1
|
Butalewicz JP, Escobar EE, Wootton CA, Theisen A, Park MA, Seeley EH, Brodbelt JS. Conformational Characterization of Peptides and Proteins by 193 nm Ultraviolet Photodissociation in the Collision Cell of a Trapped Ion Mobility Spectrometry-Time-of-Flight Mass Spectrometer. Anal Chem 2024; 96:16154-16161. [PMID: 39365147 DOI: 10.1021/acs.analchem.4c02686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Ultraviolet photodissociation (UVPD) has been shown to be a versatile ion activation strategy for the characterization of peptides and intact proteins among other classes of biological molecules. Combining the high-performance mass spectrometry (MS/MS) capabilities of UVPD with the high-resolution separation of trapped ion mobility spectrometry (TIMS) presents an opportunity for enhanced structural elucidation of biological molecules. In the present work, we integrate a 193 nm excimer laser in a TIMS-time-of-flight (TIMS-TOF) mass spectrometer for UVPD in the collision cell and use it for the analysis of several mass-mobility-selected species of ubiquitin and myoglobin. The resultant data displayed differences in fragmentation that could be correlated with changes in protein conformation. Additionally, this mobility-resolved UVPD strategy was applied to collision-induced unfolded ions of ubiquitin to follow changes in fragmentation patterns relating to the extent of protein unfolding. This platform and methodology offer new opportunities for exploring how conformational variations are manifested in the fragmentation patterns of gas-phase ions.
Collapse
Affiliation(s)
- Jamie P Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Edwin E Escobar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - Alina Theisen
- Bruker Daltonics GmbH & Co. KG, Bremen 28359, Germany
| | - Melvin A Park
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | - Erin H Seeley
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
James VK, Godula RN, Perez JM, Beckham JT, Butalewicz JP, Sipe SN, Huibregtse JM, Brodbelt JS. Native Mass Spectrometry Reveals Binding Interactions of SARS-CoV-2 PLpro with Inhibitors and Cellular Targets. ACS Infect Dis 2024; 10:3597-3606. [PMID: 39303064 PMCID: PMC11533220 DOI: 10.1021/acsinfecdis.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Here we used native mass spectrometry (native MS) to probe a SARS-CoV protease, PLpro, which plays critical roles in coronavirus disease by affecting viral protein production and antagonizing host antiviral responses. Ultraviolet photodissociation (UVPD) and variable temperature electrospray ionization (vT ESI) were used to localize binding sites of PLpro inhibitors and revealed the stabilizing effects of inhibitors on protein tertiary structure. We compared PLpro from SARS-CoV-1 and SARS-CoV-2 in terms of inhibitor and ISG15 interactions to discern possible differences in protease function. A PLpro mutant lacking a single cysteine was used to localize inhibitor binding, and thermodynamic measurements revealed that inhibitor PR-619 stabilized the folded PLpro structure. These results will inform further development of PLpro as a therapeutic target against SARS-CoV-2 and other emerging coronaviruses.
Collapse
Affiliation(s)
- Virginia K. James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rianna N. Godula
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jessica M. Perez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Josh T. Beckham
- Freshman Research Initiative, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jamie P. Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarah N. Sipe
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jon M. Huibregtse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Escobar EE, Yang W, Lanzillotti MB, Juetten KJ, Shields S, Siegel D, Zhang YJ, Brodbelt JS. Tracking Inhibition of Human Small C-Terminal Domain Phosphatase 1 Using 193 nm Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1330-1341. [PMID: 38662915 PMCID: PMC11384422 DOI: 10.1021/jasms.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Working in tandem with kinases via a dynamic interplay of phosphorylation and dephosphorylation of proteins, phosphatases regulate many cellular processes and thus represent compelling therapeutic targets. Here we leverage ultraviolet photodissociation to shed light on the binding characteristics of two covalent phosphatase inhibitors, T65 and rabeprazole, and their respective interactions with the human small C-terminal domain phosphatase 1 (SCP1) and its single-point mutant C181A, in which a nonreactive alanine replaces one key reactive cysteine. Top-down MS/MS analysis is used to localize the binding of T65 and rabeprazole on the two proteins and estimate the relative reactivities of each cysteine residue.
Collapse
Affiliation(s)
| | | | | | | | | | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, California 92093, United States
| | | | | |
Collapse
|
4
|
Marie A, Georgescauld F, Johnson KR, Ray S, Engen JR, Ivanov AR. Native Capillary Electrophoresis-Mass Spectrometry of Near 1 MDa Non-Covalent GroEL/GroES/Substrate Protein Complexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306824. [PMID: 38191978 PMCID: PMC10953559 DOI: 10.1002/advs.202306824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Protein complexes are essential for proteins' folding and biological function. Currently, native analysis of large multimeric protein complexes remains challenging. Structural biology techniques are time-consuming and often cannot monitor the proteins' dynamics in solution. Here, a capillary electrophoresis-mass spectrometry (CE-MS) method is reported to characterize, under near-physiological conditions, the conformational rearrangements of ∽1 MDa GroEL upon complexation with binding partners involved in a protein folding cycle. The developed CE-MS method is fast (30 min per run), highly sensitive (low-amol level), and requires ∽10 000-fold fewer samples compared to biochemical/biophysical techniques. The method successfully separates GroEL14 (∽800 kDa), GroEL7 (∽400 kDa), GroES7 (∽73 kDa), and NanA4 (∽130 kDa) oligomers. The non-covalent binding of natural substrate proteins with GroEL14 can be detected and quantified. The technique allows monitoring of GroEL14 conformational changes upon complexation with (ATPγS)4-14 and GroES7 (∽876 kDa). Native CE-pseudo-MS3 analyses of wild-type (WT) GroEL and two GroEL mutants result in up to 60% sequence coverage and highlight subtle structural differences between WT and mutated GroEL. The presented results demonstrate the superior CE-MS performance for multimeric complexes' characterization versus direct infusion ESI-MS. This study shows the CE-MS potential to provide information on binding stoichiometry and kinetics for various protein complexes.
Collapse
Affiliation(s)
- Anne‐Lise Marie
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Florian Georgescauld
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Kendall R. Johnson
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Somak Ray
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - John R. Engen
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological AnalysisDepartment of Chemistry and Chemical BiologyNortheastern University360 Huntington AvenueBostonMA02115USA
| |
Collapse
|
5
|
Wang X, Li H, Sheng Y, He B, Liu Z, Li W, Yu S, Wang J, Zhang Y, Chen J, Qin L, Meng X. The function of sphingolipids in different pathogenesis of Alzheimer's disease: A comprehensive review. Biomed Pharmacother 2024; 171:116071. [PMID: 38183741 DOI: 10.1016/j.biopha.2023.116071] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024] Open
Abstract
Sphingolipids (SPLs) represent a highly diverse and structurally complex lipid class. The discussion of SPL metabolism-related issues is of importance in understanding the neuropathological progression of Alzheimer's disease (AD). AD is characterized by the accumulation of extracellular deposits of the amyloid β-peptide (Aβ) and intraneuronal aggregates of the microtubule-associated protein tau. Critical roles of Aβ oligomer deposited and ganglioside GM1 could be formed as "seed" from insoluble GAβ polymer in initiating the pathogenic process, while tau might also mediate SPLs and their toxicity. The interaction between ceramide and α-Synuclein (α-Syn) accelerates the aggregation of ferroptosis and exacerbates the pathogenesis of AD. For instance, reducing the levels of SPLs can mitigate α-Syn accumulation and inhibit AD progression. Meanwhile, loss of SPLs may inhibit the expression of APOE4 and confer protection against AD, while the loss of APOE4 expression also disrupts SPLs homeostasis. Moreover, the heightened activation of sphingomyelinase promotes the ferroptosis signaling pathway, leading to exacerbated AD symptoms. Ferroptosis plays a vital role in the pathological progression of AD by influencing Aβ, tau, APOE, and α-Syn. Conversely, the development of AD also exacerbates the manifestation of ferroptosis and SPLs. We are compiling the emerging techniques (Derivatization and IM-MS) of sphingolipidomics, to overcome the challenges of AD diagnosis and treatment. In this review, we examined the intricate neuro-mechanistic interactions between SPLs and Aβ, tau, α-Syn, APOE, and ferroptosis, mediating the onset of AD. Furthermore, our findings highlight the potential of targeting SPLs as underexplored avenue for devising innovative therapeutic strategies against AD.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Huaqiang Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Yunjie Sheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Bingqian He
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Zeying Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Wanli Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Shujie Yu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Jiajing Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Yixin Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China
| | - Jianyu Chen
- Fujian University of Traditional Chinese Medicine, School of Pharmacy, Fuzhou, Fujian 350122, PR China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China.
| | - Xiongyu Meng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, Zhejiang Province, PR China.
| |
Collapse
|
6
|
Turzo SMBA, Seffernick JT, Lyskov S, Lindert S. Predicting ion mobility collision cross sections using projection approximation with ROSIE-PARCS webserver. Brief Bioinform 2023; 24:bbad308. [PMID: 37609950 PMCID: PMC10516336 DOI: 10.1093/bib/bbad308] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Ion mobility coupled to mass spectrometry informs on the shape and size of protein structures in the form of a collision cross section (CCSIM). Although there are several computational methods for predicting CCSIM based on protein structures, including our previously developed projection approximation using rough circular shapes (PARCS), the process usually requires prior experience with the command-line interface. To overcome this challenge, here we present a web application on the Rosetta Online Server that Includes Everyone (ROSIE) webserver to predict CCSIM from protein structure using projection approximation with PARCS. In this web interface, the user is only required to provide one or more PDB files as input. Results from our case studies suggest that CCSIM predictions (with ROSIE-PARCS) are highly accurate with an average error of 6.12%. Furthermore, the absolute difference between CCSIM and CCSPARCS can help in distinguishing accurate from inaccurate AlphaFold2 protein structure predictions. ROSIE-PARCS is designed with a user-friendly interface, is available publicly and is free to use. The ROSIE-PARCS web interface is supported by all major web browsers and can be accessed via this link (https://rosie.graylab.jhu.edu).
Collapse
Affiliation(s)
- S M Bargeen Alam Turzo
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH 43210, USA
| | - Justin T Seffernick
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH 43210, USA
| | - Sergey Lyskov
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Christofi E, Barran P. Ion Mobility Mass Spectrometry (IM-MS) for Structural Biology: Insights Gained by Measuring Mass, Charge, and Collision Cross Section. Chem Rev 2023; 123:2902-2949. [PMID: 36827511 PMCID: PMC10037255 DOI: 10.1021/acs.chemrev.2c00600] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 02/26/2023]
Abstract
The investigation of macromolecular biomolecules with ion mobility mass spectrometry (IM-MS) techniques has provided substantial insights into the field of structural biology over the past two decades. An IM-MS workflow applied to a given target analyte provides mass, charge, and conformation, and all three of these can be used to discern structural information. While mass and charge are determined in mass spectrometry (MS), it is the addition of ion mobility that enables the separation of isomeric and isobaric ions and the direct elucidation of conformation, which has reaped huge benefits for structural biology. In this review, where we focus on the analysis of proteins and their complexes, we outline the typical features of an IM-MS experiment from the preparation of samples, the creation of ions, and their separation in different mobility and mass spectrometers. We describe the interpretation of ion mobility data in terms of protein conformation and how the data can be compared with data from other sources with the use of computational tools. The benefit of coupling mobility analysis to activation via collisions with gas or surfaces or photons photoactivation is detailed with reference to recent examples. And finally, we focus on insights afforded by IM-MS experiments when applied to the study of conformationally dynamic and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Emilia Christofi
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| | - Perdita Barran
- Michael Barber Centre for Collaborative
Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
8
|
Chen Q, Dai R, Yao X, Chaihu L, Tong W, Huang Y, Wang G. Improving Accuracy in Mass Spectrometry-Based Mass Determination of Intact Heterogeneous Protein Utilizing the Universal Benefits of Charge Reduction and Alternative Gas-Phase Reactions. Anal Chem 2022; 94:13869-13878. [PMID: 36170625 DOI: 10.1021/acs.analchem.2c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In mass analysis of proteins, mass spectrometry directly measures the mass to charge ratios of ionized proteins and promises higher accuracy than that of indirect approaches measuring other physicochemical properties, provided that the charge states of detected ions are determined. Accurate mass determination of heterogeneously glycosylated proteins is often hindered by unreliable charge determination due to the insufficient resolution of signals from different charge states and inconsistency among mass profiles of ions in individual charge states. Limited charge reduction of a subpopulation of proteoforms using electron transfer/capture reactions (ETnoD/ETnoD) solves this problem by narrowing the mass distribution of examined proteoforms and preserving the mass profile of the precursor charge state in the reduced charge states. However, the limited availability of ETnoD/ETnoD function in commercial instruments limits the application of this approach. Here, utilizing a range of charge-dependent and accuracy-affecting spectral features revealed by a systematic evaluation at levels of both the ensemble and subpopulation of proteoforms based on theoretical models and experiments, we developed a limited charge reduction workflow that enables using collision-induced dissociation and higher energy collisional dissociation, two widely available reactions, as alternatives to ETnoD/ETnoD while providing adequate accuracy. Alternatively, substituting proton transfer charge reduction for ETnoD/ETnoD provides higher accuracy of mass determination. Performing mass selection in a window-sliding manner improves the accuracy and allows profiling of the whole proteoform distribution. The proposed workflow may facilitate the development of universal characterization strategies for more complex and heterogeneous protein systems.
Collapse
Affiliation(s)
- Qingrong Chen
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Rongrong Dai
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaopeng Yao
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Lingxiao Chaihu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.,Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Wenjun Tong
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yanyi Huang
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
| | - Guanbo Wang
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518132, China.,Biomedical Pioneering Innovation Centre, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Turzo SMBA, Seffernick JT, Rolland AD, Donor MT, Heinze S, Prell JS, Wysocki VH, Lindert S. Protein shape sampled by ion mobility mass spectrometry consistently improves protein structure prediction. Nat Commun 2022; 13:4377. [PMID: 35902583 PMCID: PMC9334640 DOI: 10.1038/s41467-022-32075-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
Ion mobility (IM) mass spectrometry provides structural information about protein shape and size in the form of an orientationally-averaged collision cross-section (CCSIM). While IM data have been used with various computational methods, they have not yet been utilized to predict monomeric protein structure from sequence. Here, we show that IM data can significantly improve protein structure determination using the modelling suite Rosetta. We develop the Rosetta Projection Approximation using Rough Circular Shapes (PARCS) algorithm that allows for fast and accurate prediction of CCSIM from structure. Following successful testing of the PARCS algorithm, we use an integrative modelling approach to utilize IM data for protein structure prediction. Additionally, we propose a confidence metric that identifies near native models in the absence of a known structure. The results of this study demonstrate the ability of IM data to consistently improve protein structure prediction.
Collapse
Affiliation(s)
- S M Bargeen Alam Turzo
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210, USA
| | - Justin T Seffernick
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210, USA
| | - Amber D Rolland
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Micah T Donor
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Sten Heinze
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210, USA
| | - James S Prell
- Department of Chemistry and Biochemistry and Materials Science Institute, University of Oregon, Eugene, OR, 97403, USA
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry and Resource for Native Mass Spectrometry Guided Structural Biology, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
10
|
Liu R, Xia S, Li H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. MASS SPECTROMETRY REVIEWS 2022:e21793. [PMID: 35757976 DOI: 10.1002/mas.21793] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Progress in structural biology research has led to a high demand for powerful and yet complementary analytical tools for structural characterization of proteins and protein complexes. This demand has significantly increased interest in native mass spectrometry (nMS), particularly native top-down mass spectrometry (nTDMS) in the past decade. This review highlights recent advances in nTDMS for structural research of biological assemblies, with a particular focus on the extra multi-layers of information enabled by TDMS. We include a short introduction of sample preparation and ionization to nMS, tandem fragmentation techniques as well as mass analyzers and software/analysis pipelines used for nTDMS. We highlight unique structural information offered by nTDMS and examples of its broad range of applications in proteins, protein-ligand interactions (metal, cofactor/drug, DNA/RNA, and protein), therapeutic antibodies and antigen-antibody complexes, membrane proteins, macromolecular machineries (ribosome, nucleosome, proteosome, and viruses), to endogenous protein complexes. The challenges, potential, along with perspectives of nTDMS methods for the analysis of proteins and protein assemblies in recombinant and biological samples are discussed.
Collapse
Affiliation(s)
- Ruijie Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shujun Xia
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
12
|
Vallejo DD, Ramírez CR, Parson KF, Han Y, Gadkari VG, Ruotolo BT. Mass Spectrometry Methods for Measuring Protein Stability. Chem Rev 2022; 122:7690-7719. [PMID: 35316030 PMCID: PMC9197173 DOI: 10.1021/acs.chemrev.1c00857] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mass spectrometry is a central technology in the life sciences, providing our most comprehensive account of the molecular inventory of the cell. In parallel with developments in mass spectrometry technologies targeting such assessments of cellular composition, mass spectrometry tools have emerged as versatile probes of biomolecular stability. In this review, we cover recent advancements in this branch of mass spectrometry that target proteins, a centrally important class of macromolecules that accounts for most biochemical functions and drug targets. Our efforts cover tools such as hydrogen-deuterium exchange, chemical cross-linking, ion mobility, collision induced unfolding, and other techniques capable of stability assessments on a proteomic scale. In addition, we focus on a range of application areas where mass spectrometry-driven protein stability measurements have made notable impacts, including studies of membrane proteins, heat shock proteins, amyloidogenic proteins, and biotherapeutics. We conclude by briefly discussing the future of this vibrant and fast-moving area of research.
Collapse
Affiliation(s)
- Daniel D. Vallejo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kristine F. Parson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yilin Han
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Varun G. Gadkari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Webb IK. Recent technological developments for native mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140732. [PMID: 34653668 DOI: 10.1016/j.bbapap.2021.140732] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022]
Abstract
Native mass spectrometry (MS), the analysis of proteins and protein complexes from solutions that stabilize native solution structures, is a rapidly expanding area. There is strong evidence supporting the retention of proteins' native folds in the absence of solvent under the experimental timescales of MS experiments. Therefore, instrumentation has been developed to use gas-phase native-like protein ions to exploit the speed, sensitivity, and selectivity of mass spectrometry approaches to solve emerging problems in structural biology. This article reviews some of the recent advances and applications in gas-phase instrumentation for structural proteomics.
Collapse
Affiliation(s)
- Ian K Webb
- Department of Chemistry and Chemical Biology, Purdue School of Science, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, United States of America; Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, United States of America.
| |
Collapse
|
14
|
Abstract
Knowledge of protein structure is crucial to our understanding of biological function and is routinely used in drug discovery. High-resolution techniques to determine the three-dimensional atomic coordinates of proteins are available. However, such methods are frequently limited by experimental challenges such as sample quantity, target size, and efficiency. Structural mass spectrometry (MS) is a technique in which structural features of proteins are elucidated quickly and relatively easily. Computational techniques that convert sparse MS data into protein models that demonstrate agreement with the data are needed. This review features cutting-edge computational methods that predict protein structure from MS data such as chemical cross-linking, hydrogen-deuterium exchange, hydroxyl radical protein footprinting, limited proteolysis, ion mobility, and surface-induced dissociation. Additionally, we address future directions for protein structure prediction with sparse MS data. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sarah E Biehn
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA;
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
15
|
Chen G, Tao L, Li Z. Recent advancements in mass spectrometry for higher order structure characterization of protein therapeutics. Drug Discov Today 2021; 27:196-206. [PMID: 34571276 DOI: 10.1016/j.drudis.2021.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 01/15/2023]
Abstract
Molecular characterization of higher order structure (HOS) in protein therapeutics is crucial to the selection of candidate molecules, understanding of structure-function relationships, formulation development, stability assessment, and comparability studies. Recent advances in mass spectrometry (MS), including native MS, hydrogen/deuterium exchange (HDX)-MS, and fast photochemical oxidation of proteins (FPOP) coupled with MS, have provided orthogonal ways to characterize HOS of protein therapeutics. In this review, we present the utility of native MS, HDX-MS and FPOP-MS in protein therapeutics discovery and development, with a focus on epitope mapping, aggregation assessment, and comparability studies. We also discuss future trends in the application of these MS methods to HOS characterization.
Collapse
Affiliation(s)
- Guodong Chen
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, NJ, USA.
| | - Li Tao
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, NJ, USA
| | - Zhengjian Li
- Analytical Development and Attribute Sciences, Biologics Development, Global Product Development and Supply, Bristol Myers Squibb, New Brunswick, NJ, USA
| |
Collapse
|
16
|
Zhou L, Wang D, Iftikhar M, Lu Y, Zhou M. Conformational changes and binding property of the periplasmic binding protein BtuF during vitamin B 12 transport revealed by collision-induced unfolding, hydrogen-deuterium exchange mass spectrometry and molecular dynamic simulation. Int J Biol Macromol 2021; 187:350-360. [PMID: 34303738 DOI: 10.1016/j.ijbiomac.2021.07.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
The periplasmic binding protein (PBP) BtuF plays a key role in transporting vitamin B12 from periplasm to the ATP-binding cassette (ABC) transporter BtuCD. Conformational changes of BtuF during transport can hardly be captured by traditional biophysical methods and the exact mechanism regarding B12 and BtuF recognition is still under debate. In the present work, conformational changes of BtuF upon B12 binding and release were investigated using hybrid approaches including collision-induced unfolding (CIU), hydrogen deuterium exchange mass spectrometry (HDX-MS) and molecular dynamics (MD) simulation. It was found that B12 binding increased the stability of BtuF. In addition, fast exchange regions of BtuF were localized. Most importantly, midpoint of hinge helix in BtuF was found highly flexible, and binding of B12 proceed in a manner similar to the Venus flytrap mechanism. Our study therefore delineates a clear view of BtuF delivering B12, and demonstrated a hybrid approach encompassing MS and computer based methods that holds great potential to the probing of conformational dynamics of proteins in action.
Collapse
Affiliation(s)
- Lijun Zhou
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Defu Wang
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mehwish Iftikhar
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China
| | - Yinghong Lu
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Min Zhou
- Institute of Bio-analytical Chemistry, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, No. 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|
17
|
Al-Jabiry A, Palmer M, Langridge J, Bellamy-Carter J, Robinson D, Oldham NJ. Combined Chemical Modification and Collision Induced Unfolding Using Native Ion Mobility-Mass Spectrometry Provides Insights into Protein Gas-Phase Structure. Chemistry 2021; 27:13783-13792. [PMID: 34289194 DOI: 10.1002/chem.202101857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/10/2022]
Abstract
Native mass spectrometry is now an important tool in structural biology. Thus, the nature of higher protein structure in the vacuum of the mass spectrometer is an area of significant interest. One of the major goals in the study of gas-phase protein structure is to elucidate the stabilising role of interactions at the level of individual amino acid residues. A strategy combining protein chemical modification together with collision induced unfolding (CIU) was developed and employed to probe the structure of compact protein ions produced by native electrospray ionisation. Tractable chemical modification was used to alter the properties of amino acid residues, and ion mobility-mass spectrometry (IM-MS) utilised to monitor the extent of unfolding as a function of modification. From these data the importance of specific intramolecular interactions for the stability of compact gas-phase protein structure can be inferred. Using this approach, and aided by molecular dynamics simulations, an important stabilising interaction between K6 and H68 in the protein ubiquitin was identified, as was a contact between the N-terminus and E22 in a ubiquitin binding protein UBA2.
Collapse
Affiliation(s)
- Asia Al-Jabiry
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Martin Palmer
- Waters Corporation, Stamford Avenue Altrincham Road, Wilmslow, Cheshire, SK9 4AX, UK
| | - James Langridge
- Waters Corporation, Stamford Avenue Altrincham Road, Wilmslow, Cheshire, SK9 4AX, UK
| | | | - David Robinson
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Neil J Oldham
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
18
|
Song JH, Wagner ND, Yan J, Li J, Huang RYC, Balog AJ, Newitt JA, Chen G, Gross ML. Native mass spectrometry and gas-phase fragmentation provide rapid and in-depth topological characterization of a PROTAC ternary complex. Cell Chem Biol 2021; 28:1528-1538.e4. [PMID: 34081921 DOI: 10.1016/j.chembiol.2021.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 01/24/2023]
Abstract
Proteolysis-targeting chimeras (PROTACs) represent a new direction in small-molecule therapeutics whereby a heterobifunctional linker to a protein of interest (POI) induces its ubiquitination-based proteolysis by recruiting an E3 ligase. Here, we show that charge reduction, native mass spectrometry, and gas-phase activation methods combine for an in-depth analysis of a PROTAC-linked ternary complex. Electron capture dissociation (ECD) of the intact POI-PROTAC-VCB complex (a trimeric subunit of an E3 ubiquitin ligase) promotes POI dissociation. Collision-induced dissociation (CID) causes elimination of the nonperipheral PROTAC, producing an intact VCB-POI complex not seen in solution but consistent with PROTAC-induced protein-protein interactions. In addition, we used ion mobility spectrometry (IMS) and collisional activation to identify the source of this unexpected dissociation. Together, the evidence shows that this integrated approach can be used to screen for ternary complex formation and PROTAC-protein contacts and may report on PROTAC-induced protein-protein interactions, a characteristic correlated with PROTAC selectivity and efficacy.
Collapse
Affiliation(s)
- Jong Hee Song
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Nicole D Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jing Yan
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jing Li
- Bristol Myers Squibb Company, Research and Early Development, Princeton, NJ 08543, USA
| | - Richard Y-C Huang
- Bristol Myers Squibb Company, Research and Early Development, Princeton, NJ 08543, USA
| | - Aaron J Balog
- Bristol Myers Squibb Company, Research and Early Development, Princeton, NJ 08543, USA
| | - John A Newitt
- Bristol Myers Squibb Company, Research and Early Development, Princeton, NJ 08543, USA
| | - Guodong Chen
- Bristol Myers Squibb Company, Research and Early Development, Princeton, NJ 08543, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
19
|
Affiliation(s)
- Tobias
P. Wörner
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Tatiana M. Shamorkina
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
20
|
Seffernick JT, Lindert S. Hybrid methods for combined experimental and computational determination of protein structure. J Chem Phys 2020; 153:240901. [PMID: 33380110 PMCID: PMC7773420 DOI: 10.1063/5.0026025] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/10/2020] [Indexed: 02/04/2023] Open
Abstract
Knowledge of protein structure is paramount to the understanding of biological function, developing new therapeutics, and making detailed mechanistic hypotheses. Therefore, methods to accurately elucidate three-dimensional structures of proteins are in high demand. While there are a few experimental techniques that can routinely provide high-resolution structures, such as x-ray crystallography, nuclear magnetic resonance (NMR), and cryo-EM, which have been developed to determine the structures of proteins, these techniques each have shortcomings and thus cannot be used in all cases. However, additionally, a large number of experimental techniques that provide some structural information, but not enough to assign atomic positions with high certainty have been developed. These methods offer sparse experimental data, which can also be noisy and inaccurate in some instances. In cases where it is not possible to determine the structure of a protein experimentally, computational structure prediction methods can be used as an alternative. Although computational methods can be performed without any experimental data in a large number of studies, inclusion of sparse experimental data into these prediction methods has yielded significant improvement. In this Perspective, we cover many of the successes of integrative modeling, computational modeling with experimental data, specifically for protein folding, protein-protein docking, and molecular dynamics simulations. We describe methods that incorporate sparse data from cryo-EM, NMR, mass spectrometry, electron paramagnetic resonance, small-angle x-ray scattering, Förster resonance energy transfer, and genetic sequence covariation. Finally, we highlight some of the major challenges in the field as well as possible future directions.
Collapse
Affiliation(s)
- Justin T. Seffernick
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | - Steffen Lindert
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
21
|
Gadkari VV, Ramírez CR, Vallejo DD, Kurulugama RT, Fjeldsted JC, Ruotolo BT. Enhanced Collision Induced Unfolding and Electron Capture Dissociation of Native-like Protein Ions. Anal Chem 2020; 92:15489-15496. [PMID: 33166123 PMCID: PMC7861131 DOI: 10.1021/acs.analchem.0c03372] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Native ion mobility-mass spectrometry (IM-MS) is capable of revealing much that remains unknown within the structural proteome, promising such information on refractory protein targets. Here, we report the development of a unique drift tube IM-MS (DTIM-MS) platform, which combines high-energy source optics for improved collision induced unfolding (CIU) experiments and an electromagnetostatic cell for electron capture dissociation (ECD). We measured a series of high precision collision cross section (CCS) values for protein and protein complex ions ranging from 6-1600 kDa, exhibiting an average relative standard deviation (RSD) of 0.43 ± 0.20%. Furthermore, we compare our CCS results to previously reported DTIM values, finding strong agreement across similarly configured instrumentation (average RSD of 0.82 ± 0.73%), and systematic differences for DTIM CCS values commonly used to calibrate traveling-wave IM separators (-3% average RSD). Our CIU experiments reveal that the modified DTIM-MS instrument described here achieves enhanced levels of ion activation when compared with any previously reported IM-MS platforms, allowing for comprehensive unfolding of large multiprotein complex ions as well as interplatform CIU comparisons. Using our modified DTIM instrument, we studied two protein complexes. The enhanced CIU capabilities enable us to study the gas phase stability of the GroEL 7-mer and 14-mer complexes. Finally, we report CIU-ECD experiments for the alcohol dehydrogenase tetramer, demonstrating improved sequence coverage by combining ECD fragmentation integrated over multiple CIU intermediates. Further improvements for such native top-down sequencing experiments were possible by leveraging IM separation, which enabled us to separate and analyze CID and ECD fragmentation simultaneously.
Collapse
Affiliation(s)
- Varun V Gadkari
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Daniel D Vallejo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Ruwan T Kurulugama
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 98051, United States
| | - John C Fjeldsted
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 98051, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Allison TM, Barran P, Benesch JLP, Cianferani S, Degiacomi MT, Gabelica V, Grandori R, Marklund EG, Menneteau T, Migas LG, Politis A, Sharon M, Sobott F, Thalassinos K. Software Requirements for the Analysis and Interpretation of Native Ion Mobility Mass Spectrometry Data. Anal Chem 2020; 92:10881-10890. [PMID: 32649184 DOI: 10.1021/acs.analchem.9b05792] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The past few years have seen a dramatic increase in applications of native mass and ion mobility spectrometry, especially for the study of proteins and protein complexes. This increase has been catalyzed by the availability of commercial instrumentation capable of carrying out such analyses. As in most fields, however, the software to process the data generated from new instrumentation lags behind. Recently, a number of research groups have started addressing this by developing software, but further improvements are still required in order to realize the full potential of the data sets generated. In this perspective, we describe practical aspects as well as challenges in processing native mass spectrometry (MS) and ion mobility-MS data sets and provide a brief overview of currently available tools. We then set out our vision of future developments that would bring the community together and lead to the development of a common platform to expedite future computational developments, provide standardized processing approaches, and serve as a location for the deposition of data for this emerging field. This perspective has been written by members of the European Cooperation in Science and Technology Action on Native MS and Related Methods for Structural Biology (EU COST Action BM1403) as an introduction to the software tools available in this area. It is intended to serve as an overview for newcomers and to stimulate discussions in the community on further developments in this field, rather than being an in-depth review. Our complementary perspective (http://dx.doi.org/10.1021/acs.analchem.9b05791) focuses on computational approaches used in this field.
Collapse
Affiliation(s)
- Timothy M Allison
- School of Physical and Chemical Sciences, Biomolecular Interaction Centre, University of Canterbury, Christchurch 8140, New Zealand
| | - Perdita Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Justin L P Benesch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3TA, United Kingdom
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Matteo T Degiacomi
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, South Parks Road, Oxford OX1 3TA, United Kingdom.,Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Valerie Gabelica
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site, 2 Rue Robert Escarpit, 33600 Pessac, France
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Erik G Marklund
- Department of Chemistry - BMC, Uppsala University, Box 576, 75123 Uppsala, Sweden
| | - Thomas Menneteau
- Division of Biosciences, Institute of Structural and Molecular Biology, University College of London, Gower Street, London WC1E 6BT, United Kingdom
| | - Lukasz G Migas
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, Manchester M1 7DN, United Kingdom
| | - Argyris Politis
- Department of Chemistry, King's College London, 7 Trinity Street, London SE1 1DB, United Kingdom
| | - Michal Sharon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, 2020 Antwerp, Belgium.,School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Konstantinos Thalassinos
- Division of Biosciences, Institute of Structural and Molecular Biology, University College of London, Gower Street, London WC1E 6BT, United Kingdom.,Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, Malet Street, London WC1E 7HX, United Kingdom
| |
Collapse
|
23
|
Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteomics 2020; 222:103799. [DOI: 10.1016/j.jprot.2020.103799] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
24
|
Petroff JT, Tong A, Chen LJ, Dekoster GT, Khan F, Abramson J, Frieden C, Cheng WWL. Charge Reduction of Membrane Proteins in Native Mass Spectrometry Using Alkali Metal Acetate Salts. Anal Chem 2020; 92:6622-6630. [PMID: 32250604 DOI: 10.1021/acs.analchem.0c00454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Native mass spectrometry (MS) provides the capacity to monitor membrane protein complexes and noncovalent binding of ligands and lipids to membrane proteins. The charge states produced by native MS of membrane proteins often result in gas-phase protein unfolding or loss of noncovalent interactions. In an effort to reduce the charge of membrane proteins, we examined the utility of alkali metal salts as a charge-reducing agent. Low concentrations of alkali metal salts caused marked charge reduction in the membrane protein, Erwinia ligand-gated ion channel (ELIC). The charge-reducing effect only occurred for membrane proteins and was detergent-dependent, being most pronounced in long polyethylene glycol (PEG)-based detergents such as C10E5 and C12E8. On the basis of these results, we propose a mechanism for alkali metal charge reduction of membrane proteins. Addition of low concentrations of alkali metals may provide an advantageous approach for charge reduction of detergent-solubilized membrane proteins by native MS.
Collapse
Affiliation(s)
| | | | | | | | - Farha Khan
- Department of Physiology, David Geffen School of Medicine at UCLA, 310833 Le Conte Avenue, Los Angeles, California 90095, United States
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine at UCLA, 310833 Le Conte Avenue, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
25
|
Nouchikian L, Lento C, Donovan K, Dobson R, Wilson DJ. Comparing the Conformational Stability of Pyruvate Kinase in the Gas Phase and in Solution. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:685-692. [PMID: 31951698 DOI: 10.1021/jasms.9b00130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Collision induced unfolding (CIU) is increasingly used to characterize protein complexes in the gas phase and is often employed to detect ligand binding-induced conformational stabilization. However, the extent to which gas-phase conformational stabilities measured by CIU reflect analogous parameters in solution is not yet clear, particularly for systems where conformational and protein complex stability are modulated by point mutation. Here, we compare CIU-derived relative stabilities of four point mutants of the homotetramer pyruvate kinase to solution stabilities measured by differential scanning fluorimetry (DSF) and solution conformational dynamics measured by time-resolved electrospray ionization hydrogen-deuterium exchange (TRESI-HDX). Our results demonstrate that both destabilization of the tetrameric state and generally reduced conformational stability of the monomer in solution are well correlated to lower onset energies for specific unfolding transitions observed in CIU. However, this correlation not fully retained when comparing CIU to HDX data, where the latter measurement is strongly impacted by conformational dynamics within the tetramer.
Collapse
Affiliation(s)
| | - Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Katherine Donovan
- Dana Farber Institute, Harvard University, Boston, Massachusetts 02215, United States
| | - Renwick Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, Canterbury University, Christchurch 8041, New Zealand
- Bio21 Molecular Science and Biotechnology Institute, Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
- Centre for Research in Mass Spectrometry, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
26
|
Affiliation(s)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
27
|
APOE in the normal brain. Neurobiol Dis 2020; 136:104724. [PMID: 31911114 DOI: 10.1016/j.nbd.2019.104724] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/19/2019] [Accepted: 12/31/2019] [Indexed: 12/25/2022] Open
Abstract
The APOE4 protein affects the primary neuropathological markers of Alzheimer's disease (AD): amyloid plaques, neurofibrillary tangles, and gliosis. These interactions have been investigated to understand the strong effect of APOE genotype on risk of AD. However, APOE genotype has strong effects on processes in normal brains, in the absence of the hallmarks of AD. We propose that CNS APOE is involved in processes in the normal brains that in later years apply specifically to processes of AD pathogenesis. We review the differences of the APOE protein found in the CNS compared to the plasma, including post-translational modifications (glycosylation, lipidation, multimer formation), focusing on ways that the common APOE isoforms differ from each other. We also review structural and functional studies of young human brains and control APOE knock-in mouse brains. These approaches demonstrate the effects of APOE genotype on microscopic neuron structure, gross brain structure, and behavior, primarily related to the hippocampal areas. By focusing on the effects of APOE genotype on normal brain function, approaches can be pursued to identify biomarkers of APOE dysfunction, to promote normal functions of the APOE4 isoform, and to prevent the accumulation of the pathologic hallmarks of AD with aging.
Collapse
|