1
|
Li Y, Fan Z, Zhang S, Jiang J, Yang F, Ren M, Li Q, Li H, Yang Y, Hua L. Rapid measurement of ethyl carbamate in Chinese liquor by fast gas chromatography photoionization-induced chemical ionization mass spectrometry. Talanta 2024; 282:126965. [PMID: 39341055 DOI: 10.1016/j.talanta.2024.126965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
As a common by-product during the production of alcoholic beverages, such as Chinese liquor, ethyl carbamate (EC) poses potential genotoxicity and is associated with the risk of various cancers. Hence, rapidly and accurately measuring the content of EC in liquor is critical to assess the product quality and risks of mass samples during the production process. In this study, a feasible method based on fast gas chromatography photoionization-induced chemical ionization mass spectrometry (FastGC-PICI-TOFMS) was developed for the analysis of EC in Chinese liquor. The rapid separation of EC in Chinese liquor was conducted using FastGC based on a thermostatic column set at 150 °C to eliminate the interferences of matrix effects. The PICI-TOFMS could realize accurate quantification of EC without any sample pre-treatment due to the efficient ionization of EC by the PICI source. As a result, the total analysis time for EC in Chinese liquor was less than 4 min. The limit of detection (LOD) for EC was 4.4 μg L-1. And the intra-day and inter-day precision were 3.2%-3.7 % and 1.6 %, respectively. Finally, the ability of the proposed method was preliminarily proved by high-throughput and accurate measurement of EC in four different flavors of Chinese liquors.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Zhigang Fan
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Siyu Zhang
- Kweichow Moutai Co., Ltd., Renhuai, 564500, PR China; Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai, 564500, PR China
| | - Jichun Jiang
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Fan Yang
- Kweichow Moutai Co., Ltd., Renhuai, 564500, PR China; Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai, 564500, PR China
| | - Meihui Ren
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Qingyun Li
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Haiyang Li
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China
| | - Yubo Yang
- Kweichow Moutai Co., Ltd., Renhuai, 564500, PR China; Baijiu Manufacturing Innovation Institute of Guizhou Province, Renhuai, 564500, PR China.
| | - Lei Hua
- State Key Laboratory of Medical Proteomics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China; Liaoning Key Laboratory for Mass Spectrometry Technology and Instrumentation, Dalian, 116023, PR China.
| |
Collapse
|
2
|
Huo T, He Y. Novel Covalent Bonds and Hydrogen Bonds Linked Porous Organic Frameworks as Chemosensor for Detecting 2,4,6-Trinitrophenol in Water and Soil Samples. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38602020 DOI: 10.1021/acsami.4c03375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
A novel and unconventional structural porous organic framework combined through the synergistic effect of covalent bonds and hydrogen bonds was prepared with the combination of 4,4',4″,4‴-(pyrene-1,3,6,8-tetrayl)tetraaniline (Py) and 5-hydroxyisophthalaldehyde (HP). It was the second example of CHOF until now and had been designated as Py-HP CHOF. The suspension of Py-HP CHOF in various solvents, such as ethanol, CH3CN, and methanol, exhibited a remarkably selective and sensitive "on-off" fluorescence response toward 2,4,6-trinitrophenol (TNP) compared with other explosives, with exceptionally low detection limits. The X-ray diffraction (XRD) spectra confirmed that the framework of Py-HP CHOF collapsed after interaction with TNP and acid, further indicating the existence of hydrogen bonds in the framework of Py-HP CHOF. The fluorescence quenching can be ascribed to the photoinduced electron transfer and the absorption competition quenching, as supported by XRD, X-ray photoelectron spectroscopy results, UV-vis absorption spectra, and density functional theory calculations. Fluorescence channels can be utilized by Py-HP CHOF to function as chemosensor, enabling the identification and detection of TNP in water and soil, and Py-HP CHOF is also the second CHOF example of sensing TNP reported to date. The application of this technique exhibits considerable potential in the analysis and detection of environmental pollutants, thereby presenting substantial practical implications.
Collapse
Affiliation(s)
- Tingyan Huo
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yi He
- College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
3
|
Omezzine Gnioua M, Spesyvyi A, Španěl P. Gas phase H +, H 3O + and NH 4+ affinities of oxygen-bearing volatile organic compounds; DFT calculations for soft chemical ionisation mass spectrometry. Phys Chem Chem Phys 2023; 25:30343-30348. [PMID: 37909271 DOI: 10.1039/d3cp03604a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Quantum chemistry calculations were performed using the density functional theory, DFT, to understand the structures and energetics of organic ions relevant to gas phase ion chemistry in soft chemical ionisation mass spectrometry analytical methods. Geometries of a range of neutral volatile organic compound molecules and ions resulting from protonation, the addition of H3O+ and the addition of NH4+ were optimised using the B3LYP hybrid DFT method. Then, the total energies and the normal mode vibrational frequencies were determined, and the total enthalpies of the neutral molecules and ions were calculated for the standard temperature and pressure. The calculations were performed for several feasible structures of each of the ions. The proton affinities of several benchmark molecules agree with the accepted values within ±4 kJ mol-1, indicating that B3LYP/6-311++G(d,p) provides chemical accuracy for oxygen-containing volatile organic compounds. It was also found that the binding energies of H3O+ and NH4+ to molecules correlate with their proton affinities. The results contribute to the understanding of ligand switching ion-molecule reactions important for secondary electrospray ionisation, SESI, and selected ion flow tube, SIFT, mass spectrometries.
Collapse
Affiliation(s)
- Maroua Omezzine Gnioua
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 747/2, 18000 Prague 8, Czech Republic
| | - Anatolii Spesyvyi
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
| | - Patrik Španěl
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 2155/3, 18223 Prague 8, Czech Republic.
| |
Collapse
|
4
|
Tomović AŽ, Miljkovic H, Dražić MS, Jovanović VP, Zikic R. Tunnel junction sensing of TATP explosive at the single-molecule level. Phys Chem Chem Phys 2023; 25:26648-26658. [PMID: 37772423 DOI: 10.1039/d3cp02767h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Triacetone triperoxide (TATP) is a highly potent homemade explosive commonly used in terrorist attacks. Its detection poses a significant challenge due to its volatility, and the lack of portability of current sensing techniques. To address this issue, we propose a novel approach based on single-molecule TATP detection in the air using a device where tunneling current in N-terminated carbon-nanotubes nanogaps is measured. By employing the density functional theory combined with the non-equilibrium Green's function method, we show that current of tens of nanoamperes passes through TATP trapped in the nanogap, with a discrimination ratio of several orders of magnitude even against prevalent indoor volatile organic compounds (VOCs). This high tunneling current through TATP's highest occupied molecular orbital (HOMO) is facilitated by the strong electric field generated by N-C polar bonds at the electrode ends and by the hybridization between TATP and the electrodes, driven by oxygen atoms within the probed molecule. The application of the same principle is discussed for graphene nanogaps and break-junctions.
Collapse
Affiliation(s)
- Aleksandar Ž Tomović
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Helena Miljkovic
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Miloš S Dražić
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Vladimir P Jovanović
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Radomir Zikic
- University of Belgrade, Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| |
Collapse
|
5
|
Wang W, Li H, Huang W, Chen C, Xu C, Ruan H, Li B, Li H. Recent development and trends in the detection of peroxide-based explosives. Talanta 2023; 264:124763. [PMID: 37290336 DOI: 10.1016/j.talanta.2023.124763] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Peroxide-based explosives (PBEs) are increasingly common in criminal and terrorist activity due to their easy synthesis and high explosive power. The rise in terrorist attacks involving PBEs has heightened the importance of detecting trace amounts of explosive residue or vapors. This paper aims to provide a review on the developments of techniques and instruments for detecting PBEs over the past ten years, specifically discussing advancements in ion mobility spectrometry, ambient mass spectrometry, fluorescence techniques, colorimetric methods, and electrochemical methods. We provide examples to illustrate their evolution and focus on new strategies for improving detection performance, specifically in terms of sensitivity, selectivity, high-throughput, and wide explosives coverage. Finally, we discuss future prospects for PBE detection. It is hoped this treatment will serve as a guide to the novitiate and as aid memoire to the researchers.
Collapse
Affiliation(s)
- Weiguo Wang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China; Jinkai Instrument (Dalian) Company Limited, People's Republic of China
| | - Hang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Wei Huang
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Chuang Chen
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Chuting Xu
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Huiwen Ruan
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Bin Li
- Yunnan Police Officer Academy, People's Republic of China
| | - Haiyang Li
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
| |
Collapse
|
6
|
Klapec DJ, Czarnopys G, Pannuto J. Interpol review of the analysis and detection of explosives and explosives residues. Forensic Sci Int Synerg 2023; 6:100298. [PMID: 36685733 PMCID: PMC9845958 DOI: 10.1016/j.fsisyn.2022.100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Douglas J. Klapec
- Arson and Explosives Section I, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Greg Czarnopys
- Forensic Services, United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| | - Julie Pannuto
- United States Department of Justice, Bureau of Alcohol, Tobacco, Firearms and Explosives, Forensic Science Laboratory, 6000 Ammendale Road, Ammendale, MD, 20705, USA
| |
Collapse
|
7
|
The role of water and acid catalysis in the reaction of acetone with hydrogen peroxide: A DFT study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Xu W, Zou X, Ding Y, Zhang J, Zheng L, Zuo H, Yang M, Zhou Q, Liu Z, Ge D, Zhang Q, Song W, Huang C, Shen C, Chu Y. Rapid screen for ventilator associated pneumonia using exhaled volatile organic compounds. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Bao X, Zhang Q, Liang Q, Sun Q, Xu W, Lu Y, Xia L, Liu Y, Zou X, Huang C, Shen C, Chu Y. Increased Sensitivity in Proton Transfer Reaction Mass Spectrometry by Using a Novel Focusing Quadrupole Ion Funnel. Anal Chem 2022; 94:13368-13376. [PMID: 36150177 DOI: 10.1021/acs.analchem.2c01893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sensitivity enhancement in proton transfer reaction mass spectrometry (PTR-MS) is an important development direction. We developed a novel drift tube called a focusing quadrupole ion funnel (FQ-IF) for use in PTR-MS to improve the sensitivity. The FQ-IF consists of 20 layers of stainless steel electrodes, and each layer has 4 quarter rings. The first 6 layers have a constant inner hole diameter of 22 mm; the latter 14 layers taper the inner diameter down to 8 mm. The FQ-IF drift tube can also operate in the direct current (DC) mode (similar to a conventional drift tube) and ion funnel (IF) mode (similar to a conventional ion funnel drift tube) by changing the voltage loading method. The simulation results show that the transmission efficiency of the FQ-IF is significantly improved compared to that of the other two modes. Further experiments show that the product ions of limonene tend to convert into smaller m/z fragment ions at higher voltages for the DC and IF modes. However, unlike the DC and IF modes, the distribution of product ions is stable at higher voltages for the FQ-IF. In other words, a higher RF voltage for the FQ-IF will not increase the collision energy of ions. In addition, the improvements in sensitivity for the FQ-IF range from 13.8 to 87.9 times compared to the DC mode and from 1.7 to 4.8 times compared to the IF mode for the 12 test compounds. The improvements in the limit of detection (LOD) for the FQ-IF range from 2.7 to 35.7 times compared to the DC mode. The FQ-IF provides a valuable reference for improving the sensitivity of PTR-MS and other mass spectrometers.
Collapse
Affiliation(s)
- Xun Bao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.,University of Science and Technology of China, Hefei 230026, China
| | - Qiangling Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Qu Liang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.,University of Science and Technology of China, Hefei 230026, China
| | - Qin Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.,University of Science and Technology of China, Hefei 230026, China
| | - Wei Xu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.,University of Science and Technology of China, Hefei 230026, China
| | - Yan Lu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Lei Xia
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Yawei Liu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Xue Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Chaoqun Huang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Chengyin Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Yannan Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
10
|
Li Y, Liu X, Zhang G, Wang R, Yue R, Liao G, Sun Z, Liu Y. Rapid and selective on-site detection of triacetone triperoxide based on visual colorimetric method. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198221117409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this work, a visual colorimetric method for the rapid and selective detection of triacetone triperoxide is reported. This visual colorimetric method is based on the reaction between potassium titanyl oxalate and hydrogen peroxide (H2O2) released from triacetone triperoxide degradation. Potassium titanyl oxalate can selectively react with H2O2 to form peroxo-titanic acid (an orange complex), enabling the colorimetric detection of triacetone triperoxide. Based on the theory that triacetone triperoxide produces hydrogen peroxide under acidic conditions, acid types, acid concentration, response time, visual limit of detection, and reactants ratio are systematically studied simultaneously for this colorimetric method. Under sulfuric acid concentration is 60%, the proposed method can almost detect triacetone triperoxide instantly, and the color of the solution reaches the maximum within 1 min and remains stable with a visual limit of detection as low as 3.0 × 10−5 mol/L. Interference experiments were carried out on other kinds of explosives (hexamethylene triperoxide diamine, trinitrotoluene, etc.). The use of colorimetric card brings great convenience to the rapid, qualitative, and semi-quantitative on-site detection of triacetone triperoxide. Because of its rapidity, high sensitivity, simplicity, and selectivity, the proposed visual colorimetric method can serve as a valuable and promising reference for triacetone triperoxide’s rapid, qualitative on-site detection.
Collapse
Affiliation(s)
- Yonggang Li
- School of Investigation, People’s Public Security University of China, Beijing, China
| | - Xingsheng Liu
- School of Investigation, People’s Public Security University of China, Beijing, China
| | - Guannan Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Ruihua Wang
- Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Ruimin Yue
- Shenxian First High School, Liaocheng, China
| | - Guangfu Liao
- Engineering Research Center of NanoGeomaterials of Ministry of Education, China University of Geosciences, Wuhan, China
| | - Zhenwen Sun
- Institute of Forensic Science, Ministry of Public Security, Beijing, China
| | - Yao Liu
- Institute of Forensic Science, Ministry of Public Security, Beijing, China
| |
Collapse
|
11
|
Qualitative and quantitative determination of butanol in latex paint by fast gas chromatography proton transfer reaction mass spectrometry. J Chromatogr A 2022; 1676:463210. [PMID: 35700573 DOI: 10.1016/j.chroma.2022.463210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/13/2023]
Abstract
Butanol is a common organic solvent used in latex paint, and one of its isomers, tert-butanol, is toxic and can cause potential harm to the human body. Therefore, it is of great significance to develop a qualitative and quantitative detection method for butanol isomers. In this study, we combined the advantages of rapid detection of proton transfer reaction mass spectrometry (PTR-MS) with the separation and qualitative capabilities of gas chromatography-mass spectrometry (GC-MS) to achieve the detection of isomers, building a fast gas chromatography proton transfer reaction mass spectrometry (FastGC-PTR-MS) equipment. Firstly, the developed technology was optimized using standard samples of several common volatile organic compounds. The retention times of acetonitrile, acetone, and alcohols were less than 50 s, and the retention times of the benzene series were less than 110 s, on the premise that these isomers could be basically separated (resolution R > 1.0). Compared with a commercial GC-MS equipment, the detection times were shortened by 5-6 times and 2-4 times, respectively. Then the FastGC-PTR-MS was applied to detect the isomers of butanol in latex paint. The results showed that the headspace of brand D latex paint mainly contained five substances: tert-butanol, n-butanol, acetaldehyde, methanol, and acetone. Tert-butanol and n-butanol could be completely separated (R > 1.5). The concentration of tert-butanol was 4.41 ppmv, far below the 100 ppmv maximum allowable workplace concentration. The developed FastGC-PTR-MS can be used for rapid qualitative and quantitative detection of butanol isomers in latex paint. The new equipment has the potential to play an important role in indoor environmental safety applications.
Collapse
|
12
|
Zhang Q, Bao X, Liang Q, Sun Q, Xu W, Zou X, Huang C, Shen C, Chu Y. Evaluation of a New DC-Ion Funnel Drift Tube for Use in Proton Transfer Reaction Mass Spectrometry. Anal Chem 2022; 94:7174-7180. [PMID: 35536750 DOI: 10.1021/acs.analchem.1c05086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have developed and characterized a novel drift tube called the direct current-ion funnel (DC-ion funnel) drift tube, consisting of 20 traditional ring electrodes and 5 new DC-focusing electrodes (DC-FEs) for use in proton transfer reaction mass spectrometry (PTR-MS). Ion trajectory simulations demonstrate the ion focusing effect of the DC-FE and DC-ion funnel drift tube. Further comparative experiments show that the PTR-MS with the novel DC-ion funnel drift tube has a higher sensitivity (3.8-7.3 times for the volatile organic compounds considered in this work) than the PTR-MS with a traditional drift tube. Different from conventional radiofrequency (rf) focusing methods, the DC-ion funnel drift tube can realize ion focusing with only a DC electric field and no additional rf power supply, which makes it especially suitable for instruments requiring miniaturization and low power consumption to improve detection sensitivity. In addition, the DC-ion funnel drift tube can easily be coupled to other types of mass spectrometers to increase their detection sensitivity.
Collapse
Affiliation(s)
- Qiangling Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Xun Bao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.,University of Science and Technology of China, Hefei 230026, China
| | - Qu Liang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.,University of Science and Technology of China, Hefei 230026, China
| | - Qin Sun
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.,University of Science and Technology of China, Hefei 230026, China
| | - Wei Xu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.,University of Science and Technology of China, Hefei 230026, China
| | - Xue Zou
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Chaoqun Huang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Chengyin Shen
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.,Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Yannan Chu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
13
|
Xie G, Lv X, Zhang P, Liu B, Gao L, Duan J, Ma B, Wu Z. Uncontactless detection of improvised explosives TATP realized by Au NCs tailored PPV flexible photoelectric Schottky sensor. NANO SELECT 2020. [DOI: 10.1002/nano.202000044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Guanshun Xie
- Qinghai Provincial Key Laboratory of New Light Alloys Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming Qinghai University Xining 810016 P. R. China
- Hunan University Changsha 410082 P. R. China
| | - Xiaorong Lv
- Qinghai Provincial Key Laboratory of New Light Alloys Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming Qinghai University Xining 810016 P. R. China
| | - Peng Zhang
- Qinghai Provincial Key Laboratory of New Light Alloys Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming Qinghai University Xining 810016 P. R. China
| | - Bingxin Liu
- Qinghai Provincial Key Laboratory of New Light Alloys Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming Qinghai University Xining 810016 P. R. China
| | - Li Gao
- Qinghai Provincial Key Laboratory of New Light Alloys Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming Qinghai University Xining 810016 P. R. China
| | - Junyuan Duan
- Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Bin Ma
- Qinghai Provincial Key Laboratory of New Light Alloys Qinghai Provincial Engineering Research Center of High Performance Light Metal Alloys and Forming Qinghai University Xining 810016 P. R. China
| | - Zhaofeng Wu
- Xinjiang University Urumqi 830046 P. R. China
| |
Collapse
|
14
|
Valadbeigi Y, Ilbeigi V, Michalczuk B, Sabo M, Matejcik S. Effect of Basicity and Structure on the Hydration of Protonated Molecules, Proton-Bound Dimer and Cluster Formation: An Ion Mobility-Time of Flight Mass Spectrometry and Theoretical Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1242-1253. [PMID: 31049871 DOI: 10.1007/s13361-019-02180-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
Protonation, hydration, and cluster formation of ammonia, formaldehyde, formic acid, acetone, butanone, 2-ocatanone, 2-nonanone, acetophenone, ethanol, pyridine, and its derivatives were studied by IMS-TOFMS technique equipped with a corona discharge ion source. It was found that tendency of the protonated molecules, MH+, to participate in hydration or cluster formation depends on the basicity of M. The molecules with higher basicity were hydrated less than those with lower basicity. The mass spectra of the low basic molecules such as formaldehyde exhibited larger clusters of MnH+(H2O)n, while for compounds with high basicity such as pyridine, only MH+ and MH+M peaks were observed. The results of DFT calculations show that enthalpies of hydrations and cluster formation decrease as basicities of the molecules increases. Using comparison of mass spectra of formic acid, formaldehyde, and ethanol, effect of structure on the cluster formation was also investigated. Formation of symmetric (MH+M) and asymmetric proton-bound dimers (MH+N) was studied by ion mobility and mass spectrometry techniques. Both theoretical and experimental results show that asymmetric dimers are formed more easily between molecules (M and N) with comparable basicity. As the basicity difference between M and N increases, the enthalpy of MH+N formation decreases.
Collapse
Affiliation(s)
- Younes Valadbeigi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.
| | - Vahideh Ilbeigi
- TOF Tech. Pars Company, Isfahan Science & Technology Town, Isfahan, Iran
| | - Bartosz Michalczuk
- Department of Experimental Physics, Comenius University, Mlynska dolina F2, 84248, Bratislava, Slovak Republic
| | - Martin Sabo
- Department of Experimental Physics, Comenius University, Mlynska dolina F2, 84248, Bratislava, Slovak Republic
| | - Stefan Matejcik
- Department of Experimental Physics, Comenius University, Mlynska dolina F2, 84248, Bratislava, Slovak Republic.
| |
Collapse
|
15
|
Gökdere B, Üzer A, Durmazel S, Erçağ E, Apak R. Titanium dioxide nanoparticles-based colorimetric sensors for determination of hydrogen peroxide and triacetone triperoxide (TATP). Talanta 2019; 202:402-410. [PMID: 31171201 DOI: 10.1016/j.talanta.2019.04.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 11/28/2022]
Abstract
Due to its relatively simple preparation and readily available precursors, determination of triacetone triperoxide (TATP) by portable devices has become important. In this work, two different titanium dioxide nanoparticles (TiO2NPs)-based colorimetric sensors based on complex formation on the solid surface were developed for determination of H2O2 and TATP. The first sensor, (3-aminopropyl)triethoxysilane (APTES) modified-TiO2NPs-based paper sensor (APTES@TiO2NPs), exploits peroxo-titanate binary complex formation between APTES@TiO2NPs and H2O2 on chromatographic paper. The second sensor, 4-(2-pyridylazo)-resorcinol-modified-TiO2NPs-based solid sensor (PAR@TiO2NPs), relies on the formation of a ternary complex between Ti(IV), PAR and H2O2. The developed sensors were also applied to TATP determination after acidic hydrolysis of samples to H2O2. The limits of detection (LODs) of APTES@TiO2NPs-based paper sensor were 3.14 × 10-4 and 5.13 × 10-4 mol L-1 for H2O2 and TATP, respectively, whereas the LODs of PAR@TiO2NPs solid sensor were 6.06 × 10-7 and 3.54 × 10-7 mol L-1 for H2O2 and TATP, respectively. Possible interferences of common soil ions, passenger belongings used as camouflage materials during public transport (e.g., detergent, sweetener, acetylsalicylic acid and paracetamol-caffeine based analgesic drugs) and of other explosives were examined. The developed methods were statistically validated using t- and F- tests against the titanyl sulfate (TiOSO4) colorimetric literature method.
Collapse
Affiliation(s)
- Bahar Gökdere
- Analytical Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey
| | - Ayşem Üzer
- Analytical Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey
| | - Selen Durmazel
- Analytical Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey; Department of Chemistry, Institute of Graduate Studies, Istanbul University-Cerrahpasa, 34320, Avcilar, Istanbul, Turkey
| | - Erol Erçağ
- Aytar Caddesi, Fecri Ebcioğlu Sokak, No. 6/8, Levent, Istanbul, 34340, Turkey
| | - Reşat Apak
- Analytical Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, 34320 Avcilar, Istanbul, Turkey; Turkish Academy of Sciences (TUBA), Piyade St. No. 27, Çankaya, Ankara, 06690, Turkey.
| |
Collapse
|