1
|
De Figueiredo I, Bartenlian B, Hamouda F, Bouville D, Pallandre A, Halgand F. From Microsize Chromatographic Manufacturing for Fast Desalting to Its Characterization. Anal Chem 2024; 96:15907-15914. [PMID: 39344030 DOI: 10.1021/acs.analchem.4c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Microfluidic devices are becoming increasingly popular in protein analysis due to their ability to reduce sample and buffer volumes. However, there is a research gap concerning the coupling of this technology with ion mobility and mass spectrometry (IM-MS). This study aims to fill this void by introducing the manufacture and the characterization of a microsize exclusion chromatography (μSEC) module for fast desalting and its integration into microfluidics, along with its coupling to electrospray ionization and ion mobility mass spectrometry (ESI-IM-MS). To assess the feasibility of this approach, the desalting of α-synuclein (αS) was investigated using Bio Spin P6 gel as a stationary phase in the manufacture of a microfluidic device. αS detection by MS gives insight into the sample purity, while IM combined with MS provides information about protein structure. IM allowed both the recording of qualitative and quantitative information. The qualitative data provided a map of the conformers in equilibrium, while the calculation of the respective abundances (quantitative profile) of the conformers afforded the opportunity to describe the dynamics of the system. Our experiments, serving as proof-of-concept, demonstrate αS desalting, exchange buffer efficiency, and reduced solvent usage, without compromising the protein's structure.
Collapse
Affiliation(s)
- Isabel De Figueiredo
- Institut de Chimie Physique, Université Paris Saclay, bâtiment 349, 91400 Orsay, France
| | - Bernard Bartenlian
- Centre des nanosciences et nanotechnologies (C2N), 10 Bd Thomas Gobert, 91120 Palaiseau, France
| | - Frédéric Hamouda
- Centre des nanosciences et nanotechnologies (C2N), 10 Bd Thomas Gobert, 91120 Palaiseau, France
| | - David Bouville
- Centre des nanosciences et nanotechnologies (C2N), 10 Bd Thomas Gobert, 91120 Palaiseau, France
| | - Antoine Pallandre
- Institut de Chimie Physique, Université Paris Saclay, bâtiment 349, 91400 Orsay, France
| | - Frédéric Halgand
- Institut de Chimie Physique, Université Paris Saclay, bâtiment 349, 91400 Orsay, France
| |
Collapse
|
2
|
De Figueiredo I, Bartenlian B, Van der Rest G, Pallandre A, Halgand F. Proteomics Methodologies: The Search of Protein Biomarkers Using Microfluidic Systems Coupled to Mass Spectrometry. Proteomes 2023; 11:proteomes11020019. [PMID: 37218924 DOI: 10.3390/proteomes11020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/29/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Protein biomarkers have been the subject of intensive studies as a target for disease diagnostics and monitoring. Indeed, biomarkers have been extensively used for personalized medicine. In biological samples, these biomarkers are most often present in low concentrations masked by a biologically complex proteome (e.g., blood) making their detection difficult. This complexity is further increased by the needs to detect proteoforms and proteome complexity such as the dynamic range of compound concentrations. The development of techniques that simultaneously pre-concentrate and identify low-abundance biomarkers in these proteomes constitutes an avant-garde approach to the early detection of pathologies. Chromatographic-based methods are widely used for protein separation, but these methods are not adapted for biomarker discovery, as they require complex sample handling due to the low biomarker concentration. Therefore, microfluidics devices have emerged as a technology to overcome these shortcomings. In terms of detection, mass spectrometry (MS) is the standard analytical tool given its high sensitivity and specificity. However, for MS, the biomarker must be introduced as pure as possible in order to avoid chemical noise and improve sensitivity. As a result, microfluidics coupled with MS has become increasingly popular in the field of biomarker discovery. This review will show the different approaches to protein enrichment using miniaturized devices and the importance of their coupling with MS.
Collapse
Affiliation(s)
- Isabel De Figueiredo
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| | - Bernard Bartenlian
- Centre des Nanosciences et Nanotechnologies, Université Paris Saclay, 10 Boulevard Thomas Gobert, F91120 Palaiseau, France
| | - Guillaume Van der Rest
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| | - Antoine Pallandre
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| | - Frédéric Halgand
- Institut de Chimie Physique, Université Paris Saclay, Avenue Jean Perrin, F91400 Orsay, France
| |
Collapse
|
3
|
Waeytens J, Mathurin J, Deniset-Besseau A, Arluison V, Bousset L, Rezaei H, Raussens V, Dazzi A. Probing amyloid fibril secondary structures by infrared nanospectroscopy: experimental and theoretical considerations. Analyst 2021; 146:132-145. [PMID: 33107501 DOI: 10.1039/d0an01545h] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Amyloid fibrils are composed of aggregated peptides or proteins in a fibrillary structure with a higher β-sheet content than their native structure. Attenuated total reflection Fourier transform infrared spectroscopy only provides bulk analysis of a sample therefore it is impossible to discriminate between different aggregated structures. To overcome this limitation, near-field techniques like AFM-IR have emerged in the last twenty years to allow infrared nanospectroscopy. This technique obtains IR spectra with a spatial resolution of ten nanometres, the size of isolated fibrils. Here, we present essential practical considerations to avoid misinterpretations and artefacts during these analyses. Effects of polarization of the incident IR laser, illumination configuration and coating of the AFM probes are discussed, including the advantages and drawbacks of their use. This approach will improve interpretation of AFM-IR spectra especially for the determination of secondary structures of species not accessible using classical ATR-FTIR.
Collapse
Affiliation(s)
- Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgique.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Beveridge R, Calabrese AN. Structural Proteomics Methods to Interrogate the Conformations and Dynamics of Intrinsically Disordered Proteins. Front Chem 2021; 9:603639. [PMID: 33791275 PMCID: PMC8006314 DOI: 10.3389/fchem.2021.603639] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) and regions of intrinsic disorder (IDRs) are abundant in proteomes and are essential for many biological processes. Thus, they are often implicated in disease mechanisms, including neurodegeneration and cancer. The flexible nature of IDPs and IDRs provides many advantages, including (but not limited to) overcoming steric restrictions in binding, facilitating posttranslational modifications, and achieving high binding specificity with low affinity. IDPs adopt a heterogeneous structural ensemble, in contrast to typical folded proteins, making it challenging to interrogate their structure using conventional tools. Structural mass spectrometry (MS) methods are playing an increasingly important role in characterizing the structure and function of IDPs and IDRs, enabled by advances in the design of instrumentation and the development of new workflows, including in native MS, ion mobility MS, top-down MS, hydrogen-deuterium exchange MS, crosslinking MS, and covalent labeling. Here, we describe the advantages of these methods that make them ideal to study IDPs and highlight recent applications where these tools have underpinned new insights into IDP structure and function that would be difficult to elucidate using other methods.
Collapse
Affiliation(s)
- Rebecca Beveridge
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Antonio N. Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
5
|
Soto P, Claflin IA, Bursott AL, Schwab-McCoy AD, Bartz JC. Cellular prion protein gene polymorphisms linked to differential scrapie susceptibility correlate with distinct residue connectivity between secondary structure elements. J Biomol Struct Dyn 2021; 39:129-139. [PMID: 31900058 PMCID: PMC7340567 DOI: 10.1080/07391102.2019.1708794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The conformational conversion of the cellular prion protein (PrPC) to the misfolded and aggregated isoform, termed scrapie prion protein (PrPSc), is key to the development of a group of neurodegenerative diseases known as transmissible spongiform encephalopathies (TSEs). Although the conversion mechanism is not fully understood, the role of gene polymorphisms in varying susceptibilities to prion diseases is well established. In ovine, specific gene polymorphisms in PrPC alter prion disease susceptibility: the Valine136-Glutamine171 variant (Susceptible structure) displays high susceptibility to classical scrapie while the Alanine136-Arginine171 variant (Resistant structure) displays reduced susceptibility. The opposite trend has been reported in atypical scrapie. Despite the differentiation between classical and atypical scrapie, a complete understanding of the effect of polymorphisms on the structural dynamics of PrPC is lacking. From our structural bioinformatics study, we propose that polymorphisms locally modulate the network of residue interactions in the globular C-terminus of the ovine recombinant prion protein while maintaining the overall fold. Although the two variants we examined exhibit a densely connected group of residues that includes both β-sheets, the β2-α2 loop and the N-terminus of α-helix 2, only in the Resistant structure do most residues of α-helix 2 belong to this group. We identify the structural role of Valine136Alanine and Glutamine171Arginine: modulation of residue interaction networks that affect the connectivity between α-helix 2 and α-helix 3. We propose blocking interactions of residue 171 as a potential target for the design of therapeutics to prevent efficient PrPC misfolding. We discuss our results in the context of initial PrPC conversion and extrapolate to recently proposed PrPSc structures.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Patricia Soto
- Department of Physics, Creighton University, Omaha, Nebraska, 68178,Corresponding author: Patricia Soto, Creighton University – Department of Physics, 2500 California Plaza, Omaha, NE 68178, Phone number: 402.280.3361, Fax: 402.280.2140,
| | - India A. Claflin
- Department of Biology, Creighton University, Omaha, Nebraska, 68178
| | | | | | - Jason C. Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, 68178
| |
Collapse
|
6
|
Bohl J, Sicard C, Rezaei H, Van der Rest G, Halgand F. Evidence of conformational landscape alteration and macromolecular complex formation in the early stages of in vitro human prion protein oxidation. Arch Biochem Biophys 2020; 690:108432. [PMID: 32663474 DOI: 10.1016/j.abb.2020.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 10/23/2022]
Abstract
Oxidative stress is proposed to be one of the major causes of neurodegenerative diseases. Cellular prion protein (PrP) oxidation has been widely studied using chemical reagents such as hydrogen peroxide. However, the experimental conditions used do not faithfully reflect the physiological environment of the cell. With the goal to explore the conformational landscape of PrP under oxidative stress, we conducted a set of experiments combining the careful control of the nature and the amount of ROS produced by a60Co γ-irradiation source. Characterization of the resulting protein species was achieved using a set of analytical techniques. Under our experimental condition hydroxyl radical are the main reactive species produced. The most important findings are i) the formation of molecular assemblies under oxidative stress, ii) the detection of a majority of unmodified monomer mixed with oxidized monomers in these molecular assemblies at low hydroxyl radical concentration, iii) the absence of significant oxidation on the monomer fraction after irradiation. Molecular assemblies are produced in small amounts and were shown to be an octamer. These results suggest either i) an active recruitment of intact monomers by molecular assemblies' oxidized monomers then inducing a structural change of their intact counterparts or ii) an intrinsic capability of intact monomer conformers to spontaneously associate to form stable molecular assemblies when oxidized monomers are present. Finally, abundances of the intact monomer conformers after irradiation were modified. This suggests that monomers of the molecular assemblies exchange structural information with intact irradiated monomer. All these results shed a new light on structural exchange information between PrP monomers under oxidative stress.
Collapse
Affiliation(s)
- Jan Bohl
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay, France
| | - Cécile Sicard
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay, France
| | - Human Rezaei
- Institut National de la Recherche Agronomique, UR892, Virologie Immunologie Moléculaires, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Guillaume Van der Rest
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay, France
| | - Frédéric Halgand
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR 8000, 91405, Orsay, France.
| |
Collapse
|
7
|
Berardet C, Kaffy J, Halgand F, Van der Rest G, Ongeri S, Taverna M. Evidence for different in vitro oligomerization behaviors of synthetic hIAPP obtained from different sources. Anal Bioanal Chem 2020; 412:3103-3111. [PMID: 32211924 DOI: 10.1007/s00216-020-02560-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes is characterized by the aggregation of human islet amyloid polypeptide (hIAPP), from monomer to amyloid deposits that are made of insoluble fibrils. Discrepancies concerning the nature of formed species or oligomerization kinetics among reported in vitro studies on hIAPP aggregation process have been highlighted. In this work, we investigated if the sample itself could be at the origin of those observed differences. To this aim, four hIAPP samples obtained from three different sources or suppliers have been analyzed and compared by ThT fluorescence spectroscopy and by two recently developed techniques, capillary electrophoresis (CE), and ESI-IMS-QToF-MS. Lots provided by the same supplier were shown to be very similar whatever the analytical technique used to characterize them. In contrast, several critical differences could be pointed out for hIAPP provided by different suppliers. We demonstrated that in several samples, some oligomerized peptides (e.g., dimer) were already present upon reception. Purity was also different, and the proneness of the peptide solution to form fibrils in vitro within 24 h could vary considerably from one sample source to another but not from lot to lot of the same source. All those results demonstrate that the initial state of conformation, oligomerization, and quality of the hIAPP can greatly impact the aggregation kinetics, and thus the information provided by these in vitro tests. Finally, a careful selection of the peptide batch and source is mandatory to perform relevant in vitro studies on hIAPP oligomerization and to screen new molecules modulating this pathological process. Graphical abstract.
Collapse
Affiliation(s)
- Corentin Berardet
- CNRS, Institut Galien Paris Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France.,CNRS, BioCIS, FLUOPEPIT, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Julia Kaffy
- CNRS, BioCIS, FLUOPEPIT, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Frédéric Halgand
- Institut de Chimie Physique, UMR 8000, Réactivité des Ions, Spectrométrie de Masse, Analyse et Spectroscopies (RISMAS), CNRS, University Paris-Sud, University Paris-Saclay, Rue Henri Becquerel, Bâtiment 201 P2, 91405, Orsay, France
| | - Guillaume Van der Rest
- Institut de Chimie Physique, UMR 8000, Réactivité des Ions, Spectrométrie de Masse, Analyse et Spectroscopies (RISMAS), CNRS, University Paris-Sud, University Paris-Saclay, Rue Henri Becquerel, Bâtiment 201 P2, 91405, Orsay, France
| | - Sandrine Ongeri
- CNRS, BioCIS, FLUOPEPIT, Université Paris-Saclay, 92290, Châtenay-Malabry, France
| | - Myriam Taverna
- CNRS, Institut Galien Paris Sud, Université Paris-Saclay, 92296, Châtenay-Malabry, France. .,Institut Universitaire de France, Paris, France.
| |
Collapse
|
8
|
Halgand F, Houée-Lévin C, Weik M, Madern D. Remote oxidative modifications induced by oxygen free radicals modify T/R allosteric equilibrium of a hyperthermophilic lactate dehydrogenase. J Struct Biol 2020; 210:107478. [PMID: 32087239 DOI: 10.1016/j.jsb.2020.107478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/06/2020] [Accepted: 02/13/2020] [Indexed: 12/01/2022]
Abstract
L-Lactate dehydrogenase (LDH) is a model protein allowing to shed light on the fundamental molecular mechanisms that drive the acquisition, evolution and regulation of enzyme properties. In this study, we test the hypothesis of a link between thermal stability of LDHs and their capacity against unfolding induced by reactive oxygen species (ROS) generated by γ-rays irradiation. By using circular dichroism spectroscopy, we analysed that high thermal stability of a thermophilic LDH favours strong resistance against ROS-induced unfolding, in contrast to its psychrophilic and mesophilic counterparts that are less resistant. We suggest that a protein's phenotype linking strong thermal stability and resistance against ROS damages would have been a selective evolutionary advantage. We also find that the enzymatic activity of the thermophilic LDH that is strongly resistant against ROS-unfolding is very sensitive to inactivation by irradiation. To address this counter-intuitive observation, we combined mass spectrometry analyses and enzymatic activity measurements. We demonstrate that the dramatic change on LDH activity was linked to remote chemical modifications away from the active site, that change the equilibrium between low-affinity tense (T-inactive) and high-affinity relaxed (R-active) forms. We found the T-inactive thermophilic enzyme obtained after irradiation can recover its LDH activity by addition of the allosteric effector 1, 6 fructose bis phosphate. We analyse our data within the general framework of allosteric regulation, which requires that an enzyme in solution populates a large diversity of dynamically-interchanging conformations. Our work demonstrates that the radiation-induced inactivation of an enzyme is controlled by its dynamical properties.
Collapse
Affiliation(s)
- Frédéric Halgand
- Université Paris Sud-CNRS, UMR 8000, bâtiments 201 P2 and 350, 91405 Orsay, France
| | - Chantal Houée-Lévin
- Université Paris Sud-CNRS, UMR 8000, bâtiments 201 P2 and 350, 91405 Orsay, France
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | | |
Collapse
|
9
|
Transient multimers modulate conformer abundances of prion protein monomer through conformational selection. Sci Rep 2019; 9:12159. [PMID: 31434938 PMCID: PMC6704068 DOI: 10.1038/s41598-019-48377-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/01/2019] [Indexed: 01/15/2023] Open
Abstract
Prions are known to be involved in neurodegenerative pathologies such as Creutzfeld-Jakob disease. Current models point to a molecular event which rely on a transmissible structural change that leads to the production of β-sheet-rich prion conformer (PrPSc). PrPSc itself has the capability to trigger the structural rearrangement of the ubiquitously present prion (PrPc) substrate in a self-perpetuating cascade. In this article, we demonstrate that recombinant PrPc exists in a conformational equilibrium. The conformers’ abundances were shown to be dependent on PrPc concentration through the formation of transient multimers leading to conformational selection. The study of PrPc mutants that follow dedicated oligomerization pathways demonstrated that the conformers’ relative abundances are modified, thus reinforcing the assertion that the nature of conformers’ interactions orient the oligomerization pathways. Further this result can be viewed as the “signature” of an aborted oligomerization process. This discovery sheds a new light on the possible origin of prion protein diseases, namely that a change in prion protein structure could be transmitted through the formation of transient multimers having different conformer compositions. This could explain the selection of a transient multimeric type that could be viewed as the precursor of PrPSc responsible for structural information transmission, and strain apparition.
Collapse
|
10
|
Mitra G. Application of native mass spectrometry in studying intrinsically disordered proteins: A special focus on neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140260. [PMID: 31382021 DOI: 10.1016/j.bbapap.2019.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 12/26/2022]
Abstract
Intrinsically disordered proteins (IDPs) are integral part of the proteome, regulating vital biological processes. Such proteins gained further visibility due to their key role in neurodegenerative diseases and cancer. IDPs however, escape structural characterization by traditional biophysical tools owing to their extreme flexibility and heterogeneity. In this review, we discuss the advantages of native mass spectrometry (MS) in analysing the atypical conformational dynamics of IDPs and recent advances made in the field. Especially, MS studies unravelling the conformational facets of IDPs involved in neurodegenerative diseases are highlighted. The limitations and the future promises of native MS while studying IDPs have been discussed.
Collapse
Affiliation(s)
- Gopa Mitra
- Clinical Proteomics Unit, Division of Molecular Medicine, St. John's Research Institute, St. John's National Academy of Health Sciences, 100 Feet Road, Koramangala, Bangalore 560034, Karnataka, India.
| |
Collapse
|
11
|
Van der Rest G, Halgand F. Size Exclusion Chromatography-Ion Mobility-Mass Spectrometry Coupling: a Step Toward Structural Biology. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2519-2522. [PMID: 28933014 DOI: 10.1007/s13361-017-1810-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/04/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Noncovalent interactions are essential for the structural organization of biomacromolecules in cells. For this reason, the study of the biophysical, dynamic, and architectural interactions among biomacromolecules is essential. Since mass spectrometry requires compatible solutions while preserving the noncovalent bonding network, we envisioned that size exclusion chromatography coupled with ion mobility and mass spectrometry would be a valuable technique to desalt the initial sample and provide solution and gas-phase structural information in a single stage experiment. Such coupling allowed obtaining information on solution protein complex composition with SEC separation and on authenticity and purity with IMS-MS. Our study demonstrated that such coupling is compatible, useful, as well as suitable for a routine analysis, in pharmaceutical industry, for example. Mobility data were reliable and injected standards allowed calibrating the collision cross-section scale. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Guillaume Van der Rest
- Université Paris Sud-CNRS, UMR 8000, Rue Henri Becquerel, Bâtiment 201 P 2, 91405, Orsay, France
| | - Frédéric Halgand
- Université Paris Sud-CNRS, UMR 8000, Rue Henri Becquerel, Bâtiment 201 P 2, 91405, Orsay, France.
| |
Collapse
|