells (SI-ECs) and variation in glycoconjugate expression among individuals. Here, we used human enteroids, derived from jejunal biopsies of multipledonors to study CT binding and intoxication of human non-transformed SI-ECs. We modulated surface expression of glycosphingolipids, glycoproteins and specific glycans to distinguish the role of each glycan/glycoconjugate. Cholera-toxin-subunit-B (CTB) mutants were generated to decipher the preference of each glycoconjugate to different binding sites and the correlation between CT binding and intoxication. Human enteroids contain trace amounts of GM1, but other glycosphingolipids may be contributing to CT intoxication. We discovered that inhibition of either fucosylation or O-glycosylation sensitize enteroids to CT-intoxication. This can either be a consequence of the removal of fucosylated "decoy-like-ligands" binding to CTB's non-canonical site and/or increase in the availability of Gal/GalNAc-terminating glycoconjugates binding to the canonical site. Furthermore, simultaneous inhibition of fucosylation and O-glycosylation increased the availability of additional Gal/GalNAc-terminating glycoconjugates but counteracted the sensitization in CT intoxication caused by inhibiting O-glycosylation because of reduction in fucose. This implies a dual role of fucose as a functional glycan and a decoy, the interplay of which influences CT binding and intoxication. Finally, while the results were similar for enteroids from different donors, they were not identical, pointing to a role for human genetic variation in determining sensitivity to CT.
Collapse
Affiliation(s)
- Akshi Singla
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| | - Andrew Boucher
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| | - Kerri-Lee Wallom
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Michael Lebens
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9185, United States
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Medicinaregatan 1G, 41390 Gothenburg, Sweden
| |
Collapse
|
2
|
Han L, Nguyen L, Schmidt EN, Esmaili M, Kitova EN, Overduin M, Macauley MS, Klassen JS. How Choice of Model Membrane Affects Protein–Glycosphingolipid Interactions: Insights from Native Mass Spectrometry. Anal Chem 2022; 94:16042-16049. [PMID: 36367338 DOI: 10.1021/acs.analchem.2c03067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Interactions between glycan-binding proteins (GBPs) and glycosphingolipids (GSLs) are involved in numerous physiological and pathophysiological processes. Many model membrane systems are available for studying GBP-GSL interactions, but a systematic investigation has not been carried out on how the nature of the model membrane affects binding. In this work, we use electrospray ionization mass spectrometry (ESI-MS), both direct and competitive assays, to measure the binding of cholera toxin B subunit homopentamer (CTB5) to GM1 ganglioside in liposomes, bilayer islands [styrene maleic acid lipid particles (SMALPs), nanodiscs (NDs), and picodiscs (PDs)], and micelles. We find that direct ESI-MS analysis of CTB5 binding to GM1 is unreliable due to non-uniform response factors, incomplete extraction of bound GM1 in the gas phase, and nonspecific CTB5-GM1 interactions. Conversely, indirect proxy ligand ESI-MS measurements show that the intrinsic (per binding site) association constants of CTB5 for PDs, NDs, and SMALPs are similar and comparable to the affinity of soluble GM1 pentasaccharide (GM1os). The observed affinity decreases with increasing GM1 content due to molecular crowding stemming from GM1 clustering. Unlike the smaller model membranes, the observed affinity of CTB5 toward GM1 liposomes is ∼10-fold weaker than GM1os and relatively insensitive to the GM1 content. GM1 glycomicelles exhibit the lowest affinity, ∼35-fold weaker than GM1os. Together, the results highlight experimental design considerations for quantitative GBP-GSL binding studies involving multisubunit GBPs and factors to consider when comparing results obtained with different membrane systems. Notably, they suggest that bilayer islands with a low percentage of GSL, wherein clustering is minimized, are ideal for assessing intrinsic strength of GBP-GSL interactions in a membrane environment, while binding to liposomes, which is sub-optimal due to extensive clustering, may be more representative of authentic cellular environments.
Collapse
Affiliation(s)
- Ling Han
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Linh Nguyen
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Edward N. Schmidt
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton T6G 2R3, Canada
| | - Elena N. Kitova
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton T6G 2R3, Canada
| | - Matthew S. Macauley
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton T6G 2E1, Alberta, Canada
| | - John S. Klassen
- Department of Chemistry, University of Alberta, Edmonton T6G 2G2, Alberta, Canada
| |
Collapse
|
3
|
Sarbu M, Ica R, Zamfir AD. Developments and applications of separation and microfluidics methods coupled to electrospray mass spectrometry in glycomics of nervous system gangliosides. Electrophoresis 2021; 42:429-449. [PMID: 33314304 DOI: 10.1002/elps.202000236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 01/19/2023]
Abstract
Gangliosides are particularly abundant in the nervous system (NS) where their pattern and structure in a certain milieu or a defined region exhibit a pronounced specificity. Since gangliosides are useful biomarkers for diagnosis of NS ailments, a clear-cut mapping of individual components represents a prerequisite for designing ganglioside-based diagnostic procedures, treatments, or vaccines. These bioclinical aspects and the high diversity of ganglioside species claim for development of specific analytical strategies. This review summarizes the state-of-the-art in the implementation of separation techniques and microfluidics coupled to MS, which have contributed significantly to the advancement of the field. In the first part, the review discusses relevant approaches based on HPLC MS and CE coupled to ESI MS and their applications in the characterization of gangliosides expressed in healthy and diseased NS. A considerable section is dedicated to microfluidics MS and ion mobility separation MS, developed for the study of brain gangliosidome and its changes triggered by various factors, as well as for ganglioside biomarker discovery in neurodegenerative diseases and brain cancer. In the last part of the review, the benefits and perspectives in ganglioside research of these high-performance techniques are presented.
Collapse
Affiliation(s)
- Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Physics, West University of Timisoara, Timisoara, Romania
| | - Alina D Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania.,Department of Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, Arad, Romania
| |
Collapse
|
4
|
Marty MT. Nanodiscs and Mass Spectrometry: Making Membranes Fly. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 458:116436. [PMID: 33100891 PMCID: PMC7584149 DOI: 10.1016/j.ijms.2020.116436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cells are surrounded by a protective lipid bilayer membrane, and membrane proteins in the bilayer control the flow of chemicals, information, and energy across this barrier. Many therapeutics target membrane proteins, and some directly target the lipid membrane itself. However, interactions within biological membranes are challenging to study due to their heterogeneity and insolubility. Mass spectrometry (MS) has become a powerful technique for studying membrane proteins, especially how membrane proteins interact with their surrounding lipid environment. Although detergent micelles are the most common membrane mimetic, nanodiscs are emerging as a promising platform for MS. Nanodiscs, nanoscale lipid bilayers encircled by two scaffold proteins, provide a controllable lipid bilayer for solubilizing membrane proteins. This Young Scientist Perspective focuses on native MS of intact nanodiscs and highlights the unique experiments enabled by making membranes fly, including studying membrane protein-lipid interactions and exploring the specificity of fragile transmembrane peptide complexes. It will also explore current challenges and future perspectives for interfacing nanodiscs with MS.
Collapse
Affiliation(s)
- Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
5
|
Miller ZM, Zhang JD, Donald WA, Prell JS. Gas-Phase Protonation Thermodynamics of Biological Lipids: Experiment, Theory, and Implications. Anal Chem 2020; 92:10365-10374. [PMID: 32628014 DOI: 10.1021/acs.analchem.0c00613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Phospholipids are important to cellular function and are a vital structural component of plasma and organelle membranes. These membranes isolate the cell from its environment, allow regulation of the internal concentrations of ions and small molecules, and host diverse types of membrane proteins. It remains extremely challenging to identify specific membrane protein-lipid interactions and their relative strengths. Native mass spectrometry, an intrinsically gas-phase method, has recently been demonstrated as a promising tool for identifying endogenous protein-lipid interactions. However, to what extent the identified interactions reflect solution- versus gas-phase binding strengths is not known. Here, the "Extended" Kinetic Method and ab initio computations at three different levels of theory are used to experimentally and theoretically determine intrinsic gas-phase basicities (GB, ΔG for deprotonation of the protonated base) and proton affinities (PA, ΔH for deprotonation of the protonated base) of six lipids representing common phospholipid types. Gas-phase acidities (ΔG and ΔH for deprotonation) of neutral phospholipids are also evaluated computationally and ranked experimentally. Intriguingly, it is found that two of these phospholipids, sphingomyelin and phosphatidylcholine, have the highest GB of any small, monomeric biomolecules measured to date and are more basic than arginine. Phosphatidylethanolamine and phosphatidylserine are found to be similar in GB to basic amino acids lysine and histidine, and phosphatidic acid and phosphatidylglycerol are the least basic of the six lipid types studied, though still more basic than alanine. Kinetic Method experiments and theory show that the gas-phase acidities of these phospholipids are high but less extreme than their GB values, with phosphatidylserine and phosphatidylglycerol being the most acidic. These results indicate that sphingomyelin and phosphatidylcholine lipids can act as charge-reducing agents when dissociated from native membrane protein-lipid complexes in the gas phase and provide a straightforward model to explain the results of several recent native mass spectrometry studies of protein-lipid complexes.
Collapse
Affiliation(s)
- Zachary M Miller
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - J Diana Zhang
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia, 2052
| | - W Alexander Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia, 2052
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States.,Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
6
|
Ica R, Petrut A, Munteanu CVA, Sarbu M, Vukelić Ž, Petrica L, Zamfir AD. Orbitrap mass spectrometry for monitoring the ganglioside pattern in human cerebellum development and aging. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4502. [PMID: 31961034 DOI: 10.1002/jms.4502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
We have developed here a superior approach based on high-resolution (HR) mass spectrometry (MS) for monitoring the changes occurring with development and aging in the composition and structure of cerebellar gangliosidome. The experiments were focused on the comparative screening and structural analysis of gangliosides expressed in fetal and aged cerebellum by Orbitrap MS with nanoelectrospray ionization (nanoESI) in the negative ion mode. The employed ultrahigh-resolution MS platform allowed the discrimination, without the need of previous separation, of 159 ions corresponding to 120 distinct species in the native ganglioside mixtures from fetal and aged cerebellar biopsies, many more than detected before, when MS platforms of lower resolution were employed. A number of gangliosides, in particular polysialylated belonging to GT, GQ, GP, and GS classes, modified by O-fucosylation, O-acetylation, or CH3 COO- were discovered here, for the first time in human cerebellum. These components, found differently expressed in fetal and aged tissues, indicated that the ganglioside profile in cerebellum is development stage- and age-specific. Following the fragmentation analysis by high-energy collision-induced dissociation (HCD) tandem MS (MS/MS), we have also observed that the intimate structure of certain compounds has not changed during the development and aging of the brain, an aspect which could open new directions in the investigation of ganglioside biomarkers in cerebellar tissue.
Collapse
Affiliation(s)
- Raluca Ica
- Department of Mass Spectrometry, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Faculty of Physics, West University of Timisoara, Timisoara, Romania
| | - Alina Petrut
- Department of Mass Spectrometry, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Cristian V A Munteanu
- Molecular Cell Biology Department, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Mirela Sarbu
- Department of Mass Spectrometry, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, University of Zagreb Medical School, Zagreb, Croatia
| | - Ligia Petrica
- Department of Nephrology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Alina D Zamfir
- Department of Mass Spectrometry, National Institute for Research and Development in Electrochemistry and Condensed Matter, Timisoara, Romania
- Department for Research, Development, Innovation in Technical and Natural Sciences, "Aurel Vlaicu" University of Arad, Arad, Romania
| |
Collapse
|
7
|
González-Cuesta M, Ortiz Mellet C, García Fernández JM. Carbohydrate supramolecular chemistry: beyond the multivalent effect. Chem Commun (Camb) 2020; 56:5207-5222. [DOI: 10.1039/d0cc01135e] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
(Hetero)multivalency acts as a multichannel switch that shapes the supramolecular properties of carbohydrates in an intrinsically multifactorial biological context.
Collapse
Affiliation(s)
- Manuel González-Cuesta
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | - Carmen Ortiz Mellet
- Departamento de Química Orgánica
- Facultad de Química
- Universidad de Sevilla
- Sevilla 41012
- Spain
| | | |
Collapse
|
8
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
9
|
Li J, Han L, Li J, Kitova EN, Xiong ZJ, Privé GG, Klassen JS. Detecting Protein-Glycolipid Interactions Using CaR-ESI-MS and Model Membranes: Comparison of Pre-loaded and Passively Loaded Picodiscs. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1493-1504. [PMID: 29654535 DOI: 10.1007/s13361-018-1936-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Catch-and-release electrospray ionization mass spectrometry (CaR-ESI-MS), implemented using model membranes (MMs), is a promising approach for the discovery of glycolipid ligands of glycan-binding proteins (GBPs). Picodiscs (PDs), which are lipid-transporting complexes composed of the human sphingolipid activator protein saposin A and phospholipids, have proven to be useful MMs for such studies. The present work compares the use of conventional (pre-loaded) PDs with passively loaded PDs (PLPDs) for CaR-ESI-MS screening of glycolipids against cholera toxin B subunit homopentamer (CTB5). The pre-loaded PDs were prepared from a mixture of purified glycolipid and phospholipid or a mixture of lipids extracted from tissue, while the PLPDs were prepared by incubating PDs containing only phospholipid with glycolipid-containing lipid mixtures in aqueous solution. Time-dependent changes in the composition of the PLPDs produced by incubation with glycomicelles of the ganglioside GM1 were monitored using collision-induced dissociation of the gaseous PD ions and from the extent of ganglioside binding to CTB5 measured by ESI-MS. GM1 incorporation into PDs was evident within a few hours of incubation. At incubation times ≥ 10 days, GM1 binding to CTB5 was indistinguishable from that observed with pre-loaded PDs produced directly from GM1 at the same concentration. Comparison of ganglioside binding to CTB5 measured for pre-loaded PDs and PLPDs prepared from glycolipids extracted from pig and mouse brain revealed that the PLPDs allow for the detection of a greater number of ganglioside ligands. Together, the results of this study suggest PLPDs may have advantages over conventionally prepared PDs for screening glycolipids against GBPs using CaR-ESI-MS. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jun Li
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Ling Han
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Jianing Li
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Elena N Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Zi Jian Xiong
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Gilbert G Privé
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 1L7, Canada
| | - John S Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
10
|
Hetero-multivalent binding of cholera toxin subunit B with glycolipid mixtures. Colloids Surf B Biointerfaces 2017; 160:281-288. [PMID: 28946063 DOI: 10.1016/j.colsurfb.2017.09.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 11/24/2022]
Abstract
GM1 has generally been considered as the major receptor that binds to cholera toxin subunit B (CTB) due to its low dissociation constant. However, using a unique nanocube sensor technology, we have shown that CTB can also bind to other glycolipid receptors, fucosyl-GM1 and GD1b. Additionally, we have demonstrated that GM2 can contribute to CTB binding if present in a glycolipid mixture with a strongly binding receptor (GM1/fucosyl-GM1/GD1b). This hetero-multivalent binding result was unintuitive because the interaction between CTB and pure GM2 is negligible. We hypothesized that the reduced dimensionality of CTB-GM2 binding events is a major cause of the observed CTB binding enhancement. Once CTB has attached to a strong receptor, subsequent binding events are confined to a 2D membrane surface. Therefore, even a weak GM2 receptor could now participate in second or higher binding events because its surface reaction rate can be up to 104 times higher than the bulk reaction rate. To test this hypothesis, we altered the surface reaction rate by modulating the fluidity and heterogeneity of the model membrane. Decreasing membrane fluidity reduced the binding cooperativity between GM2 and a strong receptor. Our findings indicated a new protein-receptor binding assay, that can mimic complex cell membrane environment more accurately, is required to explore the inherent hetero-multivalency of the cell membrane. We have thus developed a new membrane perturbation protocol to efficiently screen receptor candidates involved in hetero-multivalent protein binding.
Collapse
|
11
|
Han L, Morales LC, Richards MR, Kitova EN, Sipione S, Klassen JS. Investigating the Influence of Membrane Composition on Protein–Glycolipid Binding Using Nanodiscs and Proxy Ligand Electrospray Ionization Mass Spectrometry. Anal Chem 2017; 89:9330-9338. [DOI: 10.1021/acs.analchem.7b02094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ling Han
- Alberta
Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Luis C. Morales
- Department
of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Michele R. Richards
- Alberta
Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Elena N. Kitova
- Alberta
Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Simonetta Sipione
- Department
of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - John S. Klassen
- Alberta
Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|