1
|
Walker JN, Gautam AKS, Matouschek A, Brodbelt JS. Structural Analysis of the 20S Proteasome Using Native Mass Spectrometry and Ultraviolet Photodissociation. J Proteome Res 2024; 23:5438-5448. [PMID: 39475212 DOI: 10.1021/acs.jproteome.4c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Owing to the role of the 20S proteasome in a wide spectrum of pathologies, including neurodegenerative disorders, proteasome-associated autoinflammatory syndromes (PRAAS), and cardiovascular diseases, understanding how its structure and composition contribute to dysfunction is crucial. As a 735 kDa protein assembly, the 20S proteasome facilitates normal cellular proteostasis by degrading oxidized and misfolded proteins. Declined proteasomal activity, which can be attributed to perturbations in the structural integrity of the 20S proteasome, is considered one of the main contributors to multiple proteasome-related diseases. Devising methods to characterize the structures of 20S proteasomes provides necessary insight for the development of drugs and inhibitors that restore proper proteasomal function. Here, native mass spectrometry was combined with multiple dissociation techniques, including ultraviolet photodissociation (UVPD), to identify the protein subunits comprising the 20S proteasome. UVPD, demonstrating an ability to uncover structural features of large (>300 kDa) macromolecular complexes, provided complementary information to conventional collision-based methods. Additionally, variable-temperature electrospray ionization was combined with UV photoactivation to study the influence of solution temperature on the stability of the 20S proteasome.
Collapse
Affiliation(s)
- Jada N Walker
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Amit K S Gautam
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Matouschek
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Qian K, Hanf B, Cummins C, Fiedler D. Monodisperse Chemical Oligophosphorylation of Peptides via Protected Oligophosphorimidazolide Reagents. Angew Chem Int Ed Engl 2024:e202419147. [PMID: 39625829 DOI: 10.1002/anie.202419147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Indexed: 12/17/2024]
Abstract
Protein poly- and oligophosphorylation are recently discovered post-translational modifications that remain poorly characterized due to (1) the difficulty of extracting endogenously polyphosphorylated species without degradation and (2) the absence of synthetic and analytical tools to prepare and characterize poly- and oligophosphorylated species in biochemical contexts. Herein, we report a methodology for the selective oligophosphorylation of peptides with monodisperse phosphate chain lengths (Pn=3-6). A library of oligophosphorimidazolide (oligoP-imidazolide) reagents featuring benzyl and o-nitrophenylethyl protecting groups was synthesized in moderate-to-good yields (65-93 %). These oligoP-imidazolide reagents enabled the selective and simultaneous conjugation of multiple phosphate units to phosphoryl nucleophiles, circumventing tedious iterative processes. The generalizability of this approach is illustrated by a substrate scope study that includes several biologically relevant phosphopeptide sequences, culminating in the synthesis of >60 examples of peptide oligophosphates (Pn=2-6). Moreover, we report the preparation of oligoP-diimidazolides (Pn=3-5) and discuss their application in generating unique condensed phosphate-peptide conjugates. We also demonstrate that human phospho-ubiquitin (pS65-Ub) is amenable to functionalization by our reagents. Overall, we envision the methods described here will enable future studies that characterize these newly discovered but poorly understood phosphorylation modes.
Collapse
Affiliation(s)
- Kevin Qian
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA-02139, United States of America
| | - Björn Hanf
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Germany, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Christopher Cummins
- Department of Chemistry, Massachusetts Institute of Technology (MIT), 77 Massachusetts Ave., Cambridge, MA-02139, United States of America
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Germany, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
3
|
Villacob RA, Feizi N, Beno SC, Solouki T. Collision-Induced Unfolding, Tandem MS, Bottom-up Proteomics, and Interactomics for Identification of Protein Complexes in Native Surface Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:13-30. [PMID: 38095581 DOI: 10.1021/jasms.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Endogenously occurring salts and nonvolatile matrix components in untreated biological surfaces can suppress protein ionization and promote adduct formation, challenging protein identification. Characterization of labile proteins within biological specimens is particularly demanding because additional purification or sample treatment steps can be time-intensive and can disrupt noncovalent interactions. It is demonstrated that the combined use of collision-induced unfolding, tandem mass spectrometry, and bottom-up proteomics improves protein characterization in native surface mass spectrometry (NSMS). This multiprong analysis is achieved by acquiring NSMS, MS/MS, ion mobility (IM), and bottom-up proteomics data from a single surface extracted sample. The validity of this multiprong approach was confirmed by the successful characterization of nine surface-deposited proteins, with molecular weights ranging from 8 to 147 kDa, in two separate mixtures. Bottom-up proteomics provided a list of proteins to match against observed proteins in NSMS and their detected subunits in tandem MS. The method was applied to characterize endogenous proteins from untreated chicken liver samples. The subcapsular liver sampling for NSMS analysis allowed for the detection of endogenous proteins with molecular weights of up to ∼220 kDa. Moreover, using IM-MS, collision cross sections and collision-induced unfolding pathways of enzymatic proteins and protein complexes of up to 145 kDa were obtained.
Collapse
Affiliation(s)
- Raul A Villacob
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Neda Feizi
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Sarah C Beno
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
4
|
Phung W, Bakalarski CE, Hinkle TB, Sandoval W, Marty MT. UniDec Processing Pipeline for Rapid Analysis of Biotherapeutic Mass Spectrometry Data. Anal Chem 2023; 95:11491-11498. [PMID: 37478487 DOI: 10.1021/acs.analchem.3c02010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Recent advances in native mass spectrometry (MS) and denatured intact protein MS have made these techniques essential for biotherapeutic characterization. As MS analysis has increased in throughput and scale, new data analysis workflows are needed to provide rapid quantitation from large datasets. Here, we describe the UniDec processing pipeline (UPP) for the analysis of batched biotherapeutic intact MS data. UPP is built into the UniDec software package, which provides fast processing, deconvolution, and peak detection. The user and programming interfaces for UPP read a spreadsheet that contains the data file names, deconvolution parameters, and quantitation settings. After iterating through the spreadsheet and analyzing each file, it returns a spreadsheet of results and HTML reports. We demonstrate the use of UPP to measure the correct pairing percentage on a set of bispecific antibody data and to measure drug-to-antibody ratios from antibody-drug conjugates. Moreover, because the software is free and open-source, users can easily build on this platform to create customized workflows and calculations. Thus, UPP provides a flexible workflow that can be deployed in diverse settings and for a wide range of biotherapeutic applications.
Collapse
Affiliation(s)
- Wilson Phung
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Corey E Bakalarski
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Trent B Hinkle
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Wendy Sandoval
- Microchemistry, Proteomics, and Lipidomics Department, Genentech, Inc., South San Francisco, California 94080, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry and the Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Villacob RA, Egbejiogu BC, Feizi N, Hogan C, Murray KK, Solouki T. Native Mass Spectrometry and Collision-Induced Unfolding of Laser-Ablated Proteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:2215-2225. [PMID: 36346890 DOI: 10.1021/jasms.2c00184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Infrared laser ablation sample transfer (LAST) was used to collect samples from solid surfaces for mass spectrometry under native spray conditions. Native mass spectrometry was utilized to probe the charge states and collision-induced unfolding (CIU) characteristics of bovine serum albumin (BSA), bovine hemoglobin (BHb), and jack-bean concanavalin A (ConA) via direct injection electrospray, after liquid extraction surface sampling, and after LAST. Each protein was deposited from solution on solid surfaces and laser-ablated for off-line analysis or sampled for online analysis. It was found that the protein ion gas-phase charge-state distributions were comparable for direct infusion, liquid extraction, and laser ablation experiments. Moreover, calculated average collision cross section (CCS) values from direct injection, liquid extraction, and laser ablation experiments were consistent with previously reported literature values. Additionally, an equivalent number of mobility features and conformational turnovers were identified from unfolding pathways from all three methods for all charge states of each protein analyzed in this work. The presented work suggests that laser ablation yields intact proteins (BSA, BHb, and ConA), is compatible with native mass spectrometry, and could be suitable for spatially resolved interrogation of unfolding pathways of proteins.
Collapse
Affiliation(s)
| | | | - Neda Feizi
- Baylor University, Waco, Texas 76706, United States
| | - Cole Hogan
- Baylor University, Waco, Texas 76706, United States
| | - Kermit K Murray
- Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | |
Collapse
|
6
|
Abstract
Shelterin is a multiprotein complex that plays central roles in telomere biology. Mutations in shelterin result in premature aging diseases and familial cancer predisposition. Mechanistic understanding of these so-called telomereopathies is hampered by our lack of knowledge regarding the structure and stoichiometry of shelterin. Here, we use multiple methods to probe the stoichiometry and conformational states of shelterin and reveal that it forms a fully dimeric complex with extensive conformational heterogeneity. Our results highlight the dynamic nature of this essential complex and explain why its high-resolution structure determination has yet to be achieved. Human shelterin is a six-subunit complex—composed of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1—that binds telomeres, protects them from the DNA-damage response, and regulates the maintenance of telomeric DNA. Although high-resolution structures have been generated of the individual structured domains within shelterin, the architecture and stoichiometry of the full complex are currently unknown. Here, we report the purification of shelterin subcomplexes and reconstitution of the entire complex using full-length, recombinant subunits. By combining negative-stain electron microscopy (EM), cross-linking mass spectrometry (XLMS), AlphaFold modeling, mass photometry, and native mass spectrometry (MS), we obtain stoichiometries as well as domain-scale architectures of shelterin subcomplexes and determine that they feature extensive conformational heterogeneity. For POT1/TPP1 and POT1/TPP1/TIN2, we observe high variability in the positioning of the POT1 DNA-binding domain, the TPP1 oligonucleotide/oligosaccharide–binding (OB) fold, and the TIN2 TRFH domain with respect to the C-terminal domains of POT1. Truncation of unstructured linker regions in TIN2, TPP1, and POT1 did not reduce the conformational variability of the heterotrimer. Shelterin and TRF1-containing subcomplexes form fully dimeric stoichiometries, even in the absence of DNA substrates. Shelterin and its subcomplexes showed extensive conformational variability, regardless of the presence of DNA substrates. We conclude that shelterin adopts a multitude of conformations and argue that its unusual architectural variability is beneficial for its many functions at telomeres.
Collapse
|
7
|
Lusci G, Pivetta T, Carucci C, Parsons DF, Salis A, Monduzzi M. BSA fragmentation specifically induced by added electrolytes: An electrospray ionization mass spectrometry investigation. Colloids Surf B Biointerfaces 2022; 218:112726. [PMID: 35914467 DOI: 10.1016/j.colsurfb.2022.112726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/16/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Biointerfaces are significantly affected by electrolytes according to the Hofmeister series. This work reports a systematic investigation on the effect of different metal chlorides, sodium and potassium bromides, iodides and thiocyanates, on the ESI/MS spectra of bovine serum albumin (BSA) in aqueous solution at pH = 2.7. The concentration of each salt was varied to maximize the quality of the ESI/MS spectrum, in terms of peak intensity and bell-shaped profile. The ESI/MS spectra of BSA in the absence and in the presence of salts showed a main protein pattern characterized by the expected mass of 66.5 kDa, except the case of BSA/RbCl (mass 65.3 kDa). In all systems we observed an additional pattern, characterized by at least three peaks with low intensity, whose deconvolution led to suggest the formation of a BSA fragment with a mass of 19.2 kDa. Only NaCl increased the intensity of the peaks of the main BSA pattern, while minimizing that of the fragment. NaCl addition seems to play a crucial role in stabilizing the BSA ionized interface against hydrolysis of peptide bonds, through different synergistic mechanisms. To quantify the observed specific electrolyte effects, two "Hofmeister" parameters (Hs and Ps) are proposed. They are obtained using the ratio of (BSA-Salt)/BSA peak intensities for both the BSA main pattern and for its fragment. SYNOPSIS: NaCl stabilizes BSA ion and almost prevents fragmentation due to denaturing pH.
Collapse
Affiliation(s)
- Gloria Lusci
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy
| | - Tiziana Pivetta
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy
| | - Cristina Carucci
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy
| | - Drew Francis Parsons
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| | - Andrea Salis
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| | - Maura Monduzzi
- Dept. Chemical and Geological Science, University of Cagliari, Cittadella Universitaria, S.S. 554 bivio Sestu, 09042 Monserrato, Cagliari, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia 3, 50019, Sesto Fiorentino (FI), Italy. Unità Operativa University of Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato (CA), Italy.
| |
Collapse
|
8
|
Abstract
Native mass spectrometry (MS) is aimed at preserving and determining the native structure, composition, and stoichiometry of biomolecules and their complexes from solution after they are transferred into the gas phase. Major improvements in native MS instrumentation and experimental methods over the past few decades have led to a concomitant increase in the complexity and heterogeneity of samples that can be analyzed, including protein-ligand complexes, protein complexes with multiple coexisting stoichiometries, and membrane protein-lipid assemblies. Heterogeneous features of these biomolecular samples can be important for understanding structure and function. However, sample heterogeneity can make assignment of ion mass, charge, composition, and structure very challenging due to the overlap of tens or even hundreds of peaks in the mass spectrum. In this review, we cover data analysis, experimental, and instrumental advances and strategies aimed at solving this problem, with an in-depth discussion of theoretical and practical aspects of the use of available deconvolution algorithms and tools. We also reflect upon current challenges and provide a view of the future of this exciting field.
Collapse
Affiliation(s)
- Amber D. Rolland
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA 97403-1252
| |
Collapse
|
9
|
Abstract
Native mass spectrometry (MS) involves the analysis and characterization of macromolecules, predominantly intact proteins and protein complexes, whereby as much as possible the native structural features of the analytes are retained. As such, native MS enables the study of secondary, tertiary, and even quaternary structure of proteins and other biomolecules. Native MS represents a relatively recent addition to the analytical toolbox of mass spectrometry and has over the past decade experienced immense growth, especially in enhancing sensitivity and resolving power but also in ease of use. With the advent of dedicated mass analyzers, sample preparation and separation approaches, targeted fragmentation techniques, and software solutions, the number of practitioners and novel applications has risen in both academia and industry. This review focuses on recent developments, particularly in high-resolution native MS, describing applications in the structural analysis of protein assemblies, proteoform profiling of─among others─biopharmaceuticals and plasma proteins, and quantitative and qualitative analysis of protein-ligand interactions, with the latter covering lipid, drug, and carbohydrate molecules, to name a few.
Collapse
Affiliation(s)
- Sem Tamara
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Maurits A. den Boer
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584
CH Utrecht, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
10
|
Sivinski J, Ngo D, Zerio CJ, Ambrose AJ, Watson ER, Kaneko LK, Kostelic MM, Stevens M, Ray AM, Park Y, Wu C, Marty MT, Hoang QQ, Zhang DD, Lander GC, Johnson SM, Chapman E. Allosteric differences dictate GroEL complementation of E. coli. FASEB J 2022; 36:e22198. [PMID: 35199390 PMCID: PMC8887798 DOI: 10.1096/fj.202101708rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/11/2022]
Abstract
GroES/GroEL is the only bacterial chaperone essential under all conditions, making it a potential antibiotic target. Rationally targeting ESKAPE GroES/GroEL as an antibiotic strategy necessitates studying their structure and function. Herein, we outline the structural similarities between Escherichia coli and ESKAPE GroES/GroEL and identify significant differences in intra- and inter-ring cooperativity, required in the refolding cycle of client polypeptides. Previously, we observed that one-half of ESKAPE GroES/GroEL family members could not support cell viability when each was individually expressed in GroES/GroEL-deficient E. coli cells. Cell viability was found to be dependent on the allosteric compatibility between ESKAPE and E. coli subunits within mixed (E. coli and ESKAPE) tetradecameric GroEL complexes. Interestingly, differences in allostery did not necessarily result in differences in refolding rate for a given homotetradecameric chaperonin. Characterization of ESKAPE GroEL allostery, ATPase, and refolding rates in this study will serve to inform future studies focused on inhibitor design and mechanism of action studies.
Collapse
Affiliation(s)
- Jared Sivinski
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Duc Ngo
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Christopher J. Zerio
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Andrew J. Ambrose
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Edmond R. Watson
- Department of Integrative Structural and Computational
Biology, Scripps Research, La Jolla, CA, USA
| | - Lynn K. Kaneko
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Marius M. Kostelic
- The University of Arizona, Department of Chemistry and
Biochemistry, Tucson, AZ 85721
| | - Mckayla Stevens
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202
| | - Anne-Marie Ray
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202
| | - Yangshin Park
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202,Stark Neurosciences Research Institute, Indiana University
School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202,Department of Neurology, Indiana University School of
Medicine. 635 Barnhill Drive, Indianapolis, IN 46202
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale
University, New Haven, CT 06520
| | - Michael T. Marty
- The University of Arizona, Department of Chemistry and
Biochemistry, Tucson, AZ 85721
| | - Quyen Q. Hoang
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202,Stark Neurosciences Research Institute, Indiana University
School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202,Department of Neurology, Indiana University School of
Medicine. 635 Barnhill Drive, Indianapolis, IN 46202
| | - Donna D. Zhang
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721
| | - Gabriel C. Lander
- Department of Integrative Structural and Computational
Biology, Scripps Research, La Jolla, CA, USA
| | - Steven M. Johnson
- Indiana University School of Medicine, Department of
Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department
of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ
85721,Corresponding author
, Phone: 520-626-2741
| |
Collapse
|
11
|
Swansiger AK, Marty MT, Prell JS. Fourier-Transform Approach for Reconstructing Macromolecular Mass Defect Profiles. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:172-180. [PMID: 34913687 DOI: 10.1021/jasms.1c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
State-of-the-art native mass spectrometry (MS) methods have been developed for analysis of highly heterogeneous intact complexes and have provided much insight into the structure and properties of noncovalent assemblies that can be difficult to study using denatured proteins. These native MS methods can often be used to study even highly polydisperse membrane proteins embedded in detergent micelles, nanodiscs, and other membrane mimics. However, characterizing highly polydisperse native complexes which are also heterogeneous presents additional challenges for native MS. Macromolecular mass defect (MMD) analysis aims to characterize heterogeneous ion populations obfuscated by adduct polydispersity and reveal the distribution of "base" masses, and was recently implemented in the Bayesian analysis software UniDec. Here, we illustrate an alternative, orthogonal MMD analysis method implemented in the deconvolution program iFAMS, which takes advantage of Fourier transform (FT) to deconvolve low-resolution data with few user-input parameters and which can provide high quality results even for mass spectra with a signal-to-noise ratio of ∼5:1. Agreement between this method, which is based on frequency-domain data, and the mass-domain algorithm of UniDec provides strong evidence that both methods can accurately characterize highly polydisperse and heterogeneous ion populations. The FT algorithm is expected to be very useful in characterizing many types of analytes ranging from membrane proteins to polymer-conjugated proteins, branched polymers, and other large analytes, as well as for reconstructing isotope profiles for highly complex but still isotope-resolved mass spectra.
Collapse
Affiliation(s)
- Andrew K Swansiger
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials Science Institute, University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
12
|
Abstract
Intact protein, top-down, and native mass spectrometry (MS) generally requires the deconvolution of electrospray ionization (ESI) mass spectra to assign the mass of components from their charge state distribution. For small, well-resolved proteins, the charge can usually be assigned based on the isotope distribution. However, it can be challenging to determine charge states with larger proteins that lack isotopic resolution, in complex mass spectra with overlapping charge states, and in native spectra that show adduction. To overcome these challenges, UniDec uses Bayesian deconvolution to assign charge states and to create a zero-charge mass distribution. UniDec is fast, user-friendly, and includes a range of advanced tools to assist in intact protein, top-down, and native MS data analysis. This chapter provides a step-by-step protocol and an in-depth explanation of the UniDec algorithm, and highlights the parameters that affect the deconvolution. It also covers advanced data analysis tools, such as macromolecular mass defect analysis and tools for assigning potential PTMs and bound ligands. Overall, this chapter provides users with a deeper understanding of UniDec, which will enhance the quality of deconvolutions and allow for more intricate MS experiments.
Collapse
Affiliation(s)
- Marius M Kostelic
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
- Bio5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
13
|
Kaulich PT, Winkels K, Kaulich TB, Treitz C, Cassidy L, Tholey A. MSTopDiff: A Tool for the Visualization of Mass Shifts in Deconvoluted Top-Down Proteomics Data for the Database-Independent Detection of Protein Modifications. J Proteome Res 2021; 21:20-29. [PMID: 34818005 DOI: 10.1021/acs.jproteome.1c00766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Top-down proteomics analyzes intact proteoforms with all of their post-translational modifications and genetic and RNA splice variants. In addition, modifications introduced either deliberately or inadvertently during sample preparation, that is, via oxidation, alkylation, or labeling reagents, or through the formation of noncovalent adducts (e.g., detergents) further increase the sample complexity. To facilitate the recognition of protein modifications introduced during top-down analysis, we developed MSTopDiff, a software tool with a graphical user interface written in Python, which allows one to detect protein modifications by calculating and visualizing mass differences in top-down data without the prerequisite of a database search. We demonstrate the successful application of MSTopDiff for the detection of artifacts originating from oxidation, formylation, overlabeling during isobaric labeling, and adduct formation with cations or sodium dodecyl sulfate. MSTopDiff offers several modes of data representation using deconvoluted MS1 or MS2 spectra. In addition to artificial modifications, the tool enables the visualization of biological modifications such as phosphorylation and acetylation. MSTopDiff provides an overview of the artificial and biological modifications in top-down proteomics samples, which makes it a valuable tool in quality control of standard workflows and for parameter evaluation during method development.
Collapse
Affiliation(s)
- Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Konrad Winkels
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Tobias B Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Christian Treitz
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| |
Collapse
|
14
|
Kostelic MM, Zak CK, Liu Y, Chen VS, Wu Z, Sivinski J, Chapman E, Marty MT. UniDecCD: Deconvolution of Charge Detection-Mass Spectrometry Data. Anal Chem 2021; 93:14722-14729. [PMID: 34705424 PMCID: PMC8628365 DOI: 10.1021/acs.analchem.1c03181] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Native mass spectrometry (MS) has become a versatile tool for characterizing high-mass complexes and measuring biomolecular interactions. Native MS usually requires the resolution of different charge states produced by electrospray ionization to measure the mass, which is difficult for highly heterogeneous samples that have overlapping and unresolvable charge states. Charge detection-mass spectrometry (CD-MS) seeks to address this challenge by simultaneously measuring the charge and m/z for isolated ions. However, CD-MS often shows uncertainty in the charge measurement that limits the resolution. To overcome this charge state uncertainty, we developed UniDecCD (UCD) software for computational deconvolution of CD-MS data, which significantly improves the resolution of CD-MS data. Here, we describe the UCD algorithm and demonstrate its ability to improve the CD-MS resolution of proteins, megadalton viral capsids, and heterogeneous nanodiscs made from natural lipid extracts. UCD provides a user-friendly interface that will increase the accessibility of CD-MS technology and provide a valuable new computational tool for CD-MS data analysis.
Collapse
Affiliation(s)
- Marius M. Kostelic
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Ciara K. Zak
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
| | - Yang Liu
- REGENXBIO Inc. 9804 Medical Center Dr, Rockville, MD 20850, USA
| | | | - Zhuchun Wu
- REGENXBIO Inc. 9804 Medical Center Dr, Rockville, MD 20850, USA
| | - Jared Sivinski
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721
| | - Eli Chapman
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85721
| | - Michael T. Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA
- Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
15
|
Abstract
Iron-sulfur clusters constitute a large and widely distributed group of protein cofactors that play key roles in a wide range of metabolic processes. The inherent reactivity of iron-sulfur clusters toward small molecules, for example, O2, NO, or free Fe, makes them ideal for sensing changes in the cellular environment. Nondenaturing, or native, MS is unique in its ability to preserve the noncovalent interactions of many (if not all) species, including stable intermediates, while providing accurate mass measurements in both thermodynamic and kinetic experimental regimes. Here, we provide practical guidance for the study of iron-sulfur proteins by native MS, illustrated by examples where it has been used to unambiguously determine the type of cluster coordinated to the protein framework. We also describe the use of time-resolved native MS to follow the kinetics of cluster conversion, allowing the elucidation of the precise series of molecular events for all species involved. Finally, we provide advice on a unique approach to a typical thermodynamic titration, uncovering early, quasi-stable, intermediates in the reaction of a cluster with nitric oxide, resulting in cluster nitrosylation.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, UK
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich, UK.
| |
Collapse
|
16
|
Marty MT. Nanodiscs and Mass Spectrometry: Making Membranes Fly. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2020; 458:116436. [PMID: 33100891 PMCID: PMC7584149 DOI: 10.1016/j.ijms.2020.116436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cells are surrounded by a protective lipid bilayer membrane, and membrane proteins in the bilayer control the flow of chemicals, information, and energy across this barrier. Many therapeutics target membrane proteins, and some directly target the lipid membrane itself. However, interactions within biological membranes are challenging to study due to their heterogeneity and insolubility. Mass spectrometry (MS) has become a powerful technique for studying membrane proteins, especially how membrane proteins interact with their surrounding lipid environment. Although detergent micelles are the most common membrane mimetic, nanodiscs are emerging as a promising platform for MS. Nanodiscs, nanoscale lipid bilayers encircled by two scaffold proteins, provide a controllable lipid bilayer for solubilizing membrane proteins. This Young Scientist Perspective focuses on native MS of intact nanodiscs and highlights the unique experiments enabled by making membranes fly, including studying membrane protein-lipid interactions and exploring the specificity of fragile transmembrane peptide complexes. It will also explore current challenges and future perspectives for interfacing nanodiscs with MS.
Collapse
Affiliation(s)
- Michael T Marty
- Department of Chemistry and Biochemistry and Bio5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
17
|
Research and Verification of Convolutional Neural Network Lightweight in BCI. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:5916818. [PMID: 32802151 PMCID: PMC7416271 DOI: 10.1155/2020/5916818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Accepted: 06/30/2020] [Indexed: 11/17/2022]
Abstract
With the increasing of depth and complexity of the convolutional neural network, parameter dimensionality and volume of computing have greatly restricted its applications. Based on the SqueezeNet network structure, this study introduces a block convolution and uses channel shuffle between blocks to alleviate the information jam. The method is aimed at reducing the dimensionality of parameters of in an original network structure and improving the efficiency of network operation. The verification performance of the ORL dataset shows that the classification accuracy and convergence efficiency are not reduced or even slightly improved when the network parameters are reduced, which supports the validity of block convolution in structure lightweight. Moreover, using a classic CIFAR-10 dataset, this network decreases parameter dimensionality while accelerating computational processing, with excellent convergence stability and efficiency when the network accuracy is only reduced by 1.3%.
Collapse
|
18
|
Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteomics 2020; 222:103799. [DOI: 10.1016/j.jprot.2020.103799] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/23/2020] [Accepted: 04/25/2020] [Indexed: 12/15/2022]
|
19
|
Marty MT. A Universal Score for Deconvolution of Intact Protein and Native Electrospray Mass Spectra. Anal Chem 2020; 92:4395-4401. [PMID: 32069030 DOI: 10.1021/acs.analchem.9b05272] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The growing use of intact protein mass analysis, top-down proteomics, and native mass spectrometry have created a need for improved data analysis pipelines for deconvolution of electrospray (ESI) mass spectra containing multiple charge states and potentially without isotopic resolution. Although there are multiple deconvolution algorithms, there is no consensus for how to judge the quality of the deconvolution, and many scoring schemes are not published. Here, an intuitive universal score (UniScore) for ESI deconvolution is presented. The UniScore is the weighted average of deconvolution scores (DScores) for each peak multiplied by the R2 of the fit to the data. Each DScore is composed of separate components to score (1) the uniqueness and fit of the deconvolution to the data, (2) the consistency of the peak shape across different charge states, (3) the smoothness of the charge state distribution, and (4) symmetry and separation of the peak. Example scores are provided for a range of experimental and simulated data. By providing a means of judging the quality of the overall deconvolution as well as individual mass peaks, the UniScore scheme provides a foundation for standardizing ESI data analysis of larger molecules and enabling the use of ESI deconvolution in automated data analysis pipelines.
Collapse
Affiliation(s)
- Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|