Shabani H, Askari G, Khodaiyan F, Parandi E. Sweet cherry tree (Prunus avium) exudate gum-based film modification in a photoreactor: Effects of hydrogen peroxide oxidation, UV irradiation, and TiO
2 nanoparticles.
Int J Biol Macromol 2024;
266:130932. [PMID:
38527683 DOI:
10.1016/j.ijbiomac.2024.130932]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/27/2024]
Abstract
The fabrication possibility of nanocomposite film from sweet cherry tree exudate gum (SCG) was studied. To improve SCG film properties, oxidation with hydrogen peroxide, ultraviolet irradiation (UV-A and UV-C), and TiO2 nanoparticles (T-NPs) were used. Hydrogen peroxide oxidation at higher amounts decreased the water vapor permeability (WVP) and thickness and increased the mechanical properties and transparency. In comparison with the UV-A, UV irradiation of the C-type increased permeability, and elongation at break (EAB) and thickness, but reduced the tensile strength (TS), solubility, and transparency. The permeability and tensile strength were increased and elongation at break was decreased at a longer time of irradiation. The transparency values of fabricated films ranged from 65.3 to 79.5 % and WVP were in the range of 2.32-4.72 (×10-10 g/m.s.Pa). The measured TS of the SCG films were between 2.2 and 5 MPa and the EAB of the SCG films was between 35 and 68.7 %. The FTIR spectrum and SEM images revealed that the treatments could affect the bonds and the smoothness of the film surface, respectively. Images provided by AFM showed that the roughness of the films was increased by the addition of T-NPs. The incorporation of T-NPs increased the TS and decreased EAB and WVP. These results indicated that oxidation, UV irradiation and nanomaterials incorporation could be used to improve SCG film properties that are related to food packaging material.
Collapse