1
|
Ma Y, Guo X, He Q, Liu L, Li Z, Zhao X, Gu W, Zhong Q, Li N, Yao G, Ma X. Integrated analysis of microRNA and messenger RNA expression profiles reveals functional microRNA in infectious bovine rhinotracheitis virus-induced mitochondrial damage in Madin-Darby bovine kidney cells. BMC Genomics 2024; 25:158. [PMID: 38331736 PMCID: PMC10851472 DOI: 10.1186/s12864-024-10042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/22/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Studies have confirmed that Infectious bovine rhinotracheitis virus (IBRV) infection induces mitochondrial damage. MicroRNAs (miRNAs) are a class of noncoding RNA molecules, which are involved in various biological processes and pathological changes associated with mitochondrial damage. It is currently unclear whether miRNAs participate in IBRV-induced mitochondrial damage in Madin-Darby bovine kidney (MDBK) cells. RESULTS In the present study, we used high-throughput sequencing technology, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to screen for mitochondria-related miRNAs and messenger RNAs (mRNAs). In total, 279 differentially expressed miRNAs and 832 differentially expressed mRNAs were identified in 6 hours (IBRV1) versus 24 hours (IBRV2) after IBRV infection in MDBK cells. GO and KEGG enrichment analysis revealed that 42 differentially expressed mRNAs and 348 target genes of differentially expressed miRNAs were correlated with mitochondrial damage, and the miRNA-mitochondria-related target genes regulatory network was constructed to elucidate their potential regulatory relationships. Among the 10 differentially expressed miRNAs, 8 showed expression patterns consistent with the high-throughput sequencing results. Functional validation results showed that overexpression of miR-10a and miR-182 aggravated mitochondrial damage, while inhibition of miR-10a and miR-182 alleviated mitochondrial damage. CONCLUSIONS This study not only revealed the expression changes of miRNAs and mRNAs in IBRV-infected MDBK cells, but also revealed possible biological regulatory relationship between them. MiR-10a and miR-182 may have the potential to be developed as biomarkers for the diagnosis and treatment of IBRV. Together, Together, these data and analyses provide additional insights into the roles of miRNA and mRNA in IBRV-induced mitochondria damage.
Collapse
Affiliation(s)
- Yingcai Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xueping Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qin He
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Lu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zelong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, 712100, China
| | - Wenxi Gu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Qi Zhong
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, 830011, China
| | - Na Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China
| | - Gang Yao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China.
| | - Xuelian Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China.
- Xinjiang key Laboratory of New Drug Study and Creation for Herbivorous Animal (XJ-KLNDSCHA), Xinjiang Agricultural University, Urumqi, 830052, China.
| |
Collapse
|
2
|
Chicoski LM, Fritzen JTT, Lorenzetti E, da Costa AR, Moro E, de Carvalho ER, Alfieri AF, Alfieri AA. Serological profile of respiratory viruses in unvaccinated steers upon their arrival at Brazilian feedlot facilities. Braz J Microbiol 2023; 54:3237-3244. [PMID: 37700145 PMCID: PMC10689696 DOI: 10.1007/s42770-023-01122-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 09/14/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV), bovine alphaherpesvirus 1 (BoAHV1), bovine respiratory syncytial virus (BRSV), and bovine parainfluenza virus 3 (BPIV-3) are involved in bovine respiratory disease. These viruses can infect the respiratory system and cause considerable economic losses to beef and dairy cattle herds. This study aimed to determine the serological profiles of steers for BVDV, BoAHV1, BRSV, and BPIV-3 upon their arrival at Brazilian feedlot facilities. A total of 1,282 serum samples from unvaccinated steers were obtained on the first day of feeding. Samples were collected from 31 beef cattle herds reared in an extensive rearing system in six Brazilian states. Antibodies against BVDV, BoAHV1, BRSV, and BPIV-3 were detected using a virus neutralization test. The steers were distributed in agreement with their age and the Brazilian state of origin. The highest seropositivity was for BoAHV1 and BPIV-3 at 92.1% (1,154/1,253) and 86.6% (1,100/1,270), respectively. The seropositivity of BRSV was 77.1% (959/1,244). BVDV presented a lower rate, at slightly more than 50% (51.8%; 656/1,266). Age was a risk factor for the presence of antibodies against BVDV, BoAHV1, and BPIV-3 but not BRSV. A positive correlation was identified between BoAHV1 and BPIV-3 (P = 0.85) and between BRSV and BPIV-3 (P = 0.47). The high rate of seropositive steers for these four respiratory viruses on the first day of confinement identified in this serological survey provides important epidemiological information on respiratory infections, as the seropositivity of the four main bovine respiratory viruses in Brazilian beef cattle herds in an extensive rearing system.
Collapse
Affiliation(s)
- Larissa Melo Chicoski
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
| | - Juliana Torres Tomazi Fritzen
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
| | - Elis Lorenzetti
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
- Post Graduate Program in Animal Health and Production, Universidade Pitágoras Unopar Anhanguera, Arapongas, Paraná, Brazil
| | - Arthur Roberto da Costa
- Laboratory of Animal Bacteriology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Elio Moro
- Zoetis, São Paulo, São Paulo, Brazil
| | | | - Alice Fernandes Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil
| | - Amauri Alcindo Alfieri
- Laboratory of Animal Virology, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Celso Garcia Cid Road, PR455 Km 380, PO Box 10011, Londrina, Paraná, 86057-970, Brazil.
- Multi-User Animal Health Laboratory, Molecular Biology Unit, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Paraná, Brazil.
- National Institute of Science and Technology for Dairy Production Chain (INCT-LEITE), Universidade Estadual de Londrina, Londrina, Brazil.
| |
Collapse
|
3
|
Marin M, Burucúa M, Rensetti D, Rosales JJ, Odeón A, Pérez S. Distinctive features of bovine alphaherpesvirus types 1 and 5 and the virus-host interactions that might influence clinical outcomes. Arch Virol 2019; 165:285-301. [PMID: 31845150 DOI: 10.1007/s00705-019-04494-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022]
Abstract
Bovine herpesvirus types 1 (BoHV-1) and 5 (BoHV-5) are two closely related alphaherpesviruses. BoHV-1 causes several syndromes in cattle, including respiratory disease and sporadic cases of encephalitis, whereas BoHV-5 is responsible for meningoencephalitis in calves. Although both viruses are neurotropic, they differ in their neuropathogenic potential. This review summarizes the findings on the specific mechanisms and pathways known to modulate the pathogenesis of BoHV-1 and BoHV-5, particularly in relation to respiratory and neurological syndromes, which characterize BoHV-1 and BoHV-5 infections, respectively.
Collapse
Affiliation(s)
- Maia Marin
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Mercedes Burucúa
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina
| | - Daniel Rensetti
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina
| | - Juan José Rosales
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina.,Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina
| | - Anselmo Odeón
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria Balcarce, Ruta 226 Km 73.5, Balcarce, 7620, Buenos Aires, Argentina
| | - Sandra Pérez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina. .,Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, 7000, Tandil, Argentina.
| |
Collapse
|