1
|
Ahuja V, Singh A, Paul D, Dasgupta D, Urajová P, Ghosh S, Singh R, Sahoo G, Ewe D, Saurav K. Recent Advances in the Detection of Food Toxins Using Mass Spectrometry. Chem Res Toxicol 2023; 36:1834-1863. [PMID: 38059476 PMCID: PMC10731662 DOI: 10.1021/acs.chemrestox.3c00241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Edibles are the only source of nutrients and energy for humans. However, ingredients of edibles have undergone many physicochemical changes during preparation and storage. Aging, hydrolysis, oxidation, and rancidity are some of the major changes that not only change the native flavor, texture, and taste of food but also destroy the nutritive value and jeopardize public health. The major reasons for the production of harmful metabolites, chemicals, and toxins are poor processing, inappropriate storage, and microbial spoilage, which are lethal to consumers. In addition, the emergence of new pollutants has intensified the need for advanced and rapid food analysis techniques to detect such toxins. The issue with the detection of toxins in food samples is the nonvolatile nature and absence of detectable chromophores; hence, normal conventional techniques need additional derivatization. Mass spectrometry (MS) offers high sensitivity, selectivity, and capability to handle complex mixtures, making it an ideal analytical technique for the identification and quantification of food toxins. Recent technological advancements, such as high-resolution MS and tandem mass spectrometry (MS/MS), have significantly improved sensitivity, enabling the detection of food toxins at ultralow levels. Moreover, the emergence of ambient ionization techniques has facilitated rapid in situ analysis of samples with lower time and resources. Despite numerous advantages, the widespread adoption of MS in routine food safety monitoring faces certain challenges such as instrument cost, complexity, data analysis, and standardization of methods. Nevertheless, the continuous advancements in MS-technology and its integration with complementary techniques hold promising prospects for revolutionizing food safety monitoring. This review discusses the application of MS in detecting various food toxins including mycotoxins, marine biotoxins, and plant-derived toxins. It also explores the implementation of untargeted approaches, such as metabolomics and proteomics, for the discovery of novel and emerging food toxins, enhancing our understanding of potential hazards in the food supply chain.
Collapse
Affiliation(s)
- Vishal Ahuja
- University
Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- University
Centre for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| | - Amanpreet Singh
- Department
of Chemistry, University Institute of Science, Chandigarh University, Mohali, Punjab 140413, India
| | - Debarati Paul
- Amity
Institute of Biotechnology, AUUP, Noida, Uttar Pradesh 201313, India
| | - Diptarka Dasgupta
- Material
Resource Efficiency Division, CSIR-Indian
Institute of Petroleum, Dehradun 248005, India
| | - Petra Urajová
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Sounak Ghosh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Roshani Singh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Gobardhan Sahoo
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Daniela Ewe
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Kumar Saurav
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| |
Collapse
|
2
|
Zacometti C, Tata A, Stella R, Leone S, Pallante I, Merenda M, Catania S, Pozzato N, Piro R. DART-HRMS allows the detection of toxic alkaloids in animal autopsy specimens and guides the selection of confirmatory methods in accidental plant poisoning. Anal Chim Acta 2023; 1264:341309. [PMID: 37230724 DOI: 10.1016/j.aca.2023.341309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND In cases of suspected animal poisonings or intoxications, there is the need for high-throughput, rapid and accurate analytical tools capable of giving rapid answers and, thus, speeding up the early stages of investigations. Conventional analyses are very precise, but do not meet the need for rapid answers capable of orienting the decisions and the choice of appropriate countermeasures. In this context, the use of ambient mass spectrometry (AMS) screening methods in toxicology laboratories could satisfy the requests of forensic toxicology veterinarians in a timely manner. RESULTS As a proof of principle, direct analysis in real time high resolution mass spectrometry (DART-HRMS) was applied to a veterinary forensic case in which 12 of a group of 27 sheep and goats died with an acute neurological onset. Because of evidence in the rumen contents, the veterinarians hypothesized an accidental intoxication after ingestion of vegetable materials. The DART-HRMS results showed abundant signals of the alkaloids calycanthine, folicanthidine and calycanthidine, both in the rumen content and at the liver level. The DART-HRMS phytochemical fingerprinting of detached Chimonanthus praecox seeds was also compared with those acquired from the autopsy specimens. Liver, rumen content and seed extracts were then subjected to LC-HRMS/MS analysis to gather additional insights and confirm the putative assignment of calycanthine anticipated by DART-HRMS. HPLC-HRMS/MS confirmed the presence of calycanthine in both rumen contents and liver specimens and allowed its quantification, ranging from 21.3 to 46.9 mg kg-1 in the latter. This is the first report detailing the quantification of calycanthine in liver after a deadly intoxication event. SIGNIFICANCE AND NOVELTY Our study illustrates the potential of DART-HRMS to offer a rapid and complementary alternative to guide the selection of confirmatory chromatography-MSn strategies in the analysis of autopsy specimens from animals with suspected alkaloid intoxication. This method offers the consequent saving of time and resources over those needed for other methods.
Collapse
Affiliation(s)
- Carmela Zacometti
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume, 78, 36100, Vicenza, VI, Italy
| | - Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume, 78, 36100, Vicenza, VI, Italy.
| | - Roberto Stella
- Laboratorio Farmaci Veterinari e Ricerca, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università, 10, 35020, Legnaro, PD, Italy
| | - Stefania Leone
- Laboratorio di Diagnostica Clinica e Sierologia di Piano, Istituto Zooprofilattico Sperimentale delle Venezie, via Bovolino, 1/C, 37060, Buttapietra, VR, Italy; Laboratorio di Medicina Forense Veterinaria, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume, 78, 36100, Vicenza, VI, Italy
| | - Ivana Pallante
- Laboratorio di Medicina Forense Veterinaria, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume, 78, 36100, Vicenza, VI, Italy
| | - Marianna Merenda
- Laboratorio di Diagnostica Clinica e Sierologia di Piano, Istituto Zooprofilattico Sperimentale delle Venezie, via Bovolino, 1/C, 37060, Buttapietra, VR, Italy
| | - Salvatore Catania
- Laboratorio di Diagnostica Clinica e Sierologia di Piano, Istituto Zooprofilattico Sperimentale delle Venezie, via Bovolino, 1/C, 37060, Buttapietra, VR, Italy
| | - Nicola Pozzato
- Laboratorio di Medicina Forense Veterinaria, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume, 78, 36100, Vicenza, VI, Italy
| | - Roberto Piro
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Viale Fiume, 78, 36100, Vicenza, VI, Italy
| |
Collapse
|
3
|
Pereira I, Monaghan J, Abruzzi LR, Gill CG. PAMAM-Functionalized Paper as a New Substrate for the Paper Spray Mass Spectrometry Measurement of Proteins. Anal Chem 2023; 95:7134-7141. [PMID: 37115227 DOI: 10.1021/acs.analchem.2c05316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Paper surface functionalization with polyamidoamine (PAMAM) dendrimers has been developed for increased sensitivity analysis of proteins by paper spray mass spectrometry (PS-MS). PAMAM is a branched polymeric compound with an ethylenediamine core linked to repeating PAMAM units that generates an outer surface rich in primary amines. These positively charged amine groups can interact electrostatically with negatively charged residues (e.g., aspartate, glutamate) on the protein surface. PAMAM inner amide moieties can also promote hydrogen bonding with protein surface oxygens, making PAMAM a useful material for protein extraction. PAMAM-functionalized PS-MS paper strips were used to extract proteins from biofluids, dipped in acetonitrile to remove unbound constituents, dried, and then measured with PS-MS. The use of this strategy was optimized and compared with unmodified paper strips. PAMAM-functionalized paper substrates provided sixfold greater sensitivity for albumin, 11-fold for hemoglobin, sevenfold for insulin, and twofold for lysozyme. The analytical performance of the functionalized paper substrate was evaluated through the analysis of albumin in urine, achieving linearity with R2 > 0.99, LOD of 1.1 μg mL-1, LOQ of 3.8 μg mL-1, precision better than 10%, and relative recovery 70-83%. The method was applied to quantify urinary albumin from nine anonymous patient samples (concentrations ranged from 6.5 to 77.4 μg mL-1), illustrating its potential for the diagnosis of microalbuminuria. These data demonstrate the utility of paper modification with the PAMAM dendrimer for sensitive PS-MS analysis of proteins, opening a path for further applications in clinical diagnosis through the analysis of disease-related proteins.
Collapse
Affiliation(s)
- Igor Pereira
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
| | - Joseph Monaghan
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
- Chemistry Department, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Lucas R Abruzzi
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
- Chemistry Department, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Chris G Gill
- Applied Environmental Research Laboratories (AERL), Chemistry Department, Vancouver Island University, Nanaimo, British Columbia V9R 5S5, Canada
- Chemistry Department, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
- Chemistry Department, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- Department of Occupational and Environmental Health Sciences, University of Washington, Seattle, Washington 98195-1618, United States
| |
Collapse
|
4
|
Bressan C, Seró R, Alechaga É, Monfort N, Moyano E, Ventura R. Potential of desorption electrospray ionization and paper spray ionization with high-resolution mass spectrometry for the screening of sports doping agents in urine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:462-471. [PMID: 36602104 DOI: 10.1039/d2ay01687g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, desorption electrospray ionization and paper spray ionization both with high-resolution mass spectrometry (DESI-HRMS and PSI-HRMS) were explored for the fast and direct analysis of stimulants and diuretics in urine samples. The analysis was performed at a resolution of 70 000 FWHM (m/z 200) using a quadrupole-Orbitrap mass spectrometer in full scan acquisition mode, detecting stimulants and diuretics in positive and negative ion modes, respectively. The most critical parameters affecting the desorption and ionization efficiencies of compounds were optimized, paying particular attention to the optimization of the spray solvent for PSI-HRMS analysis and to the selection of the DESI sample substrate. For stimulants, the PSI-HRMS method performed better than DESI-HRMS, allowing the direct analysis of raw urine samples with better signal-to-noise ratios than DESI. However, results obtained for diuretics were not as satisfactory as we expected. The PSI-HRMS method was applied to the screening of 52 stimulants for doping control purposes, providing satisfactory detectability for most of them at the Minimum Reporting Level (MRL) in less than 2 minutes for each single analysis. Despite the advantages offered by the PSI-HRMS method, in this study is also included a discussion on the limitations observed because of the presence of interference for some compounds.
Collapse
Affiliation(s)
- Claudia Bressan
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Raquel Seró
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Élida Alechaga
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, 08003 Barcelona, Spain
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Nuria Monfort
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Encarnación Moyano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | - Rosa Ventura
- Catalonian Antidoping Laboratory, Doping Control Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, 08003 Barcelona, Spain
| |
Collapse
|
5
|
Dowling SN, Skaggs CL, Owings CG, Moctar K, Picard CJ, Manicke NE. Insects as Chemical Sensors: Detection of Chemical Warfare Agent Simulants and Hydrolysis Products in the Blow Fly Using LC-MS/MS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3535-3543. [PMID: 35188758 DOI: 10.1021/acs.est.1c07381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, blow flies were investigated as environmental chemical sample collectors following a chemical warfare attack (CWA). Blow flies sample the environment as they search for water and food sources and can be trapped from kilometers away using baited traps. Three species of blow flies were exposed to CWA simulants to determine the persistence and detectability of these compounds under varying environmental conditions. A liquid chromatography mass spectrometry (LC-MS/MS) method was developed to detect CWA simulants and hydrolysis products from fly guts. Flies were exposed to the CWA simulants dimethyl methylphosphonate and diethyl phosphoramidate as well as the pesticide dichlorvos, followed by treatment-dependent temperature and humidity conditions. Flies were sacrificed at intervals within a 14 day postexposure period. Fly guts were extracted and analyzed with the LC-MS/MS method. The amount of CWA simulant in fly guts decreased with time following exposure but were detectable 14 days following exposure, giving a long window of detectability. In addition to the analysis of CWA simulants, isopropyl methylphosphonic acid, the hydrolysis product of sarin, was also detected in blow flies 14 days post exposure. This work demonstrates the potential to obtain valuable samples from remote or access-restricted areas without risking lives.
Collapse
Affiliation(s)
- Sarah N Dowling
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Christine L Skaggs
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Charity G Owings
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
- Department of Anthropology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Khadija Moctar
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Christine J Picard
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Nicholas E Manicke
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
6
|
Nguyen CB, Wichert WRA, Carmany DO, McBride EM, Mach PM, Dhummakupt ES, Glaros T, Manicke NE. Pressure-Sensitive Adhesive Combined with Paper Spray Mass Spectrometry for Low-Cost Collection and Analysis of Drug Residues. Anal Chem 2021; 93:13467-13474. [PMID: 34582178 DOI: 10.1021/acs.analchem.1c02050] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Illicit drug use causes over half a million deaths worldwide every year. Drugs of abuse are commonly smuggled through customs and border checkpoints and, increasingly, through parcel delivery services. Improved methods for detection of trace drug residues from surfaces are needed. Such methods should be robust, fieldable, sensitive, and capable of detecting a wide range of drugs. In this work, commercially produced paper with a pressure-sensitive adhesive coating was utilized for the collection and analysis of trace drug residues by paper spray mass spectrometry (MS). This modified substrate was used to combine sample collection of drug residues from surfaces with rapid detection using a single paper spray ticket. The all-in-one ticket was used to probe different surfaces commonly encountered in forensic work including clothing, cardboard, glass, concrete, asphalt, and aluminum. A total of 10 drugs (acetyl fentanyl, fentanyl, clonazolam, cocaine, heroin, ketamine, methamphetamine, methylone, U-47700, and XLR-11) were evaluated and found to be detectable in the picogram range using a benchtop mass spectrometer and in the low nanogram range using a portable ion trap MS. The novel approach demonstrates a simple yet effective sampling strategy, allowing for rapid identification from difficult surfaces via paper spray mass spectrometry.
Collapse
Affiliation(s)
- Chau Bao Nguyen
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - William R A Wichert
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Daniel O Carmany
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, Maryland 21010, United States
| | | | - Phillip M Mach
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, Maryland 21010, United States
| | - Elizabeth S Dhummakupt
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, Maryland 21010, United States
| | - Trevor Glaros
- DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, Maryland 21010, United States
| | - Nicholas E Manicke
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
7
|
Evans-Nguyen K, Stelmack AR, Clowser PC, Holtz JM, Mulligan CC. FIELDABLE MASS SPECTROMETRY FOR FORENSIC SCIENCE, HOMELAND SECURITY, AND DEFENSE APPLICATIONS. MASS SPECTROMETRY REVIEWS 2021; 40:628-646. [PMID: 32722885 DOI: 10.1002/mas.21646] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 02/24/2020] [Indexed: 05/26/2023]
Abstract
Mass spectrometry is commonly used in forensic chemistry laboratories for sensitive, definitive analysis. There have been significant efforts to bring mass spectrometry analysis on-site through the development of ruggedized, fieldable instruments. Testing samples in the field is of particular interest in forensic science, homeland security, and defense applications. In forensic chemistry, testing seized drugs in the field can significantly improve efficiencies in processing of related criminal cases. The screening of passengers and luggage at transportation hubs is a critical need for homeland security for which mass spectrometry is well suited to provide definitive answers with low false positive rates. Mass spectrometry can yield reliable data for military personnel testing sites for potential chemical weapons release. To meet the needs of the forensic and security communities fieldable mass spectrometers based on membrane inlet systems and hybrid gas chromatography systems have been developed and commercialized. More recently developed ambient ionization mass spectrometry methods can eliminate the time, equipment, and expertise associated with sample preparation, and so are especially appealing for on-site analysis. We describe the development of fieldable mass spectrometry systems, with emphasis on commercially available systems that have been deployed for on-site analysis of seized drugs, chemical warfare agents, explosives, and other analytes of interest to the forensic and security communities. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Kenyon Evans-Nguyen
- Department of Chemistry, Biochemistry and Physics, University of Tampa, Tampa, FL
| | | | | | - Jessica M Holtz
- Department of Chemistry, Illinois State University, Normal, IL
| | | |
Collapse
|
8
|
Chamberlain CA, Hatch M, Garrett TJ. Extracellular Vesicle Analysis by Paper Spray Ionization Mass Spectrometry. Metabolites 2021; 11:metabo11050308. [PMID: 34065030 PMCID: PMC8151837 DOI: 10.3390/metabo11050308] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 12/29/2022] Open
Abstract
Paper spray ionization mass spectrometry (PSI-MS) is a direct MS analysis technique with several reported bacterial metabolomics applications. As with most MS-based bacterial studies, all currently reported PSI-MS bacterial analyses have focused on the chemical signatures of the cellular unit. One dimension of the bacterial metabolome that is often lost in such analyses is the exometabolome (extracellular metabolome), including secreted metabolites, lipids, and peptides. A key component of the bacterial exometabolome that is gaining increased attention in the microbiology and biomedical communities is extracellular vesicles (EVs). These excreted structures, produced by cells in all domains of life, contain a variety of biomolecules responsible for a wide array of cellular functions, thus representing a core component of the bacterial secreted metabolome. Although previously examined using other MS approaches, no reports currently exist for a PSI-MS analysis of bacterial EVs, nor EVs from any other organism (exosomes, ectosomes, etc.). PSI-MS holds unique analytical strengths over other commonly used MS platforms and could thus provide an advantageous approach to EV metabolomics. To address this, we report a novel application representing, to our knowledge, the first PSI-MS analysis of EVs from any organism (using the human gut resident Oxalobacter formigenes as the experimental model, a bacterium whose EVs were never previously investigated). In this report, we show how we isolated and purified EVs from bacterial culture supernatant by EV-specific affinity chromatography, confirmed and characterized these vesicles by nanoparticle tracking analysis, analyzed the EV isolate by PSI-MS, and identified a panel of EV-derived metabolites, lipids, and peptides. This work serves as a pioneering study in the field of MS-based EV analysis and provides a new, rapid, sensitive, and economical approach to EV metabolomics.
Collapse
|
9
|
Rodrigues MF, Pereira I, Morais RL, Lobón GS, Gil EDS, Vaz BG. A New Strategy for the Analysis of Steroid Hormones in Industrial Wastewaters by Paper Spray Ionization Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2250-2257. [PMID: 32930580 DOI: 10.1021/jasms.0c00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new approach using paper spray ionization mass spectrometry (PSI-MS) for the analysis of steroid hormones in wastewater samples has been demonstrated. Triangular papers containing paraffin barriers as microfluidic channels were used to direct the sample solution to the paper tip, preventing the sample from spreading over the corners of the paper. The method was used to analyze the hormones levonorgestrel and algestone acetophenide in industrial wastewaters. Analytical curves presented a correlation coefficient (R2) above 0.99. Limits of quantification were below 2.3 ppm and limits of detection below 0.7 ppm. Values of precision (coefficient of variation) and accuracy (relative error) were less than 15% for all analyses. Recovery results ranged from 82% to 102%. Levonorgestrel was also analyzed by high-performance liquid chromatography coupled to mass spectrometry in order to compare the analytical performance with PSI-MS. No statistically significant differences were found between both methods. This study demonstrates the usefulness of PSI-MS for rapid analysis of hormones in industrial wastewater samples and also indicates its potential to be employed as a simple and reliable analytical method in environmental sciences.
Collapse
Affiliation(s)
| | - Igor Pereira
- Chemistry Institute, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Ruiter Lima Morais
- Faculty of Pharmacy, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Gérman Sanz Lobón
- Chemistry Institute, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Eric de Souza Gil
- Faculty of Pharmacy, Federal University of Goiás, Goiânia 74690900, Brazil
| | - Boniek Gontijo Vaz
- Chemistry Institute, Federal University of Goiás, Goiânia 74690900, Brazil
| |
Collapse
|
10
|
Ranganathan N, Lozier AM, Rawson MC, Johnson MB, Li P. Direct analysis of surface chemicals using vibrating sharp-edge spray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8902. [PMID: 32692897 PMCID: PMC7811172 DOI: 10.1002/rcm.8902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/26/2020] [Accepted: 07/19/2020] [Indexed: 05/06/2023]
Abstract
RATIONALE Direct analysis of chemicals on a surface using mass spectrometry (MS) is of great importance in forensics, food and drug safety, environmental monitoring, and defense. Solvent extraction-based surface analysis offers a convenient way of controlling the desorption conditions and applying internal standards. To date, it mainly relies on a separate electrospray process to nebulize and ionize the solvents. Here, we report a simple and stand-alone ionization system for the solvent extraction-based surface analysis without the need for high voltage, based on vibrating sharp-edge spray ionization (VSSI). METHODS We modified the original VSSI device and developed a stand-alone, integrated surface sampling, and ionization system for MS analysis. By incorporating a micropipette-based solvent dispenser with the VSSI device, the new system performs solvent extraction and ionization, and still maintains a small footprint. RESULTS We demonstrated a four order-of-magnitude linear response for glucose spotted on a glass surface with a limit of detection (LOD) of 0.1 pg/mm2 . We further characterized the performance of this method with a series of compounds and demonstrated a similar LOD to literature values obtained by desorption electrospray ionization. Finally, we applied this method to quantitatively measure the concentration of a pesticide ametryn on spinach surfaces. We demonstrated good linearity (R2 = 0.99) for ametryn with surface densities in the range of 8-800 pg/mm2 and an LOD of 9 pg/mm2 . CONCLUSIONS We have demonstrated a simple, effective, direct ambient-ionization method that is highly sensitive to molecules on a wide range of surfaces. The flexibility, small footprint, low cost, and voltage-free nature of this method make it an attractive technique for direct surface sample analysis using MS.
Collapse
Affiliation(s)
- Nandhini Ranganathan
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Austin M. Lozier
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Michael C. Rawson
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | | | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
- Correspondence should be addressed to P.L. ()
| |
Collapse
|
11
|
Brown HM, McDaniel TJ, Fedick PW, Mulligan CC. The current role of mass spectrometry in forensics and future prospects. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3974-3997. [PMID: 32720670 DOI: 10.1039/d0ay01113d] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mass spectrometry (MS) techniques are highly prevalent in crime laboratories, particularly those coupled to chromatographic separations like gas chromatography (GC) and liquid chromatography (LC). These methods are considered "gold standard" analytical techniques for forensic analysis and have been extensively validated for producing prosecutorial evidentiary data. However, factors such as growing evidence backlogs and problematic evidence types (e.g., novel psychoactive substance (NPS) classes) have exposed limitations of these stalwart techniques. This critical review serves to delineate the current role of MS methods across the broad sub-disciplines of forensic science, providing insight on how governmental steering committees guide their implementation. Novel, developing techniques that seek to broaden applicability and enhance performance will also be highlighted, from unique modifications to traditional hyphenated MS methods to the newer "ambient" MS techniques that show promise for forensic analysis, but need further validation before incorporation into routine forensic workflows. This review also expounds on how recent improvements to MS instrumental design, scan modes, and data processing could cause a paradigm shift in how the future forensic practitioner collects and processes target evidence.
Collapse
Affiliation(s)
- Hilary M Brown
- Chemistry Division, Research Department, Naval Air Warfare Center, Weapons Division (NAWCWD), United States Navy Naval Air Systems Command (NAVAIR), China Lake, California 93555, USA.
| | | | | | | |
Collapse
|
12
|
Skaggs C, Kirkpatrick L, Wichert WRA, Skaggs N, Manicke NE. A statistical approach to optimizing paper spray mass spectrometry parameters. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8601. [PMID: 32043669 DOI: 10.1002/rcm.8601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Paper spray mass spectrometry (PS-MS) was used to analyze and quantify ampicillin, a hydrophilic compound and frequently utilized antibiotic. Hydrophilic molecules are difficult to analyze via PS-MS due to their strong binding affinity to paper substrates and low ionization efficiency, among other reasons. METHODS Solvent and paper parameters were optimized to increase the extraction of ampicillin from the paper substrate. After optimizing these key parameters, a Resolution IV 1/16 fractional factorial design with two center points was employed to screen eight different design parameters simultaneously. RESULTS Pore size, sample volume, and solvent volume were the most significant factors affecting average peak area under the curve (AUC) and the signal-to-blank (S/B) ratio for the 1 μg/mL ampicillin calibrant. After optimizing the key parameters, a linear calibration curve with a range of 0.2 μg/mL to 100 μg/mL was generated (R2 = 0.98) and the limit of detection (LOD) and lower limit of quantification (LLOQ) were calculated to be 0.07 μg/mL and 0.25 μg/mL, respectively. CONCLUSIONS The statistical optimization procedure undertaken here increased the mass spectral signal intensity by more than a factor of 40. This statistical method of screening followed by optimization experiments proved faster and more efficient, and produced more drastic improvements than typical one-factor-at-a-time experiments.
Collapse
Affiliation(s)
- Christine Skaggs
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Lindsey Kirkpatrick
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - William R A Wichert
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Nicole Skaggs
- Technical Problem Solver, General Motors Proving Grounds, Milford, MI, 48380, USA
| | - Nicholas E Manicke
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
- Forensics and Investigative Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| |
Collapse
|
13
|
Wang C, Xiao R, Wang S, Yang X, Bai Z, Li X, Rong Z, Shen B, Wang S. Magnetic quantum dot based lateral flow assay biosensor for multiplex and sensitive detection of protein toxins in food samples. Biosens Bioelectron 2019; 146:111754. [PMID: 31605985 DOI: 10.1016/j.bios.2019.111754] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/20/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023]
Abstract
Protein toxins, such as botulinum neurotoxin type A (BoNT/A) and staphylococcal enterotoxin B (SEB), easily pollute food and water and are ultra-toxic to humans and animals, thus requiring a sensitive on-site detection method. In this study, we reported a novel lateral flow assay (LFA) strip on the basis of magnetic quantum dot nanoparticles (MagQD NPs) for sensitive and multiplex protein toxin detection in food samples. A new type of MagQD NP was prepared by fixing the dense carboxylated QDs on the surface of polyethyleneimine-modified Fe3O4 magnetic NPs (MNPs) and applied in LFA with the following functions: capture and enrich target toxins from sample solutions and serve as advanced fluorescent labels for the quantitative determination of targets on the strip. Through this strategy, the assay realized quantified BoNT/A and SEB detection in 30 min with the limits of detection of 2.52 and 2.86 pg/mL, respectively. The selectivity and the ability of quantitative analysis of the method were validated in real food samples, including milk and juice. This MagQD-LFA biosensor showed considerable potential as a point-of-care testing tool for the sensitive detection of trace toxins.
Collapse
Affiliation(s)
- Chongwen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China; Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Rui Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China
| | - Shu Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China; Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, PR China
| | - Xingsheng Yang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China
| | - Zikun Bai
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Xinying Li
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Zhen Rong
- Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China.
| | - Beifen Shen
- Institute of Basic Medical Sciences, Beijing, 100850, PR China.
| | - Shengqi Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, 230036, PR China; Beijing Institute of Radiation Medicine, Beijing, 100850, PR China; Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Diseases, Beijing, 100850, PR China.
| |
Collapse
|
14
|
McBride EM, Mach PM, Dhummakupt ES, Dowling S, Carmany DO, Demond PS, Rizzo G, Manicke NE, Glaros T. Paper spray ionization: Applications and perspectives. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|