1
|
El Faydy M, Lakhrissi L, Dahaieh N, Ounine K, Tüzün B, Chahboun N, Boshaala A, AlObaid A, Warad I, Lakhrissi B, Zarrouk A. Synthesis, Biological Properties, and Molecular Docking Study of Novel 1,2,3-Triazole-8-quinolinol Hybrids. ACS OMEGA 2024; 9:25395-25409. [PMID: 38882066 PMCID: PMC11170742 DOI: 10.1021/acsomega.4c03906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/18/2024]
Abstract
A new series of 1,2,3-triazole-8-quinolinol hybrids were synthesized in good yields using monosubstituted acetonitriles and 5-azidomethyl-8-quinolinol as the starting reagents via a one-step protocol. The structures of 1,2,3-triazole-8-quinolinol hybrids were characterized by nuclear magnetic resonance (1H and 13C NMR) spectroscopy and elemental analysis. Antibacterial activity in vitro of all the synthesized hybrids was investigated against Escherichia coli (E. coli), Xanthomonas fragariae (X. fragariae), Staphylococcus aureus (S. aureus), and Bacillus subtilis (B. subtilis) applying the methods of disk diffusion and minimal inhibition concentration (MIC). Hybrid 7 exhibited excellent antibacterial capacity, with an MIC value of 10 μg/mL against S. aureus and 20 μg/mL against B. subtilis, E. coli, and X. fragariae, which were comparable to those that of the standard antibiotic nitroxoline. A structure-activity relationship (SAR) study of 1,2,3-triazole-8-quinolinol hybrids showed that introducing electron-donating substituents in the 1,2,3-triazole ring at the 4-position is important for activity. Quantum chemical calculations have been undertaken to employ the Gaussian software in the B3LYP, HF, and M062X basis sets using 3-21g, 6-31g, and SDD levels to further explain linkages within the antibacterial findings. Furthermore, molecular docking investigations were also conducted to investigate the binding affinities as well as the interactions of some hybrids with the target proteins. An absorption, distribution, metabolism, excretion, and toxicity (ADME/T) investigation was carried out to scrutinize the viability of employing the 1,2,3-triazole-8-quinolinol hybrids as medicines.
Collapse
Affiliation(s)
- Mohamed El Faydy
- Laboratory of Organic Chemistry, Catalysis, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133 Kenitra 14000, Morocco
| | - Loubna Lakhrissi
- Laboratory of Organic Chemistry, Catalysis, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133 Kenitra 14000, Morocco
- Laboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University, PO Box 1014 Agdal, Rabat 10500, Morocco
| | - Naoufel Dahaieh
- Laboratory of Nutrition, Health, and Environment, Department of Biology, Faculty of Sciences, Ibn Tofaïl University, PO Box 133, Kenitra 14000, Morocco
| | - Khadija Ounine
- Laboratory of Nutrition, Health, and Environment, Department of Biology, Faculty of Sciences, Ibn Tofaïl University, PO Box 133, Kenitra 14000, Morocco
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Nabila Chahboun
- Laboratory of Natural Resources and Sustainable Development, Faculty of Sciences, Ibn Tofail University, PO Box 242, Kenitra 14000, Morocco
- Institute of Nursing Professions and Health Techniques, Annex, Kenitra 14000, Morocco
- Laboratory of Materials, Nanotechnology, and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta PO Box 1014 Agdal, Rabat 10500, Morocco
| | - Ahmed Boshaala
- Libyan Authority for Scientific Research, P O Box 80045, Tripoli Libya
- Research Centre, Manchester Salt & Catalysis, unit C, 88-90 Chorlton Rd, Manchester M15 4AN, United Kingdom
| | - Abeer AlObaid
- Department of Chemistry, College of Science, King Saud University, P O Box 2455, Riyadh 11451, Saudi Arabia
| | - Ismail Warad
- Research Centre, Manchester Salt & Catalysis, unit C, 88-90 Chorlton Rd, Manchester M15 4AN, United Kingdom
- Department of Chemistry, AN-Najah National University, PO Box 7, Nablus 00970, Palestine
| | - Brahim Lakhrissi
- Laboratory of Organic Chemistry, Catalysis, and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofaïl University, PO Box 133 Kenitra 14000, Morocco
| | - Abdelkader Zarrouk
- Laboratory of Materials, Nanotechnology, and Environment, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Av. Ibn Battouta PO Box 1014 Agdal, Rabat 10500, Morocco
- Research Centre, Manchester Salt & Catalysis, unit C, 88-90 Chorlton Rd, Manchester M15 4AN, United Kingdom
| |
Collapse
|
2
|
Yuriy K, Kusdemir G, Volodymyr P, Tüzün B, Taslimi P, Karatas OF, Anastasia K, Maryna P, Sayın K. A biochemistry-oriented drug design: synthesis, anticancer activity, enzymes inhibition, molecular docking studies of novel 1,2,4-triazole derivatives. J Biomol Struct Dyn 2024; 42:1220-1236. [PMID: 37671856 DOI: 10.1080/07391102.2023.2253906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/28/2023] [Indexed: 09/07/2023]
Abstract
In this study, we researched the reactions of 5-(5-bromofuran-2-yl)-4-methyl-1,2,4-triazole-3-thiol and 5-thiophene-(3-ylmethyl)-4R-1,2,4-triazole-3-thiols with some halogen-containing compounds, a number of new compounds were synthesized (1.1-1.5 and 2.1-2.8). These compounds showed excellent to good inhibitory activities on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. For obtaining the effects of these compounds on AChE and BChE enzymes were determined spectrophotometrically according to Ellman. IC50 values of these enzymes were ranging between 1.63 and 17.68 nM for AChE and 8.71 and 84.02 nM for BChE. After, prostate cancer is the second leading cause of cancer-related mortality for men over the age of 65 in developed countries. Current treatment options remain limited in the treatment of advanced-stage prostate cancer leading to biochemical recurrence in almost 40% of the patients. Therefore, there is an urgent need for development of novel therapeutic tools for treatment of prostate cancer patients. In this study, we aimed at analyzing the potential of all compounds against prostate cancer cells. We found that, of the tested compounds, 2.1, 2.2 and 2.3 showed significant cytotoxic activities against PC3 prostate cancer cells, although their effect on the viability of normal prostate cells was limited. These findings suggest their selective targeting potential for prostate cancer cells and offer them as candidate therapeutic agents against prostate cancer. The inhibitory activities of some chemical compounds, such as (1.1-1.5 and 2.1-2.8) were assessed by performing the molecular docking study in the presence of AChE, BChE and prostate cancer protein. MM/GBSA methods are calculated binding free energy. Finally, ADME/T analysis was performed to examine the drug properties of the 13 studied molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Karpenko Yuriy
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Gulnur Kusdemir
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Parchenko Volodymyr
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Omer Faruk Karatas
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Khilkovets Anastasia
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Parchenko Maryna
- Department of Natural Sciences for Foreign Students and Toxicological Chemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| | - Koray Sayın
- Deparment of Chemistry, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
3
|
Manap S, Medetalibeyoğlu H, Kılıç A, Karataş OF, Tüzün B, Alkan M, Ortaakarsu AB, Atalay A, Beytur M, Yüksek H. Synthesis, molecular modeling investigation, molecular dynamic and ADME prediction of some novel Mannich bases derived from 1,2,4-triazole, and assessment of their anticancer activity. J Biomol Struct Dyn 2023; 42:11916-11930. [PMID: 37840297 DOI: 10.1080/07391102.2023.2265501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
A series of biologically active novel Mannich bases containing with a 1H-1,2,4-triazole-5-one ring were developed to evaluate the cytotoxic activity. For this purpose, the synthesized Schiff Bases (S1-5) were reacted with formaldehyde and morpholine, which is a secondary amine to yield novel N-Mannich bases (M1-5) via the Mannich reaction. The structures of the compounds (M1-5) were determined structurally employing 1H/13C-NMR, IR and elemental analysis. In this study, we evaluated the cytotoxic potential of the compounds (M1-5) on the human hypopharyngeal carcinoma FaDu cells. We found that the compound (M3) possesses a significant anticancer feature against FaDu cells that might be evaluated with further in vitro and in vivo studies to understand its anticancer potential better. Lastly, comparisons were made using molecular docking calculations to find the theoretical activities of the compounds (M1-5). The docking score parameter of the compound (M3) against the 2DO4 protein is -5.67, the docking score parameter against the 5JPZ protein is -5.72, and finally, the docking score parameter against the 2H80 protein is -5.50. Molecular dynamic calculations are made for 0-100 ns. The ADME/T calculations were performed to find the drug potential of the compounds (M1-5). The results suggest that our drug candidate compound exhibits strong potential for co-administration with the antigen structures, owing to the low rate of interactions that decreased over time.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sevda Manap
- Department of Chemistry, Kafkas University, Kars, Turkey
| | | | - Ahsen Kılıç
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Omer Faruk Karataş
- Molecular Biology and Genetics Department, Erzurum Technical University, Erzurum, Turkey
- High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Burak Tüzün
- Plant and Animal Production Department, Sivas Technical Sciences Vocational School, Sivas Cumhuriyet University, Turkey
| | | | | | - Abdurrahman Atalay
- Department of Chemistry, Karadeniz Technical University, Trabzon, Turkey
| | - Murat Beytur
- Department of Chemistry, Kafkas University, Kars, Turkey
| | - Haydar Yüksek
- Department of Chemistry, Kafkas University, Kars, Turkey
| |
Collapse
|