1
|
Onigbinde S, Gutierrez Reyes CD, Sandilya V, Chukwubueze F, Oluokun O, Sahioun S, Oluokun A, Mechref Y. Optimization of glycopeptide enrichment techniques for the identification of clinical biomarkers. Expert Rev Proteomics 2024:1-32. [PMID: 39439029 DOI: 10.1080/14789450.2024.2418491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/28/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION The identification and characterization of glycopeptides through LC-MS/MS and advanced enrichment techniques are crucial for advancing clinical glycoproteomics, significantly impacting the discovery of disease biomarkers and therapeutic targets. Despite progress in enrichment methods like Lectin Affinity Chromatography (LAC), Hydrophilic Interaction Liquid Chromatography (HILIC), and Electrostatic Repulsion Hydrophilic Interaction Chromatography (ERLIC), issues with specificity, efficiency, and scalability remain, impeding thorough analysis of complex glycosylation patterns crucial for disease understanding. AREAS COVERED This review explores the current challenges and innovative solutions in glycopeptide enrichment and mass spectrometry analysis, highlighting the importance of novel materials and computational advances for improving sensitivity and specificity. It outlines the potential future directions of these technologies in clinical glycoproteomics, emphasizing their transformative impact on medical diagnostics and therapeutic strategies. EXPERT OPINION The application of innovative materials such as Metal-Organic Frameworks (MOFs), Covalent Organic Frameworks (COFs), functional nanomaterials, and online enrichment shows promise in addressing challenges associated with glycoproteomics analysis by providing more selective and robust enrichment platforms. Moreover, the integration of artificial intelligence and machine learning is revolutionizing glycoproteomics by enhancing the processing and interpretation of extensive data from LC-MS/MS, boosting biomarker discovery, and improving predictive accuracy, thus supporting personalized medicine.
Collapse
Affiliation(s)
- Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | | | - Vishal Sandilya
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Favour Chukwubueze
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Odunayo Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sarah Sahioun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Ayobami Oluokun
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
2
|
Wu YC, Zhang XW, Huang YC, Lu IC. Advancing carbohydrate quantification in MALDI mass spectrometry by the rapidly freeze-drying droplet (RFDD) method. Analyst 2024; 149:1766-1773. [PMID: 38372348 DOI: 10.1039/d3an02201c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Quantitative carbohydrate analysis faces challenges in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), including insufficient sensitivity and inconsistent spatial distribution of ion intensity. This study introduces an innovative sample preparation approach, the Rapidly Freeze-Drying Droplet (RFDD) method, aimed at overcoming these challenges by enhancing the homogeneity of the sample morphology and signal intensity in MALDI. Compared to conventional preparation methods, the RFDD method reduces the laser energy threshold and demonstrates a remarkable increase in signal intensity for carbohydrates, facilitating the detection of high-molecular-weight polysaccharides (>10 kDa). The RFDD-prepared samples exhibit a uniformly distributed signal intensity that overcomes the 'sweet spot' issue in MALDI. The enhanced signal intensity and reproducibility lead to reliable quantitative analysis of carbohydrates, eliminating the need for expensive isotopic standards in each sample. A straightforward and accessible approach is presented for general laboratories, revolutionizing carbohydrate analysis in MALDI-MS.
Collapse
Affiliation(s)
- Yu-Cheng Wu
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan.
| | - Xin-Wen Zhang
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan.
| | - Yi-Ching Huang
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan.
| | - I-Chung Lu
- Department of Chemistry, National Chung Hsing University, Taichung City 40227, Taiwan.
| |
Collapse
|
3
|
Wang Y, Li R, Shu W, Chen X, Lin Y, Wan J. Designed Nanomaterials-Assisted Proteomics and Metabolomics Analysis for In Vitro Diagnosis. SMALL METHODS 2024; 8:e2301192. [PMID: 37922520 DOI: 10.1002/smtd.202301192] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/12/2023] [Indexed: 11/05/2023]
Abstract
In vitro diagnosis (IVD) is pivotal in modern medicine, enabling early disease detection and treatment optimization. Omics technologies, particularly proteomics and metabolomics, offer profound insights into IVD. Despite its significance, omics analyses for IVD face challenges, including low analyte concentrations and the complexity of biological environments. In addition, the direct omics analysis by mass spectrometry (MS) is often hampered by issues like large sample volume requirements and poor ionization efficiency. Through manipulating their size, surface charge, and functionalization, as well as the nanoparticle-fluid incubation conditions, nanomaterials have emerged as a promising solution to extract biomolecules and enhance the desorption/ionization efficiency in MS detection. This review delves into the last five years of nanomaterial applications in omics, focusing on their role in the enrichment, separation, and ionization analysis of proteins and metabolites for IVD. It aims to provide a comprehensive update on nanomaterial design and application in omics, highlighting their potential to revolutionize IVD.
Collapse
Affiliation(s)
- Yanhui Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Rongxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Weikang Shu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiaonan Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Lin
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jingjing Wan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
4
|
Peng W, Reyes CDG, Gautam S, Yu A, Cho BG, Goli M, Donohoo K, Mondello S, Kobeissy F, Mechref Y. MS-based glycomics and glycoproteomics methods enabling isomeric characterization. MASS SPECTROMETRY REVIEWS 2023; 42:577-616. [PMID: 34159615 PMCID: PMC8692493 DOI: 10.1002/mas.21713] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 05/03/2023]
Abstract
Glycosylation is one of the most significant and abundant posttranslational modifications in mammalian cells. It mediates a wide range of biofunctions, including cell adhesion, cell communication, immune cell trafficking, and protein stability. Also, aberrant glycosylation has been associated with various diseases such as diabetes, Alzheimer's disease, inflammation, immune deficiencies, congenital disorders, and cancers. The alterations in the distributions of glycan and glycopeptide isomers are involved in the development and progression of several human diseases. However, the microheterogeneity of glycosylation brings a great challenge to glycomic and glycoproteomic analysis, including the characterization of isomers. Over several decades, different methods and approaches have been developed to facilitate the characterization of glycan and glycopeptide isomers. Mass spectrometry (MS) has been a powerful tool utilized for glycomic and glycoproteomic isomeric analysis due to its high sensitivity and rich structural information using different fragmentation techniques. However, a comprehensive characterization of glycan and glycopeptide isomers remains a challenge when utilizing MS alone. Therefore, various separation methods, including liquid chromatography, capillary electrophoresis, and ion mobility, were developed to resolve glycan and glycopeptide isomers before MS. These separation techniques were coupled to MS for a better identification and quantitation of glycan and glycopeptide isomers. Additionally, bioinformatic tools are essential for the automated processing of glycan and glycopeptide isomeric data to facilitate isomeric studies in biological cohorts. Here in this review, we discuss commonly employed MS-based techniques, separation hyphenated MS methods, and software, facilitating the separation, identification, and quantitation of glycan and glycopeptide isomers.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Byeong Gwan Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Kaitlyn Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | | | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics & Biomarkers Research, Departments of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
5
|
Khajavinia A, El-Aneed A. Carbon-Based Nanoparticles and Their Surface-Modified Counterparts as MALDI Matrices. Anal Chem 2023; 95:100-114. [PMID: 36625120 DOI: 10.1021/acs.analchem.2c04537] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Amir Khajavinia
- College of Pharmacy and Nutrition, Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Anas El-Aneed
- College of Pharmacy and Nutrition, Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
6
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
An Efficient and Economical N-Glycome Sample Preparation Using Acetone Precipitation. Metabolites 2022; 12:metabo12121285. [PMID: 36557323 PMCID: PMC9786591 DOI: 10.3390/metabo12121285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Due to the critical role of the glycome in organisms and its close connections with various diseases, much time and effort have been dedicated to glycomics-related studies in the past decade. To achieve accurate and reliable identification and quantification of glycans extracted from biological samples, several analysis methods have been well-developed. One commonly used methodology for the sample preparation of N-glycomics usually involves enzymatic cleavage by PNGase F, followed by sample purification using C18 cartridges to remove proteins. PNGase F and C18 cartridges are very efficient both for cleaving N-glycans and for protein removal. However, this method is most suitable for a limited quantity of samples. In this study, we developed a sample preparation method focusing on N-glycome extraction and purification from large-scale biological samples using acetone precipitation. The N-glycan yield was first tested on standard glycoprotein samples, bovine fetuin and complex biological samples, and human serum. Compared to C18 cartridges, most of the sialylated N-glycans from human serum were detected with higher abundance after acetone precipitation. However, C18 showed a slightly higher efficiency for protein removal. Using the unfiltered human serum as the baseline, around 97.7% of the proteins were removed by acetone precipitation, while more than 99.9% of the proteins were removed by C18 cartridges. Lastly, the acetone precipitation was applied to N-glycome extraction from egg yolks to demonstrate large-scale glycomics sample preparation.
Collapse
|
8
|
Peng W, Kobeissy F, Mondello S, Barsa C, Mechref Y. MS-based glycomics: An analytical tool to assess nervous system diseases. Front Neurosci 2022; 16:1000179. [PMID: 36408389 PMCID: PMC9671362 DOI: 10.3389/fnins.2022.1000179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/05/2022] [Indexed: 08/27/2023] Open
Abstract
Neurological diseases affect millions of peopleochemistryorldwide and are continuously increasing due to the globe's aging population. Such diseases affect the nervous system and are characterized by a progressive decline in brain function and progressive cognitive impairment, decreasing the quality of life for those with the disease as well as for their families and loved ones. The increased burden of nervous system diseases demands a deeper insight into the biomolecular mechanisms at work during disease development in order to improve clinical diagnosis and drug design. Recently, evidence has related glycosylation to nervous system diseases. Glycosylation is a vital post-translational modification that mediates many biological functions, and aberrant glycosylation has been associated with a variety of diseases. Thus, the investigation of glycosylation in neurological diseases could provide novel biomarkers and information for disease pathology. During the last decades, many techniques have been developed for facilitation of reliable and efficient glycomic analysis. Among these, mass spectrometry (MS) is considered the most powerful tool for glycan analysis due to its high resolution, high sensitivity, and the ability to acquire adequate structural information for glycan identification. Along with MS, a variety of approaches and strategies are employed to enhance the MS-based identification and quantitation of glycans in neurological samples. Here, we review the advanced glycomic tools used in nervous system disease studies, including separation techniques prior to MS, fragmentation techniques in MS, and corresponding strategies. The glycan markers in common clinical nervous system diseases discovered by utilizing such MS-based glycomic tools are also summarized and discussed.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Firas Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Chloe Barsa
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, FL, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
9
|
Salvitti C, de Petris G, Troiani A, Managò M, Ricci A, Pepi F. Kinetic Study of the Maillard Reaction in Thin Film Generated by Microdroplets Deposition. Molecules 2022; 27:5747. [PMID: 36144482 PMCID: PMC9504576 DOI: 10.3390/molecules27185747] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The Maillard reaction kinetics in the confined volume of the thin film produced by ESI microdroplet deposition was studied by mass spectrometry. The almost exclusive formation of the Amadori product from the reaction of D-xylose and D-glucose toward L-glycine and L-lysine was demonstrated. The thin film Maillard reaction occurred at a mild synthetic condition under which the same process in solution was not observed. The comparison of the thin film kinetics with that of the reaction performed in solution showed strong thin film rate acceleration factors.
Collapse
Affiliation(s)
- Chiara Salvitti
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Giulia de Petris
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Anna Troiani
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Marta Managò
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Andreina Ricci
- Department of Mathematics and Physics, University of Campania, L. Vanvitelli, Viale Lincoln 5, 81100 Caserta, Italy
| | - Federico Pepi
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
10
|
Wang J, Peng W, Yu A, Fokar M, Mechref Y. Glycome Profiling of Cancer Cell Lines Cultivated in Physiological and Commercial Media. Biomolecules 2022; 12:biom12060743. [PMID: 35740868 PMCID: PMC9221004 DOI: 10.3390/biom12060743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/29/2022] Open
Abstract
A complex physiological culture medium (Plasmax) was introduced recently, composed of nutrients and metabolites at concentrations normally found in human plasma to mimic the in vivo environment for cell line cultivation. As glycosylation has been proved to be involved in cancer development, it is necessary to investigate the glycan expression changes in media with different nutrients. In this study, a breast cancer cell line, MDA-MB-231BR, and a brain cancer cell line, CRL-1620, were cultivated in Plasmax and commercial media to reveal cell line glycosylation discrepancies prompted by nutritional environments. Glycomics analyses of cell lines were performed using LC-MS/MS. The expressions of multiple fucosylated N-glycans, such as HexNAc4Hex3DeoxyHex1 and HexNAc5Hex3DeoxyHex1, derived from both cell lines exhibited a significant increase in Plasmax. Among the O-glycans, significant differences were also observed. Both cell lines cultivated in EMEM had the lowest amounts of O-glycans expressed. The original work described the development of Plasmax, which improves colony formation, and resulted in transcriptomic and metabolomic alterations of cancer cell lines, while our results indicate that Plasmax can significantly impact protein glycosylation. This study also provides information to guide the selection of media for in vitro cancer cell glycomics studies.
Collapse
Affiliation(s)
- Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (J.W.); (W.P.); (A.Y.)
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (J.W.); (W.P.); (A.Y.)
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (J.W.); (W.P.); (A.Y.)
| | - Mohamed Fokar
- Center of Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA;
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (J.W.); (W.P.); (A.Y.)
- Center of Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA;
- Correspondence: ; Tel.: +1-806-742-3059
| |
Collapse
|
11
|
Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers. Cells 2022; 11:cells11030581. [PMID: 35159390 PMCID: PMC8834236 DOI: 10.3390/cells11030581] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.
Collapse
|
12
|
Noh JY, Kim MJ, Park JM, Yun TG, Kang MJ, Pyun JC. Laser desorption/ionization mass spectrometry of L-thyroxine (T4) using combi-matrix of α-cyano-4-hydroxycinnamic acid (CHCA) and graphene. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00314-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractAn optimal combi-matrix for MALDI-TOF mass spectrometry was presented for the analysis of L-thyroxine (T4) in human serum. For the selection of the optimal combi-matrix, several kinds of combi-matrices were prepared by mixing the conventional organic matrix of CHCA with nanomaterials, such as graphene, carbon nanotubes, nanoparticles of Pt and TiO2. In order to select the optimal combi-matrix, the absorption at the wavelength of laser radiation (337 nm) for the ionization of sample was estimated using UV–Vis spectrometry. And, the heat absorption properties of these combi-matrices were also analyzed using differential scanning calorimetry (DSC), such as onset temperature and fusion enthalpy. In the case of the combi-matrix of CHCA and graphene, the onset temperature and fusion enthalpy were observed to be lower than those of CHCA, which represented the enhanced transfer of heat to the analyte in comparison with CHCA. From the analysis of optical and thermal properties, the combi-matrix of CHCA and graphene was selected to be an optimal combination for the transfer of laser energy during MALDI-TOF mass spectrometry. The feasibility of the combi-matrix composed of CHCA and graphene was demonstrated for the analysis of T4 molecules using MALDI-TOF mass spectrometry. The combi-matrix of CHCA and graphene was estimated to have an improved limit of detection and a wider detection range in comparison with other kinds of combi-matrices. Finally, the MALDI-TOF MS results of T4 analysis using combi-matrix were statistically compared with those of the conventional immunoassay.
Collapse
|
13
|
Gutierrez-Reyes CD, Jiang P, Atashi M, Bennett A, Yu A, Peng W, Zhong J, Mechref Y. Advances in mass spectrometry-based glycoproteomics: An update covering the period 2017-2021. Electrophoresis 2021; 43:370-387. [PMID: 34614238 DOI: 10.1002/elps.202100188] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022]
Abstract
Protein glycosylation is one of the most common posttranslational modifications, and plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, host-pathogen interaction, and protein stability. Glycoproteomics is a proteomics subfield dedicated to identifying and characterizing the glycans and glycoproteins in a given cell or tissue. Aberrant glycosylation has been associated with various diseases such as Alzheimer's disease, viral infections, inflammation, immune deficiencies, congenital disorders, and cancers. However, glycoproteomic analysis remains challenging because of the low abundance, site-specific heterogeneity, and poor ionization efficiency of glycopeptides during LC-MS analyses. Therefore, the development of sensitive and accurate approaches to efficiently characterize protein glycosylation is crucial. Methods such as metabolic labeling, enrichment, and derivatization of glycopeptides, coupled with different mass spectrometry techniques and bioinformatics tools, have been developed to achieve sophisticated levels of quantitative and qualitative analyses of glycoproteins. This review attempts to update the recent developments in the field of glycoproteomics reported between 2017 and 2021.
Collapse
Affiliation(s)
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Mojgan Atashi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Andrew Bennett
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
14
|
Ma W, Li J, Li X, Bai Y, Liu H. Nanostructured Substrates as Matrices for Surface Assisted Laser Desorption/Ionization Mass Spectrometry: A Progress Report from Material Research to Biomedical Applications. SMALL METHODS 2021; 5:e2100762. [PMID: 34927930 DOI: 10.1002/smtd.202100762] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Indexed: 06/14/2023]
Abstract
Within the past two decades, the escalation of research output in nanotechnology fields has boosted the development of novel nanoparticles and nanostructured substrates for use as matrices in surface assisted laser desorption/ionization mass spectrometry (SALDI-MS). The application of nanomaterials as matrices, rather than organic matrices, offers remarkable characteristics that allow the analysis of small molecules with fewer matrix interfering peaks, and share higher detection sensitivity, specificity, and reproducibility. The technological advancement of SALDI-MS has in turn, propelled the application of the analytical technique in the field of biomedical analysis. In this review, the properties and fabrication methods of nanostructured substrates in SALDI-MS such as metallic-, carbon-, and silicon-based nanostructures, quantum dots, metal-organic frameworks, and covalent-organic frameworks are described. Additionally, the latest progress (most within 5 years) of biomedical applications in small molecule, large biomolecule, and MS imaging analysis including metabolite profiling, drug monitoring, bacteria identification, disease diagnosis, and therapeutic evaluation are demonstrated. Key parameters that govern nanomaterial's SALDI efficiency in biomolecule analysis are also discussed. Finally, perspectives of the future development are given to provide a better advancement and promote practical application in clinical MS.
Collapse
Affiliation(s)
- Wen Ma
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jun Li
- State Key Laboratory of Natural and Biomimetic DrugsSchool of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xianjiang Li
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing, 100029, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
15
|
Donohoo KB, Wang J, Goli M, Yu A, Peng W, Hakim MA, Mechref Y. Advances in mass spectrometry-based glycomics-An update covering the period 2017-2021. Electrophoresis 2021; 43:119-142. [PMID: 34505713 DOI: 10.1002/elps.202100199] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
The wide variety of chemical properties and biological functions found in proteins is attained via post-translational modifications like glycosylation. Covalently bonded to proteins, glycans play a critical role in cell activity. Complex structures with microheterogeneity, the glycan structures that are associated with proteins are difficult to analyze comprehensively. Recent advances in sample preparation methods, separation techniques, and MS have facilitated the quantitation and structural elucidation of glycans. This review focuses on highlighting advances in MS-based techniques for glycomic analysis that occurred over the last 5 years (2017-2021) as an update to the previous review on the subject. The topics of discussion will include progress in glycomic workflow such as glycan release, purification, derivatization, and separation as well as the topics of ionization, tandem MS, and separation techniques that can be coupled with MS. Additionally, bioinformatics tools used for the analysis of glycans will be described.
Collapse
Affiliation(s)
- Kaitlyn B Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| |
Collapse
|
16
|
Hasan MM, Mimi MA, Mamun MA, Islam A, Waliullah ASM, Nabi MM, Tamannaa Z, Kahyo T, Setou M. Mass Spectrometry Imaging for Glycome in the Brain. Front Neuroanat 2021; 15:711955. [PMID: 34393728 PMCID: PMC8358800 DOI: 10.3389/fnana.2021.711955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Glycans are diverse structured biomolecules that play crucial roles in various biological processes. Glycosylation, an enzymatic system through which various glycans are bound to proteins and lipids, is the most common and functionally crucial post-translational modification process. It is known to be associated with brain development, signal transduction, molecular trafficking, neurodegenerative disorders, psychopathologies, and brain cancers. Glycans in glycoproteins and glycolipids expressed in brain cells are involved in neuronal development, biological processes, and central nervous system maintenance. The composition and expression of glycans are known to change during those physiological processes. Therefore, imaging of glycans and the glycoconjugates in the brain regions has become a “hot” topic nowadays. Imaging techniques using lectins, antibodies, and chemical reporters are traditionally used for glycan detection. However, those techniques offer limited glycome detection. Mass spectrometry imaging (MSI) is an evolving field that combines mass spectrometry with histology allowing spatial and label-free visualization of molecules in the brain. In the last decades, several studies have employed MSI for glycome imaging in brain tissues. The current state of MSI uses on-tissue enzymatic digestion or chemical reaction to facilitate successful glycome imaging. Here, we reviewed the available literature that applied MSI techniques for glycome visualization and characterization in the brain. We also described the general methodologies for glycome MSI and discussed its potential use in the three-dimensional MSI in the brain.
Collapse
Affiliation(s)
- Md Mahmudul Hasan
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mst Afsana Mimi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Al Mamun
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ariful Islam
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - A S M Waliullah
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Md Mahamodun Nabi
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Zinat Tamannaa
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoaki Kahyo
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Mitsutoshi Setou
- Department of Cellular & Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan.,International Mass Imaging Center, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu, Japan
| |
Collapse
|
17
|
ZHAO YZ, XU Y, GONG C, JU YR, LIU ZX, XU X. Analysis of Small Molecule Compounds by Matrix-assisted Laser Desorption Ionization Mass Spectrometry with Fe3O4 Nanoparticles as Matrix. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1016/s1872-2040(20)60074-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
18
|
Yadav SPS, Sandoval RM, Zhao J, Huang Y, Wang E, Kumar S, Campos-Bilderback SB, Rhodes G, Mechref Y, Molitoris BA, Wagner MC. Mechanism of how carbamylation reduces albumin binding to FcRn contributing to increased vascular clearance. Am J Physiol Renal Physiol 2021; 320:F114-F129. [PMID: 33283642 PMCID: PMC7847050 DOI: 10.1152/ajprenal.00428.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease results in high serum urea concentrations leading to excessive protein carbamylation, primarily albumin. This is associated with increased cardiovascular disease and mortality. Multiple methods were used to address whether carbamylation alters albumin metabolism. Intravital two-photon imaging of the Munich Wistar Frömter (MWF) rat kidney and liver allowed us to characterize filtration and proximal tubule uptake and liver uptake. Microscale thermophoresis enabled quantification of cubilin (CUB7,8 domain) and FcRn binding. Finally, multiple biophysical methods including dynamic light scattering, small-angle X-ray scattering, LC-MS/MS and in silico analyses were used to identify the critical structural alterations and amino acid modifications of rat albumin. Carbamylation of albumin reduced binding to CUB7,8 and FcRn in a dose-dependent fashion. Carbamylation markedly increased vascular clearance of carbamylated rat serum albumin (cRSA) and altered distribution of cRSA in both the kidney and liver at 16 h post intravenous injection. By evaluating the time course of carbamylation and associated charge, size, shape, and binding parameters in combination with in silico analysis and mass spectrometry, the critical binding interaction impacting carbamylated albumin's reduced FcRn binding was identified as K524. Carbamylation of RSA had no effect on glomerular filtration or proximal tubule uptake. These data indicate urea-mediated time-dependent carbamylation of albumin lysine K524 resulted in reduced binding to CUB7,8 and FcRn that contribute to altered albumin transport, leading to increased vascular clearance and increased liver and endothelial tissue accumulation.
Collapse
MESH Headings
- Animals
- Chromatography, Liquid
- Disease Models, Animal
- Glomerular Filtration Rate
- Histocompatibility Antigens Class I/metabolism
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/physiopathology
- Liver/metabolism
- Lysine
- Male
- Microscopy, Fluorescence, Multiphoton
- Protein Binding
- Protein Carbamylation
- Rats, Inbred Strains
- Rats, Sprague-Dawley
- Receptors, Cell Surface/metabolism
- Receptors, Fc/metabolism
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Scattering, Small Angle
- Serum Albumin/metabolism
- Tandem Mass Spectrometry
- Time Factors
- X-Ray Diffraction
- Rats
Collapse
Affiliation(s)
- Shiv Pratap S Yadav
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ruben M Sandoval
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Exing Wang
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas
| | - Sudhanshu Kumar
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Silvia B Campos-Bilderback
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George Rhodes
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Bruce A Molitoris
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark C Wagner
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
19
|
Abyadeh M, Meyfour A, Gupta V, Zabet Moghaddam M, Fitzhenry MJ, Shahbazian S, Hosseini Salekdeh G, Mirzaei M. Recent Advances of Functional Proteomics in Gastrointestinal Cancers- a Path towards the Identification of Candidate Diagnostic, Prognostic, and Therapeutic Molecular Biomarkers. Int J Mol Sci 2020; 21:ijms21228532. [PMID: 33198323 PMCID: PMC7697099 DOI: 10.3390/ijms21228532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer remains one of the common causes of morbidity and mortality. A high number of cases are diagnosed at an advanced stage, leading to a poor survival rate. This is primarily attributed to the lack of reliable diagnostic biomarkers and limited treatment options. Therefore, more sensitive, specific biomarkers and curative treatments are desirable. Functional proteomics as a research area in the proteomic field aims to elucidate the biological function of unknown proteins and unravel the cellular mechanisms at the molecular level. Phosphoproteomic and glycoproteomic studies have emerged as two efficient functional proteomics approaches used to identify diagnostic biomarkers, therapeutic targets, the molecular basis of disease and mechanisms underlying drug resistance in GI cancers. In this review, we present an overview on how functional proteomics may contribute to the understanding of GI cancers, namely colorectal, gastric, hepatocellular carcinoma and pancreatic cancers. Moreover, we have summarized recent methodological developments in phosphoproteomics and glycoproteomics for GI cancer studies.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (M.A.); (G.H.S.)
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
- Cell Science Research Center, Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
- Correspondence: (A.M.); (M.M.)
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | | | - Matthew J. Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Shila Shahbazian
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Ghasem Hosseini Salekdeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (M.A.); (G.H.S.)
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW 2113, Australia;
- Correspondence: (A.M.); (M.M.)
| |
Collapse
|
20
|
Gautam S, Peng W, Cho BG, Huang Y, Banazadeh A, Yu A, Dong X, Mechref Y. Glucose unit index (GUI) of permethylated glycans for effective identification of glycans and glycan isomers. Analyst 2020; 145:6656-6667. [PMID: 32804173 PMCID: PMC7554265 DOI: 10.1039/d0an00314j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Retention time is the most common and widely used criterion to report the separation of glycans using Liquid Chromatography (LC), but it varies widely across different columns, instruments and laboratories. This variation is problematic when inter-laboratory data is compared. Furthermore, it influences reproducibility and hampers efficient data interpretation. In our endeavor to overcome this variance, we propose the use of the Glucose Unit Index (GUI) on C18 and PGC column-based separation of reduced and permethylated glycans. GUI has previously been utilized for retention time normalization of native and labeled glycans. We evaluated this method with reduced and permethylated glycans derived from model glycoproteins fetuin and ribonuclease B (RNase B), and then implemented it to human blood serum to generate C18 and PGC column-based isomeric glycan libraries. GUI values for glycan compositions were calculated with respect to the glucose units derived from dextrin, which was employed as an elution standard. The GUI values were validated on three different LC systems (UltiMate 3000 Nano UHPLC systems) in two laboratories to ensure the reliability and reproducibility of the method. Applicability on real samples was demonstrated using human breast cancer cell lines. A total of 116 permethylated N-glycans separated on a C18 column and 134 glycans separated on a PGC column were compiled in a library. Overall, the established GUI method and the demonstration of reproducible inter- and intra-laboratory GUI values would aid the future development of automated glycan and isomeric glycan identification methods.
Collapse
Affiliation(s)
- Sakshi Gautam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Harvey DJ. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N-LINKED GLYCANS. MASS SPECTROMETRY REVIEWS 2020; 39:586-679. [PMID: 32329121 DOI: 10.1002/mas.21622] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 05/03/2023]
Abstract
N-glycans from glycoproteins are complex, branched structures whose structural determination presents many analytical problems. Mass spectrometry, usually conducted in positive ion mode, often requires extensive sample manipulation, usually by derivatization such as permethylation, to provide the necessary structure-revealing fragment ions. The newer but, so far, lesser used negative ion techniques, on the contrary, provide a wealth of structural information not present in positive ion spectra that greatly simplify the analysis of these compounds and can usually be conducted without the need for derivatization. This review describes the use of negative ion mass spectrometry for the structural analysis of N-linked glycans and emphasises the many advantages that can be gained by this mode of operation. Biosynthesis and structures of the compounds are described followed by methods for release of the glycans from the protein. Methods for ionization are discussed with emphasis on matrix-assisted laser desorption/ionization (MALDI) and methods for producing negative ions from neutral compounds. Acidic glycans naturally give deprotonated species under most ionization conditions. Fragmentation of negative ions is discussed next with particular reference to those ions that are diagnostic for specific features such as the branching topology of the glycans and substitution positions of moieties such as fucose and sulfate, features that are often difficult to identify easily by conventional techniques such as positive ion fragmentation and exoglycosidase digestions. The advantages of negative over positive ions for this structural work are emphasised with an example of a series of glycans where all other methods failed to produce a structure. Fragmentation of derivatized glycans is discussed next, both with respect to derivatives at the reducing terminus of the molecules, and to methods for neutralization of the acidic groups on sialic acids to both stabilize them for MALDI analysis and to produce the diagnostic fragments seen with the neutral glycans. The use of ion mobility, combined with conventional mass spectrometry is described with emphasis on its use to extract clean glycan spectra both before and after fragmentation, to separate isomers and its use to extract additional information from separated fragment ions. A section on applications follows with examples of the identification of novel structures from lower organisms and tables listing the use of negative ions for structural identification of specific glycoproteins, glycans from viruses and uses in the biopharmaceutical industry and in medicine. The review concludes with a summary of the advantages and disadvantages of the technique. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
22
|
Peng W, Mirzaei P, Zhu R, Zhou S, Mechref Y. Comparative Membrane N-Glycomics of Different Breast Cancer Cell Lines To Understand Breast Cancer Brain Metastasis. J Proteome Res 2020; 19:854-863. [PMID: 31876156 DOI: 10.1021/acs.jproteome.9b00664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanism of brain metastatic breast cancer has gained attention because of its increased incidence rate and its low survival rate. Aberrant protein glycosylation is thought to be a contributing factor in this metastatic mechanism, in which metastatic cancer cells can pass through the blood-brain barrier (BBB). The cell membrane is the outermost layer of a cell and in direct contact with the environment and with other cells, making membrane glycans especially important in many biological processes that include mediating cell-cell adhesion, cell signaling, and interactions. Thus, membrane glycomics has attracted more interest for a variety of disease studies in recent years. To reveal the role that membrane N-glycans play in breast cancer brain metastasis, in this study, membrane enrichment was achieved by ultracentrifugation. Liquid chromatography-tandem mass spectrometry was employed to analyze enriched membrane N-glycomes from five breast cancer cell lines and one brain cancer cell line. Relative quantitative glycomic data from each cell line were compared to MDA-MB-231BR, which is the brain-seeking cell line. The higher sialylation level observed in MDA-MB-231BR suggested the importance of sialylation as it might assist with cell invasion and the penetration of the BBB. Some highly sialylated N-glycans, such as HexNAc5Hex6DeoxyHex1NeuAc3 and HexNAc6Hex7DeoxyHex1NeuAc3, exhibited higher abundances in 231BR, indicating their possible contributions to breast cancer brain metastasis as well as their potential to be indicators for the breast cancer brain metastasis.
Collapse
Affiliation(s)
- Wenjing Peng
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock 79409-1061 , Texas , United States
| | - Parvin Mirzaei
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock 79409-1061 , Texas , United States
| | - Rui Zhu
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock 79409-1061 , Texas , United States
| | - Shiyue Zhou
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock 79409-1061 , Texas , United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock 79409-1061 , Texas , United States
| |
Collapse
|
23
|
Cao WQ, Liu MQ, Kong SY, Wu MX, Huang ZZ, Yang PY. Novel methods in glycomics: a 2019 update. Expert Rev Proteomics 2020; 17:11-25. [PMID: 31914820 DOI: 10.1080/14789450.2020.1708199] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Introduction: Glycomics, which aims to define the glycome of a biological system to better assess the biological attributes of the glycans, has attracted increasing interest. However, the complexity and diversity of glycans present challenging barriers to glycome definition. Technological advances are major drivers in glycomics.Areas covered: This review summarizes the main methods and emphasizes the most recent advances in mass spectrometry-based methods regarding glycomics following the general workflow in glycomic analysis.Expert opinion: Recent mass spectrometry-based technological advances have significantly lowered the barriers in glycomics. The field of glycomics is moving toward both generic and precise analysis.
Collapse
Affiliation(s)
- Wei-Qian Cao
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China
| | - Ming-Qi Liu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Si-Yuan Kong
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Meng-Xi Wu
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| | - Zheng-Ze Huang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Peng-Yuan Yang
- Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, China.,Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Mass spectrometry-based qualitative and quantitative N-glycomics: An update of 2017-2018. Anal Chim Acta 2019; 1091:1-22. [PMID: 31679562 DOI: 10.1016/j.aca.2019.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/14/2022]
Abstract
N-glycosylation is one of the most frequently occurring protein post-translational modifications (PTMs) with broad cellular, physiological and pathological relevance. Mass spectrometry-based N-glycomics has become the state-of-the-art instrumental analytical pipeline for sensitive, high-throughput and comprehensive characterization of N-glycans and N-glycomes. Improvement and new development of methods in N-glycan release, enrichment, derivatization, isotopic labeling, separation, ionization, MS, tandem MS and informatics accompany side-by-side wider and deeper application. This review provides a comprehensive update of mass spectrometry-based qualitative and quantitative N-glycomics in the years of 2017-2018.
Collapse
|
25
|
Chen YS, Xiao HM, Wang TQ, Yu L, Feng YQ. A boronic acid modified binary matrix consisting of boron nitride and α-cyano-4-hydroxycinnamic acid for determination of cis-diols by MALDI-TOF MS. Mikrochim Acta 2019; 186:591. [PMID: 31372763 DOI: 10.1007/s00604-019-3711-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
A MALDI-TOF mass spectrometric method is described for the determination of small molecule compounds with cis-diol. It is based on the use of a binary matrix consisting of boron nitride (BN) and α-cyano-4-hydroxycinnamic acid that was modified with the derivatization reagent of (3-(acridin-9-ylamino)phenyl)boronic acid which can recognize cis-diols. The binary matrix is used for desorption/ionization (DI) in the positive ion mode. The mechanism leading to DI enhancement was investigated. The results imply that BN is beneficial for the DI because it induces an enhancement in the positive ion mode. The boronic acid-functionalized binary matrix was successfully applied to capture the glucose, shikimic acid and quinic acid. The method was applied to the determination of 3-chloro-1,2-propanediol in plant oil. Graphical abstract Schematic representation of a method for detecting the cis-diol compounds on matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) using the binary matrix of boron nitride (BN)/α-cyano-4-hydroxycinnamic acid (CHCA) that was modified with (3-(acridin-9-ylamino)phenyl) boronic acid (AYPBA).
Collapse
Affiliation(s)
- Ya-Shun Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Hua-Ming Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Tian-Qi Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Lei Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
26
|
Banazadeh A, Nieman R, Goli M, Peng W, Hussein A, Bursal E, Lischka H, Mechref Y. Characterization of glycan isomers using magnetic carbon nanoparticles as a MALDI co-matrix. RSC Adv 2019; 9:20137-20148. [PMID: 31316759 PMCID: PMC6625494 DOI: 10.1039/c9ra02337b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix-assisted laser desorption ionization-in source decay (MALDI-ISD) analysis is a useful technique in the structural analysis of glycans. Our recent publication demonstrated that magnetic carbon nanoparticles (MCNPs), used as a MALDI co-matrix, significantly enhanced ISD efficiency for glycomic analysis by MALDI-TOF. In this study, MCNPs were used for the structural study of isomeric glycans. Results from the standard glycans confirmed easy distinction of positional and linkage isomers without the need for further derivatization of glycan molecules. Extensive glycosidic and cross-ring fragmented ions provided different fragment patterns for various glycan isomers. Core- and branch-fucosylated isomers were distinguished by several unique ions, and pseudo-MS3 data were used to recognize the fucosylated branch. Although no diagnostic fragment ion was observed for 2,3- and 2,6-linked sialic acid isomers, their MALDI-ISD patterns were found to be significantly different (P < 0.05). Furthermore, the method introduced in this study could not only be used for the identification of glycan isomers but has also proved effective for the isomeric structural confirmation of gangliosides. GD1a and GD1b gangliosides were easily distinguished by the diagnostic ion originated from GD1a, produced by Z4αZ2β cleavages. Moreover, liquid chromatography coupled with MALDI-TOF was applied to analyze N-glycan isomers derived from a pooled human blood serum sample, providing an alternative method of isomeric glycomic analysis of biological specimens. Magnetic carbon nanoparticles as a MALDI co-matrix enable isomeric characterization of glycans in biological samples.![]()
Collapse
Affiliation(s)
- Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059
| | - Ahmed Hussein
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059.,Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, 21526, Egypt
| | - Ercan Bursal
- Department of Nursing, School of Health, Mus Alparslan University, Mus, Turkey
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059.,School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA. ; ; Tel: +1-806-742-3059.,Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
27
|
Yu A, Zhao J, Peng W, Banazadeh A, Williamson SD, Goli M, Huang Y, Mechref Y. Advances in mass spectrometry-based glycoproteomics. Electrophoresis 2018; 39:3104-3122. [PMID: 30203847 PMCID: PMC6375712 DOI: 10.1002/elps.201800272] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 12/13/2022]
Abstract
Protein glycosylation, an important PTM, plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, and host-pathogen interaction. Aberrant glycosylation has been correlated with various diseases. However, studying protein glycosylation remains challenging because of low abundance, microheterogeneities of glycosylation sites, and poor ionization efficiency of glycopeptides. Therefore, the development of sensitive and accurate approaches to characterize protein glycosylation is crucial. The identification and characterization of protein glycosylation by MS is referred to as the field of glycoproteomics. Methods such as enrichment, metabolic labeling, and derivatization of glycopeptides in conjunction with different MS techniques and bioinformatics tools, have been developed to achieve an unequivocal quantitative and qualitative characterization of glycoproteins. This review summarizes the recent developments in the field of glycoproteomics over the past 6 years (2012 to 2018).
Collapse
Affiliation(s)
- Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Seth D. Williamson
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
28
|
Banazadeh A, Williamson S, Zabet M, Hussien A, Mechref Y. Magnetic carbon nanocomposites as a MALDI co-matrix enhancing MS-based glycomics. Anal Bioanal Chem 2018; 410:7395-7404. [PMID: 30196422 PMCID: PMC6375713 DOI: 10.1007/s00216-018-1345-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 01/26/2023]
Abstract
More than 50% of all known proteins are glycosylated, which is critical for many biological processes such as protein folding and signal transduction. Glycosylation has proven to be associated with different mammalian diseases such as breast and liver cancers. Therefore, characterization of glycans is highly important to facilitate a better understanding of the development and progression of many human diseases. Although matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) offers several advantages such as ease of operation and short analysis times, however, due to the complexity of glycan structures and their low ionization efficiency, there are still challenges that need to be addressed to achieve sensitive glycan analysis. Here, magnetic carbon nanocomposites (CNPs@Fe3O4 NCs) were used as a new MALDI matrix or co-matrix for the analysis of glycans derived from different model glycoproteins and human blood serum samples. The addition of CNPs@Fe3O4 NCs to the matrix significantly enhanced glycan signal intensity by several orders of magnitude, and effectively controlled/reduced/eliminated in-source decay (ISD) fragmentation. The latter was attained by modulating CNPs@Fe3O4 NCs concentrations and allowed the simultaneous study of intact and fragmented glycans, and pseudo-MS3 analysis. Moreover, CNPs@Fe3O4 NCs was also effectively employed to desalt samples directly on MALDI plate, thus enabling direct MALDI-MS analysis of unpurified permethylated glycans derived from both model glycoproteins and biological samples. On-plate desalting enhanced sensitivity by reducing sample loss. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Seth Williamson
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Masoud Zabet
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409, USA
| | - Ahmed Hussien
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.,Department of Biotechnology, Institute of Graduate Studies and Research, University of Alexandria, Alexandria, 21526, Egypt
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA. .,Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
29
|
Zhong J, Banazadeh A, Peng W, Mechref Y. A carbon nanoparticles-based solid-phase purification method facilitating sensitive MALDI-MS analysis of permethylated N-glycans. Electrophoresis 2018; 39:3087-3095. [PMID: 30086189 DOI: 10.1002/elps.201800254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022]
Abstract
In recent decades, MALDI-MS has been extensively used for the analysis of glycans. However, native glycans usually have low ionization efficiency in MS, which hinders the direct analysis. Permethylation of glycans is a solution for this issue, but a significant amount of salt is introduced during this process, which can further suppress the MS signals. Thus, it is necessary to purify the glycans prior to MALDI-MS analysis. In this study, we developed a carbon nanoparticles-based solid-phase purification method to enable direct MALDI-MS analysis of permethylated glycans. Two carbon nanomaterials, carbon nanoparticles (CNPs) and graphene nanosheets (GNs), and two conventional carbon materials, activated charcoal and porous graphitic carbon (PGC), were investigated as sorbents to purify permethylated N-glycans derived from ribonuclease B and fetuin. The results confirmed the superior performance of CNPs over the other carbon materials. Additionally, our method was also employed to purify glycans released from human sera in different esophageal disease stages. The obtained data confirmed 16 and 18 structures in adenocarcinoma and Barret's sera with significantly different relative intensities versus disease-free sera. Comparing the performance of CNPs-based solid-phase purification method employed in this study to online purification suggested more than 97% recovery rate. The results of this study demonstrate that CNPs have the potential to be a better alternative to existing solid-phase purification sorbents.
Collapse
Affiliation(s)
- Jieqiang Zhong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Alireza Banazadeh
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|