1
|
Shepherd SO, Green AW, Resendiz ES, Newton KR, Kurulugama RT, Prell JS. Effects of Nano-Electrospray Ionization Emitter Position on Unintentional In-Source Activation of Peptide and Protein Ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:498-507. [PMID: 38374644 PMCID: PMC11315166 DOI: 10.1021/jasms.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Native ion mobility-mass spectrometry (IM-MS) typically introduces protein ions into the gas phase through nano-electrospray ionization (nESI). Many nESI setups have mobile stages for tuning the ion signal and extent of co-solute and salt adduction. However, tuning the position of the emitter capillary in nESI can have unintended downstream consequences for collision-induced unfolding or collision-induced dissociation (CIU/D) experiments. Here, we show that relatively small variations in the nESI emitter position can shift the midpoint (commonly called the "CID50" or "CIU50") potential of CID breakdown curves and CIU transitions by as much as 8 V on commercial instruments. A spatial "map" of the shift in CID50 for the loss of heme from holomyoglobin onto the emitter position on a Waters Synapt G2-Si mass spectrometer shows that emitter positions closer to the instrument inlet can result in significantly greater in-source activation, whereas different effects are found on an Agilent 6545XT instrument for the ions studied. A similar effect is observed for CID of the singly protonated leucine enkephalin peptide and Shiga toxin 1 subunit B homopentamer on the Waters Synapt G2-Si instrument. In-source activation effects on a Waters Synapt G2-Si are also investigated by examining the RMSD between CIU fingerprints acquired at different emitter positions and the shifts in CIU50 for structural transitions of bovine serum albumin and NIST monoclonal antibody.
Collapse
Affiliation(s)
- Samantha O. Shepherd
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA, 97403-1253
| | - Austin W. Green
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA, 97403-1253
| | - Elizabeth S. Resendiz
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA, 97403-1253
| | - Kenneth R. Newton
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA, 97403-1253
- 5301 Stevens Creek Blvd, Agilent Technologies, Santa Clara, 95051, CA, USA
| | | | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene, OR, USA, 97403-1253
- Materials Science Institute, 1252 University of Oregon, Eugene, OR, USA, 97403-1252
| |
Collapse
|
2
|
Gozzo TA, Bush MF. Quantitatively Differentiating Antibodies Using Charge-State Manipulation, Collisional Activation, and Ion Mobility-Mass Spectrometry. Anal Chem 2024; 96:505-513. [PMID: 38146701 DOI: 10.1021/acs.analchem.3c04638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Antibody-based therapeutics continue to expand both in the number of products and in their use in patients. These heterogeneous proteins challenge traditional drug characterization strategies, but ion mobility (IM) and mass spectrometry (MS) approaches have eased the challenge of higher-order structural characterization. Energy-dependent IM-MS, e.g., collision-induced unfolding (CIU), has been demonstrated to be sensitive to subtle differences in structure. In this study, we combine a charge-reduction method, cation-to-anion proton-transfer reactions (CAPTR), with energy-dependent IM-MS and varied solution conditions to probe their combined effects on the gas-phase structures of IgG1κ and IgG4κ from human myeloma. CAPTR paired with MS-only analysis improves the confidence of charge-state assignments and the resolution of the interfering protein species. Collision cross-section distributions were determined for each of the charge-reduced products. Similarity scoring was used to quantitatively compare distributions determined from matched experiments analyzing samples of the two antibodies. Relative to workflows using energy-dependent IM-MS without charge-state manipulation, combining CAPTR and energy-dependent IM-MS enhanced the differentiation of these antibodies. Combined, these results indicate that CAPTR can benefit many aspects of antibody characterization and differentiation.
Collapse
Affiliation(s)
- Theresa A Gozzo
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
3
|
Cheung See Kit M, Cropley TC, Bleiholder C, Chouinard CD, Sobott F, Webb IK. The role of solvation on the conformational landscape of α-synuclein. Analyst 2023; 149:125-136. [PMID: 37982746 PMCID: PMC10760066 DOI: 10.1039/d3an01680c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Native ion mobility mass spectrometry has been used extensively to characterize ensembles of intrinsically disordered protein (IDP) conformers, but the extent to which the gaseous measurements provide realistic pictures of the solution conformations for such flexible proteins remains unclear. Therefore, we systematically studied the relationship between the solution and gaseous structural ensembles by measuring electrospray charge state and collision cross section (CCS) distributions for cationic and anionic forms of α-synuclein (αSN), an anionic protein in solution, as well as directly probed gas phase residue to residue distances via ion/ion reactions between gaseous α-synuclein cations and disulfonic acid linkers that form strong electrostatic bonds. We also combined results from in-solution protein crosslinking identified from native tandem mass spectrometry (MS/MS) with an initial αSN ensemble generated computationally by IDPConformerGenerator to generate an experimentally restrained solution ensemble of αSN. CCS distributions were directly calculated for the solution ensembles determined by NMR and compared to predicted gaseous conformers. While charge state and collision cross section distributions are useful for qualitatively describing the relative structural dynamics of proteins and major conformational changes induced by changes to solution states, the predicted and measured gas phase conformers include subpopulations that are significantly different than those expected from completely "freezing" solution conformations and preserving them in the gas phase. However, insights were gained on the various roles of solvent in stabilizing various conformers for extremely dynamic proteins like α-synuclein.
Collapse
Affiliation(s)
- Melanie Cheung See Kit
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA.
| | - Tyler C Cropley
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
| | - Christian Bleiholder
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, USA
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, USA
| | | | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Ian K Webb
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
4
|
Gadzuk-Shea MM, Hubbard EE, Gozzo TA, Bush MF. Sample pH Can Drift during Native Mass Spectrometry Experiments: Results from Ratiometric Fluorescence Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1675-1684. [PMID: 37405934 PMCID: PMC10563179 DOI: 10.1021/jasms.3c00147] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The ability of nanoelectrospray ionization (nanoESI) to generate a continuous flow of charged droplets relies on the electrolytic nature of the process. This electrochemistry can lead to the accumulation of redox products in the sample solution. This consequence can have significant implications for native mass spectrometry (MS), which aims to probe the structures and interactions of biomolecules in solution. Here, ratiometric fluorescence imaging and a pH-sensitive, fluorescent probe are used to quantify changes in solution pH during nanoESI under conditions relevant to native MS. Results show that the extent and rate of change in sample pH depends on several experimental parameters. There is a strong correlation between the extent and rate of change in solution pH and the magnitude of both the nanoESI current and electrolyte concentration. Smaller changes in solution pH are observed during experiments when a negative potential is applied than for those when a positive potential is applied. Finally, we make specific recommendations for designing native MS experiments that control for these effects.
Collapse
Affiliation(s)
- Meagan M. Gadzuk-Shea
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
- Current Affiliation: Discovery Biology, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Waltham, MA 02451
| | - Evan E. Hubbard
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
- Current Affiliation: Current Affiliation: Department of Chemistry, University of California, Riverside, California 92521
| | - Theresa A. Gozzo
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Matthew F Bush
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|
5
|
Zercher BP, Hong S, Roush AE, Feng Y, Bush MF. Are the Gas-Phase Structures of Molecular Elephants Enduring or Ephemeral? Results from Time-Dependent, Tandem Ion Mobility. Anal Chem 2023; 95:9589-9597. [PMID: 37294019 PMCID: PMC10549206 DOI: 10.1021/acs.analchem.3c01222] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The structural stability of biomolecules in the gas phase remains an important topic in mass spectrometry applications for structural biology. Here, we evaluate the kinetic stability of native-like protein ions using time-dependent, tandem ion mobility (IM). In these tandem IM experiments, ions of interest are mobility-selected after a first dimension of IM and trapped for up to ∼14 s. Time-dependent, collision cross section distributions are then determined from separations in a second dimension of IM. In these experiments, monomeric protein ions exhibited structural changes specific to both protein and charge state, whereas large protein complexes did not undergo resolvable structural changes on the timescales of these experiments. We also performed energy-dependent experiments, i.e., collision-induced unfolding, as a comparison for time-dependent experiments to understand the extent of unfolding. Collision cross section values observed in energy-dependent experiments using high collision energies were significantly larger than those observed in time-dependent experiments, indicating that the structures observed in time-dependent experiments remain kinetically trapped and retain some memory of their solution-phase structure. Although structural evolution should be considered for highly charged, monomeric protein ions, these experiments demonstrate that higher-mass protein ions can have remarkable kinetic stability in the gas phase.
Collapse
Affiliation(s)
- Benjamin P. Zercher
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Seoyeon Hong
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Addison E. Roush
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Yuan Feng
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| | - Matthew F. Bush
- University of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195-1700
| |
Collapse
|
6
|
Nash S, Vachet RW. Gas-Phase Unfolding of Protein Complexes Distinguishes Conformational Isomers. J Am Chem Soc 2022; 144:22128-22139. [PMID: 36414315 DOI: 10.1021/jacs.2c09573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Proteins can adopt different conformational states that are important for their biological function and, in some cases, can be responsible for their dysfunction. The essential roles that proteins play in biological systems make distinguishing the structural differences between these conformational states both fundamentally and practically important. Here, we demonstrate that collision-induced unfolding (CIU), in combination with ion mobility-mass spectrometry (IM-MS) measurements, distinguish subtly different conformational states for protein complexes. Using the open and closed states of the β-lactoglobulin (βLG) dimer as a model, we show that these two conformational isomers unfold during collisional activation to generate distinct states that are readily separated by IM-MS. Extensive molecular modeling of the CIU process reproduces the distinct unfolding intermediates and identifies the molecular details that explain why the two conformational states unfold in distinct ways. Strikingly, the open conformational state forms new electrostatic interactions upon collisional heating, while the closed state does not. These newly formed electrostatic interactions involve residues on the loop differentially positioned in the two βLG conformational isomers, highlighting that gas-phase unfolding pathways reflect aspects of solution structure. This combination of experiment and theory provides a path forward for distinguishing subtly different conformational isomers for protein complexes via gas-phase unfolding experiments. Our results also have implications for understanding how protein complexes dissociate in the gas phase, indicating that current models need to be refined to explain protein complex dissociation.
Collapse
Affiliation(s)
- Stacey Nash
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States.,Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003 United States
| |
Collapse
|
7
|
Rolland AD, Biberic LS, Prell JS. Investigation of Charge-State-Dependent Compaction of Protein Ions with Native Ion Mobility-Mass Spectrometry and Theory. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:369-381. [PMID: 35073092 PMCID: PMC11404549 DOI: 10.1021/jasms.1c00351] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The precise relationship between native gas-phase protein ion structure, charge, desolvation, and activation remains elusive. Much evidence supports the Charge Residue Model for native protein ions formed by electrospray ionization, but scaling laws derived from it relate only to overall ion size. Closer examination of drift tube CCSs across individual native protein ion charge state distributions (CSDs) reveals deviations from global trends. To investigate whether this is due to structure variation across CSDs or contributions of long-range charge-dipole interactions, we performed in vacuo force field molecular dynamics (MD) simulations of multiple charge conformers of three proteins representing a variety of physical and structural features: β-lactoglobulin, concanavalin A, and glutamate dehydrogenase. Results from these simulated ions indicate subtle structure variation across their native CSDs, although effects of these structural differences and long-range charge-dependent interactions on CCS are small. The structure and CCS of smaller proteins may be more sensitive to charge due to their low surface-to-volume ratios and reduced capacity to compact. Secondary and higher order structure from condensed-phase structures is largely retained in these simulations, supporting the use of the term "native-like" to describe results from native ion mobility-mass spectrometry experiments, although, notably, the most compact structure can be the most different from the condensed-phase structure. Collapse of surface side chains to self-solvate through formation of new hydrogen bonds is a major feature of gas-phase compaction and likely occurs during the desolvation process. Results from these MD simulations provide new insight into the relationship of gas-phase protein ion structure, charge, and CCS.
Collapse
Affiliation(s)
- Amber D Rolland
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lejla S Biberic
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
| | - James S Prell
- Department of Chemistry and Biochemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403-1253, United States
- Materials Science Institute, University of Oregon, 1252 University of Oregon, Eugene, Oregon 97403-1252, United States
| |
Collapse
|
8
|
Borotto NB, Osho KE, Richards TK, Graham KA. Collision-Induced Unfolding of Native-like Protein Ions Within a Trapped Ion Mobility Spectrometry Device. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:83-89. [PMID: 34870999 DOI: 10.1021/jasms.1c00273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Native mass spectrometry and collision-induced unfolding (CIU) workflows continue to grow in utilization due to their ability to rapidly characterize protein conformation and stability. To perform these experiments, the instrument must be capable of collisionally activating ions prior to ion mobility spectrometry (IMS) analyses. Trapped ion mobility spectrometry (TIMS) is an ion mobility implementation that has been increasingly adopted due to its inherently high resolution and reduced instrumental footprint. In currently deployed commercial instruments, however, typical modes of collisional activation do not precede IMS analysis, and thus, the instruments are incapable of performing CIU. In this work, we expand on a recently developed method of activating protein ions within the TIMS device and explore its analytical utility toward the unfolding of native-like protein ions. We demonstrate the unfolding of native-like ions of ubiquitin, cytochrome C, β-lactoglobulin, and carbonic anhydrase. These ions undergo extensive unfolding upon collisional activation. Additionally, the improved resolution provided by the TIMS separation uncovers previously obscured unfolding complexity.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Kemi E Osho
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | | | - Katherine A Graham
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
9
|
Gadkari VV, Ramírez CR, Vallejo DD, Kurulugama RT, Fjeldsted JC, Ruotolo BT. Enhanced Collision Induced Unfolding and Electron Capture Dissociation of Native-like Protein Ions. Anal Chem 2020; 92:15489-15496. [PMID: 33166123 PMCID: PMC7861131 DOI: 10.1021/acs.analchem.0c03372] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Native ion mobility-mass spectrometry (IM-MS) is capable of revealing much that remains unknown within the structural proteome, promising such information on refractory protein targets. Here, we report the development of a unique drift tube IM-MS (DTIM-MS) platform, which combines high-energy source optics for improved collision induced unfolding (CIU) experiments and an electromagnetostatic cell for electron capture dissociation (ECD). We measured a series of high precision collision cross section (CCS) values for protein and protein complex ions ranging from 6-1600 kDa, exhibiting an average relative standard deviation (RSD) of 0.43 ± 0.20%. Furthermore, we compare our CCS results to previously reported DTIM values, finding strong agreement across similarly configured instrumentation (average RSD of 0.82 ± 0.73%), and systematic differences for DTIM CCS values commonly used to calibrate traveling-wave IM separators (-3% average RSD). Our CIU experiments reveal that the modified DTIM-MS instrument described here achieves enhanced levels of ion activation when compared with any previously reported IM-MS platforms, allowing for comprehensive unfolding of large multiprotein complex ions as well as interplatform CIU comparisons. Using our modified DTIM instrument, we studied two protein complexes. The enhanced CIU capabilities enable us to study the gas phase stability of the GroEL 7-mer and 14-mer complexes. Finally, we report CIU-ECD experiments for the alcohol dehydrogenase tetramer, demonstrating improved sequence coverage by combining ECD fragmentation integrated over multiple CIU intermediates. Further improvements for such native top-down sequencing experiments were possible by leveraging IM separation, which enabled us to separate and analyze CID and ECD fragmentation simultaneously.
Collapse
Affiliation(s)
- Varun V Gadkari
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Carolina Rojas Ramírez
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Daniel D Vallejo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Ruwan T Kurulugama
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 98051, United States
| | - John C Fjeldsted
- Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, California 98051, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Donor MT, Shepherd SO, Prell JS. Rapid Determination of Activation Energies for Gas-Phase Protein Unfolding and Dissociation in a Q-IM-ToF Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:602-610. [PMID: 32126776 PMCID: PMC8063716 DOI: 10.1021/jasms.9b00055] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ion mobility-mass spectrometry has emerged as a powerful tool for interrogating a wide variety of chemical systems. Collision-induced unfolding (CIU), typically performed in time-of-flight instruments, has been utilized to obtain valuable qualitative insight into protein structure and illuminate subtle differences between related species. CIU experiments can be performed relatively quickly, but unfolding energy information obtained from them has not yet been interpreted quantitatively. While several methods can determine quantitative dissociation energetics for small molecules, clusters, and peptides, these methods have rarely been applied to proteins, and never to study unfolding. Here, we present a method to rapidly determine activation energies for protein unfolding and dissociation, built on a model for energy deposition during collisional activation. The method is validated by comparing activation energies for dissociation of three complexes with those obtained using blackbody infrared radiative dissociation (BIRD); values from the two methods are in agreement. Several protein monomers were unfolded using CIU, including multiple charge states of both cations and anions, and activation energies determined. ΔH⧧ and ΔS⧧ values are found to be correlated, leading to ΔG⧧ values that lie within a narrow range (∼70-80 kJ/mol) and vary more with charge state than with protein identity. ΔG⧧ is anticorrelated with charge density, highlighting the key role of Coulombic repulsion in gas-phase unfolding. Measured ΔG⧧ values are similar to those computed for proton transfer within small peptides, suggesting that proton transfer is the rate-limiting step in gas-phase unfolding and providing evidence of a link between the Mobile Proton model and CIU.
Collapse
Affiliation(s)
- Micah T. Donor
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene OR 97403-1253
| | - Samantha O. Shepherd
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene OR 97403-1253
| | - James S. Prell
- Department of Chemistry and Biochemistry, 1253 University of Oregon, Eugene OR 97403-1253
- Materials Science Institute, University of Oregon, 1252 University of Oregon, Eugene, OR 97403-1252
- Address reprint requests to James S. Prell, 1253 University of Oregon, Eugene, OR 97405, Tel: +1 (541) 346-2597,
| |
Collapse
|