1
|
Li W, Yang X, Yin Y, Wang Q. A Novel Hybrid Improved RIME Algorithm for Global Optimization Problems. Biomimetics (Basel) 2024; 10:14. [PMID: 39851730 PMCID: PMC11762343 DOI: 10.3390/biomimetics10010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/26/2025] Open
Abstract
The RIME algorithm is a novel physical-based meta-heuristic algorithm with a strong ability to solve global optimization problems and address challenges in engineering applications. It implements exploration and exploitation behaviors by constructing a rime-ice growth process. However, RIME comes with a couple of disadvantages: a limited exploratory capability, slow convergence, and inherent asymmetry between exploration and exploitation. An improved version with more efficiency and adaptability to solve these issues now comes in the form of Hybrid Estimation Rime-ice Optimization, in short, HERIME. A probabilistic model-based sampling approach of the estimated distribution algorithm is utilized to enhance the quality of the RIME population and boost its global exploration capability. A roulette-based fitness distance balanced selection strategy is used to strengthen the hard-rime phase of RIME to effectively enhance the balance between the exploitation and exploration phases of the optimization process. We validate HERIME using 41 functions from the IEEE CEC2017 and IEEE CEC2022 test suites and compare its optimization accuracy, convergence, and stability with four classical and recent metaheuristic algorithms as well as five advanced algorithms to reveal the fact that the proposed algorithm outperforms all of them. Statistical research using the Friedman test and Wilcoxon rank sum test also confirms its excellent performance. Moreover, ablation experiments validate the effectiveness of each strategy individually. Thus, the experimental results show that HERIME has better search efficiency and optimization accuracy and is effective in dealing with global optimization problems.
Collapse
Affiliation(s)
- Wuke Li
- School of Computer and Electrical Engineering, Hunan University of Arts and Science, Changde 415000, China;
| | - Xiong Yang
- Zhicheng College, Fuzhou University, Fuzhou 350002, China
| | - Yuchen Yin
- Teachers College, Columbia University, 525 West 120th Street, New York, NY 10027, USA;
| | - Qian Wang
- Department of Computer Science, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
2
|
Li W, Chen X, Okere HC. MSAO-EDA: A Modified Snow Ablation Optimizer by Hybridizing with Estimation of Distribution Algorithm. Biomimetics (Basel) 2024; 9:603. [PMID: 39451809 PMCID: PMC11506360 DOI: 10.3390/biomimetics9100603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Metaheuristic algorithms provide reliable and effective methods for solving challenging optimization problems. The snow ablation algorithm (SAO) performs favorably as a physics-based metaheuristic algorithm. Nevertheless, SAO has some shortcomings. SAO is overpowered in its exploitation, has difficulty in balancing the proportion of global and local search, and is prone to encountering local optimum traps when confronted with complex problems. To improve the capability of SAO, this paper proposes a modified snow ablation algorithm hybrid distribution estimation algorithm named MSAO-EDA. In this work, a collaborative search framework is proposed where SAO and EDA can be organically integrated together to fully utilize the exploitation capability of SAO and the exploration capability of EDA. Secondly, an offset EDA approach that combines the optimal solution and the agent itself is used to replace SAO's exploration strategy for the purpose of enhancing SAO's exploration capability. Finally, the convergence of SAO is accelerated by selecting the next generation of agents through a greedy strategy. MSAO-EDA is tested on the CEC 2017 and CEC 2022 test suites and compared with EO, RIME, MRFO, CFOA, and four advanced algorithms, AFDBARO, CSOAOA, EOSMA, and JADE. The experimental results show that MSAO-EDA has excellent efficiency in numerical optimization problems and is a highly competitive SAO variant.
Collapse
Affiliation(s)
| | - Xiaoxiao Chen
- International College, Hunan University of Arts and Science, Changde 415000, China; (W.L.); (H.C.O.)
| | | |
Collapse
|
3
|
Hassan MH, Kamel S, Mohamed AW. Enhanced gorilla troops optimizer powered by marine predator algorithm: global optimization and engineering design. Sci Rep 2024; 14:7650. [PMID: 38561346 PMCID: PMC10985116 DOI: 10.1038/s41598-024-57098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
This study presents an advanced metaheuristic approach termed the Enhanced Gorilla Troops Optimizer (EGTO), which builds upon the Marine Predators Algorithm (MPA) to enhance the search capabilities of the Gorilla Troops Optimizer (GTO). Like numerous other metaheuristic algorithms, the GTO encounters difficulties in preserving convergence accuracy and stability, notably when tackling intricate and adaptable optimization problems, especially when compared to more advanced optimization techniques. Addressing these challenges and aiming for improved performance, this paper proposes the EGTO, integrating high and low-velocity ratios inspired by the MPA. The EGTO technique effectively balances exploration and exploitation phases, achieving impressive results by utilizing fewer parameters and operations. Evaluation on a diverse array of benchmark functions, comprising 23 established functions and ten complex ones from the CEC2019 benchmark, highlights its performance. Comparative analysis against established optimization techniques reveals EGTO's superiority, consistently outperforming its counterparts such as tuna swarm optimization, grey wolf optimizer, gradient based optimizer, artificial rabbits optimization algorithm, pelican optimization algorithm, Runge Kutta optimization algorithm (RUN), and original GTO algorithms across various test functions. Furthermore, EGTO's efficacy extends to addressing seven challenging engineering design problems, encompassing three-bar truss design, compression spring design, pressure vessel design, cantilever beam design, welded beam design, speed reducer design, and gear train design. The results showcase EGTO's robust convergence rate, its adeptness in locating local/global optima, and its supremacy over alternative methodologies explored.
Collapse
Affiliation(s)
- Mohamed H Hassan
- Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan, 81542, Egypt
| | - Salah Kamel
- Department of Electrical Engineering, Faculty of Engineering, Aswan University, Aswan, 81542, Egypt
| | - Ali Wagdy Mohamed
- Operations Research Department, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza, 12613, Egypt.
| |
Collapse
|
4
|
Zhang Y, Zhou Y, Zhang Y, Xiao W, Xiao W. Bald eagle search algorithm for solving a three-dimensional path planning problem. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:2856-2878. [PMID: 38454710 DOI: 10.3934/mbe.2024127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Three-dimensional path planning refers to determining an optimal path in a three-dimensional space with obstacles, so that the path is as close to the target location as possible, while meeting some other constraints, including distance, altitude, threat area, flight time, energy consumption, and so on. Although the bald eagle search algorithm has the characteristics of simplicity, few control parameters, and strong global search capabilities, it has not yet been applied to complex three-dimensional path planning problems. In order to broaden the application scenarios and scope of the algorithm and solve the path planning problem in three-dimensional space, we present a study where five three-dimensional geographical environments are simulated to represent real-life unmanned aerial vehicles flying scenarios. These maps effectively test the algorithm's ability to handle various terrains, including extreme environments. The experimental results have verified the excellent performance of the BES algorithm, which can quickly, stably, and effectively solve complex three-dimensional path planning problems, making it highly competitive in this field.
Collapse
Affiliation(s)
- Yunhui Zhang
- School of Internet, Jiaxing Vocational and Technical College, Jiaxing 314036, China
- Jiaxing Key Laboratory of Industrial Internet Security, Jiaxing Vocational and Technical College, Jiaxing 314036, China
| | - Yongquan Zhou
- College of Artificial Intelligence, Guangxi University for Nationalities, Nanning 530006, China
- Xiangsihu College of Guangxi University for Nationalities, Nanning 532100, China
- Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China
| | - Yunhui Zhang
- School of Internet, Jiaxing Vocational and Technical College, Jiaxing 314036, China
- Institute of System Architecture and Network Security, Zhejiang University, Hangzhou 310058, China
- Jiaxing Key Laboratory of Industrial Internet Security, Jiaxing Vocational and Technical College, Jiaxing 314036, China
| | - Wenhong Xiao
- School of Internet, Jiaxing Vocational and Technical College, Jiaxing 314036, China
- Jiaxing Key Laboratory of Industrial Internet Security, Jiaxing Vocational and Technical College, Jiaxing 314036, China
| | - Wenhong Xiao
- School of Internet, Jiaxing Vocational and Technical College, Jiaxing 314036, China
- Jiaxing Key Laboratory of Industrial Internet Security, Jiaxing Vocational and Technical College, Jiaxing 314036, China
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| |
Collapse
|
5
|
Wei Y, Othman Z, Daud KM, Luo Q, Zhou Y. Advances in Slime Mould Algorithm: A Comprehensive Survey. Biomimetics (Basel) 2024; 9:31. [PMID: 38248605 PMCID: PMC10813181 DOI: 10.3390/biomimetics9010031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 01/23/2024] Open
Abstract
The slime mould algorithm (SMA) is a new swarm intelligence algorithm inspired by the oscillatory behavior of slime moulds during foraging. Numerous researchers have widely applied the SMA and its variants in various domains in the field and proved its value by conducting various literatures. In this paper, a comprehensive review of the SMA is introduced, which is based on 130 articles obtained from Google Scholar between 2022 and 2023. In this study, firstly, the SMA theory is described. Secondly, the improved SMA variants are provided and categorized according to the approach used to apply them. Finally, we also discuss the main applications domains of the SMA, such as engineering optimization, energy optimization, machine learning, network, scheduling optimization, and image segmentation. This review presents some research suggestions for researchers interested in this algorithm, such as conducting additional research on multi-objective and discrete SMAs and extending this to neural networks and extreme learning machining.
Collapse
Affiliation(s)
- Yuanfei Wei
- Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Xiangsihu College, Guangxi Minzu University, Nanning 530225, China
| | - Zalinda Othman
- Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Kauthar Mohd Daud
- Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Qifang Luo
- College of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China
- Guangxi Key Laboratories of Hybrid Computation and IC Design Analysis, Nanning 530006, China
| | - Yongquan Zhou
- Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Xiangsihu College, Guangxi Minzu University, Nanning 530225, China
- College of Artificial Intelligence, Guangxi Minzu University, Nanning 530006, China
| |
Collapse
|
6
|
Liu Y, Ding H, Wang Z, Jin G, Li B, Yang Z, Dhiman G. A chaos-based adaptive equilibrium optimizer algorithm for solving global optimization problems. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:17242-17271. [PMID: 37920054 DOI: 10.3934/mbe.2023768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The equilibrium optimizer (EO) algorithm is a newly developed physics-based optimization algorithm, which inspired by a mixed dynamic mass balance equation on a controlled fixed volume. The EO algorithm has a number of strengths, such as simple structure, easy implementation, few parameters and its effectiveness has been demonstrated on numerical optimization problems. However, the canonical EO still presents some drawbacks, such as poor balance between exploration and exploitation operation, tendency to get stuck in local optima and low convergence accuracy. To tackle these limitations, this paper proposes a new EO-based approach with an adaptive gbest-guided search mechanism and a chaos mechanism (called a chaos-based adaptive equilibrium optimizer algorithm (ACEO)). Firstly, an adaptive gbest-guided mechanism is injected to enrich the population diversity and expand the search range. Next, the chaos mechanism is incorporated to enable the algorithm to escape from the local optima. The effectiveness of the developed ACEO is demonstrated on 23 classical benchmark functions, and compared with the canonical EO, EO variants and other frontier metaheuristic approaches. The experimental results reveal that the developed ACEO method remarkably outperforms the canonical EO and other competitors. In addition, ACEO is implemented to solve a mobile robot path planning (MRPP) task, and compared with other typical metaheuristic techniques. The comparison indicates that ACEO beats its competitors, and the ACEO algorithm can provide high-quality feasible solutions for MRPP.
Collapse
Affiliation(s)
- Yuting Liu
- School of Information Science and Engineering, Yunnan University, Kunming, China
| | - Hongwei Ding
- School of Information Science and Engineering, Yunnan University, Kunming, China
| | - Zongshan Wang
- School of Information Science and Engineering, Yunnan University, Kunming, China
| | - Gushen Jin
- Glasgow College, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Li
- School of Information Science and Engineering, Yunnan University, Kunming, China
| | - Zhijun Yang
- School of Information Science and Engineering, Yunnan University, Kunming, China
| | - Gaurav Dhiman
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon
- University Centre for Research and Development, Department of Computer Science and Engineering, Chandigarh University, Mohali, India
- Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun, India
| |
Collapse
|
7
|
Rai R, Dhal KG. Recent Developments in Equilibrium Optimizer Algorithm: Its Variants and Applications. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:1-54. [PMID: 37359743 PMCID: PMC10096115 DOI: 10.1007/s11831-023-09923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/26/2023] [Indexed: 06/28/2023]
Abstract
There have been many algorithms created and introduced in the literature inspired by various events observable in nature, such as evolutionary phenomena, the actions of social creatures or agents, broad principles based on physical processes, the nature of chemical reactions, human behavior, superiority, and intelligence, intelligent behavior of plants, numerical techniques and mathematics programming procedure and its orientation. Nature-inspired metaheuristic algorithms have dominated the scientific literature and have become a widely used computing paradigm over the past two decades. Equilibrium Optimizer, popularly known as EO, is a population-based, nature-inspired meta-heuristics that belongs to the class of Physics based optimization algorithms, enthused by dynamic source and sink models with a physics foundation that are used to make educated guesses about equilibrium states. EO has achieved massive recognition, and there are quite a few changes made to existing EOs. This article gives a thorough review of EO and its variations. We started with 175 research articles published by several major publishers. Additionally, we discuss the strengths and weaknesses of the algorithms to help researchers find the variant that best suits their needs. The core optimization problems from numerous application areas using EO are also covered in the study, including image classification, scheduling problems, and many others. Lastly, this work recommends a few potential areas for EO research in the future.
Collapse
Affiliation(s)
- Rebika Rai
- Department of Computer Applications, Sikkim University, Sikkim, India
| | - Krishna Gopal Dhal
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, Midnapore, West Bengal India
| |
Collapse
|
8
|
Gharehchopogh FS, Ucan A, Ibrikci T, Arasteh B, Isik G. Slime Mould Algorithm: A Comprehensive Survey of Its Variants and Applications. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:2683-2723. [PMID: 36685136 PMCID: PMC9838547 DOI: 10.1007/s11831-023-09883-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Meta-heuristic algorithms have a high position among academic researchers in various fields, such as science and engineering, in solving optimization problems. These algorithms can provide the most optimal solutions for optimization problems. This paper investigates a new meta-heuristic algorithm called Slime Mould algorithm (SMA) from different optimization aspects. The SMA algorithm was invented due to the fluctuating behavior of slime mold in nature. It has several new features with a unique mathematical model that uses adaptive weights to simulate the biological wave. It provides an optimal pathway for connecting food with high exploration and exploitation ability. As of 2020, many types of research based on SMA have been published in various scientific databases, including IEEE, Elsevier, Springer, Wiley, Tandfonline, MDPI, etc. In this paper, based on SMA, four areas of hybridization, progress, changes, and optimization are covered. The rate of using SMA in the mentioned areas is 15, 36, 7, and 42%, respectively. According to the findings, it can be claimed that SMA has been repeatedly used in solving optimization problems. As a result, it is anticipated that this paper will be beneficial for engineers, professionals, and academic scientists.
Collapse
Affiliation(s)
| | - Alaettin Ucan
- Department of Computer Engineering, Osmaniye Korkut Ata University, Osmaniye, Turkey
| | - Turgay Ibrikci
- Department of Software Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Bahman Arasteh
- Department of Software Engineering, Faculty of Engineering and Natural Science, Istinye University, Istanbul, Turkey
| | - Gultekin Isik
- Department of Computer Engineering, Igdir University, Igdir, Turkey
| |
Collapse
|
9
|
Rai R, Das A, Dhal KG. Nature-inspired optimization algorithms and their significance in multi-thresholding image segmentation: an inclusive review. EVOLVING SYSTEMS 2022; 13:889-945. [PMID: 37520044 PMCID: PMC8859498 DOI: 10.1007/s12530-022-09425-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/15/2022] [Indexed: 12/14/2022]
Abstract
Multilevel Thresholding (MLT) is considered as a significant and imperative research field in image segmentation that can efficiently resolve difficulties aroused while analyzing the segmented regions of multifaceted images with complicated nonlinear conditions. MLT being a simple exponential combinatorial optimization problem is commonly phrased by means of a sophisticated objective function requirement that can only be addressed by nondeterministic approaches. Consequently, researchers are engaging Nature-Inspired Optimization Algorithms (NIOA) as an alternate methodology that can be widely employed for resolving problems related to MLT. This paper delivers an acquainted review related to novel NIOA shaped lately in last three years (2019-2021) highlighting and exploring the major challenges encountered during the development of image multi-thresholding models based on NIOA.
Collapse
Affiliation(s)
- Rebika Rai
- Department of Computer Applications, Sikkim University, Sikkim, India
| | - Arunita Das
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal India
| | - Krishna Gopal Dhal
- Department of Computer Science and Application, Midnapore College (Autonomous), Paschim Medinipur, West Bengal India
| |
Collapse
|