1
|
Rodgers MT, Seidu YS, Israel E. Influence of 2'-Modifications (O-Methylation, Fluorination, and Stereochemical Inversion) on the Base Pairing Energies of Protonated Cytidine Nucleoside Analogue Base Pairs: Implications for the Stabilities of i-Motif Structures. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023. [PMID: 37294839 DOI: 10.1021/jasms.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Naturally occurring and chemically engineered modifications are among the most powerful strategies explored for fine-tuning the conformational characteristics and intrinsic stability of nucleic acids topologies. Modifications at the 2'-position of the ribose or 2'-deoxyribose moieties differentiate nucleic acid structures and have a significant impact on their electronic properties and base-pairing interactions. 2'-O-Methylation, a common post-transcriptional modification of tRNA, is directly involved in modulating specific anticodon-codon base-pairing interactions. 2'-Fluorinated and arabino nucleosides possess novel and beneficial medicinal properties and find use as therapeutics for treating viral diseases and cancer. However, the potential to deploy 2'-modified cytidine chemistries for tuning i-motif stability is largely unknown. To address this knowledge gap, the effects of 2'-modifications including O-methylation, fluorination, and stereochemical inversion on the base-pairing interactions of protonated cytidine nucleoside analogue base pairs, the core stabilizing interactions of i-motif structures, are examined using complementary threshold collision-induced dissociation techniques and computational methods. The 2'-modified cytidine nucleoside analogues investigated here include 2'-O-methylcytidine, 2'-fluoro-2'-deoxycytidine, arabinofuranosylcytosine, 2'-fluoro-arabinofuranosylcytosine, and 2',2'-difluoro-2'-deoxycytidine. All five 2'-modifications examined here are found to enhance the base-pairing interactions relative to the canonical DNA and RNA cytidine nucleosides with the greatest enhancements arising from 2'-O-methylation and 2',2'-difluorination, suggesting that these modifications should well be tolerated in the narrow grooves of i-motif conformations.
Collapse
Affiliation(s)
- M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Yakubu S Seidu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - E Israel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Mikawy NN, Roy HA, Israel E, Hamlow LA, Zhu Y, Berden G, Oomens J, Frieler CE, Rodgers MT. 5-Halogenation of Uridine Suppresses Protonation-Induced Tautomerization and Enhances Glycosidic Bond Stability of Protonated Uridine: Investigations via IRMPD Action Spectroscopy, ER-CID Experiments, and Theoretical Calculations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2165-2180. [PMID: 36279168 DOI: 10.1021/jasms.2c00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Uridine (Urd), a canonical nucleoside of RNA, is the most commonly modified nucleoside among those that occur naturally. Uridine has also been an important target for the development of modified nucleoside analogues for pharmaceutical applications. In this work, the effects of 5-halogenation of uracil on the structures and glycosidic bond stabilities of protonated uridine nucleoside analogues are examined using tandem mass spectrometry and computational methods. Infrared multiple photon dissociation (IRMPD) action spectroscopy experiments and theoretical calculations are performed to probe the structural influences of these modifications. Energy-resolved collision-induced dissociation experiments along with survival yield analyses are performed to probe glycosidic bond stability. The measured IRMPD spectra are compared to linear IR spectra predicted for the stable low-energy conformations of these species computed at the B3LYP/6-311+G(d,p) level of theory to determine the conformations experimentally populated. Spectral signatures in the IR fingerprint and hydrogen-stretching regions allow the 2,4-dihydroxy protonated tautomers (T) and O4- and O2-protonated conformers to be readily differentiated. Comparisons between the measured and predicted spectra indicate that parallel to findings for uridine, both T and O4-protonated conformers of the 5-halouridine nucleoside analogues are populated, whereas O2-protonated conformers are not. Variations in yields of the spectral signatures characteristic of the T and O4-protonated conformers indicate that the extent of protonation-induced tautomerization is suppressed as the size of the halogen substituent increases. Trends in the energy-dependence of the survival yield curves find that 5-halogenation strengthens the glycosidic bond and that the enhancement in stability increases with the size of the halogen substituent.
Collapse
Affiliation(s)
- Neven N Mikawy
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - E Israel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - L A Hamlow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Y Zhu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - G Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - J Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7, 6525ED Nijmegen, The Netherlands
| | - C E Frieler
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
3
|
Rodgers MT, Seidu YS, Israel E. Influence of 5-Halogenation on the Base-Pairing Energies of Protonated Cytidine Nucleoside Analogue Base Pairs: Implications for the Stabilities of Synthetic i-Motif Structures for DNA Nanotechnology Applications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1697-1715. [PMID: 35921530 DOI: 10.1021/jasms.2c00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNA nanotechnology has been employed to develop devices based on i-motif structures. The protonated cytosine-cytosine base pairs that stabilize i-motif conformations are favored under slightly acidic conditions. This unique property has enabled development of the first DNA molecular motor driven by pH changes. The ability to alter the stability and pH transition range of such DNA molecular motors is desirable. Understanding how i-motif structures are influenced by modifications, and which modifications enhance stability and/or affect the pH characteristics, are therefore of great interest. Here, the influence of 5-halogenation of the cytosine nucleobases on the base pairing of protonated cytidine nucleoside analogue base pairs is examined using complementary threshold collision-induced dissociation techniques and computational methods. The nucleoside analogues examined here include the 5-halogenated forms of the canonical DNA and RNA cytidine nucleosides. Comparisons among these systems and to the analogous canonical base pairs previously examined enable the influence of 5-halogenation and the 2'-hydroxy substituent on the base pairing to be elucidated. 5-Halogenation of the cytosine nucleobases is found to enhance the strength of base pairing of DNA base pairs and generally weakens the base pairing for RNA base pairs. Trends in the strength of base pairing indicate that both inductive and polarizability effects influence the strength of base pairing. Overall, the present results suggest that 5-halogenation, and in particular, 5-fluorination and 5-iodination, provide effective means of stabilizing DNA i-motif conformations for applications in nanotechnology, whereas only 5-iodination is effective for stabilizing RNA i-motif conformations but the enhancement in stability is less significant.
Collapse
Affiliation(s)
- M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Yakubu S Seidu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - E Israel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
4
|
Seidu YS, Roy HA, Rodgers MT. Influence of 5-Methylation and the 2'- and 3'-Hydroxy Substituents on the Base Pairing Energies of Protonated Cytidine Nucleoside Analogue Base Pairs: Implications for the Stabilities of i-Motif Structures. J Phys Chem A 2021; 125:5939-5955. [PMID: 34228469 DOI: 10.1021/acs.jpca.1c04303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Repetitive nucleic acid sequences, which occur in abundance throughout the mammalian genome, are of enormous research interest due to their potential to adopt fascinating and unusual molecular structures such as the i-motif. In remarkable contrast to the DNA double helix, i-motif conformations are stabilized by protonated cytosine base pairs, (Cyt)H+(Cyt), that are centrally located in the core of the i-motif and intercalated vertically in an antiparallel fashion. An in-depth understanding of how modifications influence the stability of i-motif conformations is a prerequisite to understanding their biological functions and the development of effective means of tuning their stability for specific medical and technological applications. Here, the influence of the 2'- and 3'-hydroxy substituents of the sugar moieties and 5-methylation of the cytosine nucleobases on the base-pairing interactions of protonated cytidine nucleoside analogue base pairs, (xCyd)H+(xCyd), are examined by complementary threshold collision-induced dissociation techniques and computational methods. The xCyd nucleosides examined include the canonical DNA and RNA cytidine nucleosides, 2'-deoxycytidine (dCyd) and cytidine (Cyd), as well as several modified cytidine nucleoside analogues, 2',3'-dideoxycytidine (ddCyd), 5-methyl-2'-deoxycytidine (m5dCyd), and 5-methylcytidine (m5Cyd). Comparisons among these model base pairs indicate that the 2'- and 3'-hydroxy substituents of the sugar moieties have very little influence on the strength of the base-pairing interactions, whereas 5-methylation of the cytosine nucleobases is found to enhance the strength of the base-pairing interactions. The increase in stability resulting from 5-methylation is only modest but is more than twice as large for the DNA than RNA protonated cytidine base pair. Overall, present results suggest that canonical DNA i-motif conformations should be more stable than analogous RNA i-motif conformations and that 5-methylation of cytosine residues, a significant epigenetic marker, provides greater stabilization to DNA than RNA i-motif conformations.
Collapse
Affiliation(s)
- Yakubu S Seidu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - H A Roy
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
5
|
He CC, Hamlow LA, Zhu Y, Nei YW, Fan L, McNary CP, Maître P, Steinmetz V, Schindler B, Compagnon I, Armentrout PB, Rodgers MT. Structural and Energetic Effects of O2'-Ribose Methylation of Protonated Pyrimidine Nucleosides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2318-2334. [PMID: 31435890 DOI: 10.1007/s13361-019-02300-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
The 2'-substituents distinguish DNA from RNA nucleosides. 2'-O-methylation occurs naturally in RNA and plays important roles in biological processes. Such 2'-modifications may alter the hydrogen-bonding interactions of the nucleoside and thus may affect the conformations of the nucleoside in an RNA chain. Structures of the protonated 2'-O-methylated pyrimidine nucleosides were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy, assisted by electronic structure calculations. The glycosidic bond stabilities of the protonated 2'-O-methylated pyrimidine nucleosides, [Nuom+H]+, were also examined and compared to their DNA and RNA nucleoside analogues via energy-resolved collision-induced dissociation (ER-CID). The preferred sites of protonation of the 2'-O-methylated pyrimidine nucleosides parallel their canonical DNA and RNA nucleoside analogues, [dNuo+H]+ and [Nuo+H]+, yet their nucleobase orientation and sugar puckering differ. The glycosidic bond stabilities of the protonated pyrimidine nucleosides follow the order: [dNuo+H]+ < [Nuo+H]+ < [Nuom+H]+. The slightly altered structures help explain the stabilization induced by 2'-O-methylation of the pyrimidine nucleosides.
Collapse
Affiliation(s)
- C C He
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - L A Hamlow
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Y Zhu
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - Y-W Nei
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - L Fan
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA
| | - C P McNary
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - P Maître
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - V Steinmetz
- Laboratoire de Chimie Physique (UMR8000), Université Paris-Sud, CNRS, Université Paris Saclay, 91405, Orsay, France
| | - B Schindler
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France
| | - I Compagnon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France
| | - P B Armentrout
- Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, MI, 48202, USA.
| |
Collapse
|
6
|
Hamlow LA, Nei YW, Wu RR, Gao J, Steill JD, Berden G, Oomens J, Rodgers MT. Impact of Sodium Cationization on Gas-Phase Conformations of DNA and RNA Cytidine Mononucleotides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1758-1767. [PMID: 31286444 DOI: 10.1007/s13361-019-02274-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 06/09/2023]
Abstract
Gas-phase conformations of the sodium-cationized forms of the 2'-deoxycytidine and cytidine mononucleotides, [pdCyd+Na]+ and [pCyd+Na]+, are examined by infrared multiple photon dissociation action spectroscopy. Complimentary electronic structure calculations at the B3LYP/6-311+G(2d,2p)//B3LYP/6-311+G(d,p) level of theory provide candidate conformations and their respective predicted IR spectra for comparison across the IR fingerprint and hydrogen-stretching regions. Comparisons of the predicted IR spectra and the measured infrared multiple photon dissociation action spectra provide insight into the impact of sodium cationization on intrinsic mononucleotide structure. Further, comparison of present results with those reported for the sodium-cationized cytidine nucleoside analogues elucidates the impact of the phosphate moiety on gas-phase structure. Across the neutral, protonated, and sodium-cationized cytidine mononucleotides, a preference for stabilization of the phosphate moiety and nucleobase orientation is observed, although the details of this stabilization differ with the state of cationization. Several low-energy conformations of [pdCyd+Na]+ and [pCyd+Na]+ involving several different orientations of the phosphate moiety and sugar puckering modes are observed experimentally.
Collapse
Affiliation(s)
- L A Hamlow
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - Y-W Nei
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - R R Wu
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| | - J Gao
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, Netherlands
| | - J D Steill
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, Netherlands
| | - G Berden
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, Netherlands
| | - J Oomens
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Toernooiveld 7c, 6525 ED, Nijmegen, Netherlands
| | - M T Rodgers
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA.
| |
Collapse
|