1
|
Mishra UK, Srivastava S, Singh KR, Kumar A, Singh V, Mishra DP, Chandel VS, Singh J, Pandey SS, Srivastava S. A bio-nano-engineered platform fabricated from cerium oxide-carbon nanoparticles stabilized with chitosan for label-free sensing of a lung cancer biomarker. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:349-359. [PMID: 39633582 DOI: 10.1039/d4ay01535e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Herein, we report a label-free cancer biosensor designed for carcinoembryonic antigen (CEA) detection using a nanohybrid comprising CeO2 nanoparticles, carbon nanoparticles (CNPs), and chitosan (Ch). CeO2 nanoparticles were prepared using a simple green synthesis process. A thin film of the CeO2-CNPs-Ch nanohybrid was formed on indium tin oxide (ITO)-coated glass plates that endowed a high surface area, excellent stability, and good adsorption for the efficient loading of CEA antibodies. Quantitative and selective determination of CEA antigen was achieved by immobilizing monoclonal CEA antibodies (anti-CEA) on the CeO2-CNPs-Ch/ITO platform. The electrochemical response of the anti-CEA/CeO2-CNPs-Ch/ITO immunoelectrode was evaluated in a label-free immunoassay format using differential pulse voltammetry (DPV). The response studies of immunoelectrodes indicated wider linearity with respect to the CEA concentration in the range of 0.05-100 ng mL-1. The electrochemical cancer biosensor exhibited a higher sensitivity of 22.40 μA cm-2 per decade change in concentration along with storage stability for up to 35 days. The limit of detection (LOD) was 0.037 ng mL-1. Furthermore, this cancer biosensor exhibited good specificity and reproducibility. Thus, the proposed CeO2-CNPs-Ch nanocomposite-based platform provides an efficient method for the analysis of other antigen-antibody interactions and biomolecule detection. The efficacy of the anti-CEA/CeO2-CNPs-Ch/ITO immunoelectrode was further examined by measuring CEA levels in human serum.
Collapse
Affiliation(s)
- Upendra Kumar Mishra
- Department of Applied Science and Humanities, Rajkiya Engineering College Ambedkar Nagar (Dr A.P.J. Abdul Kalam Technical University, Lucknow), Uttar Pradesh 224122, India.
| | - Saurabh Srivastava
- Department of Applied Science and Humanities, Rajkiya Engineering College Ambedkar Nagar (Dr A.P.J. Abdul Kalam Technical University, Lucknow), Uttar Pradesh 224122, India.
| | - Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Atul Kumar
- Department of Applied Science and Humanities, Rajkiya Engineering College Ambedkar Nagar (Dr A.P.J. Abdul Kalam Technical University, Lucknow), Uttar Pradesh 224122, India.
| | - Vivekanand Singh
- Department of Applied Science and Humanities, Rajkiya Engineering College Ambedkar Nagar (Dr A.P.J. Abdul Kalam Technical University, Lucknow), Uttar Pradesh 224122, India.
| | - Devendra P Mishra
- Department of Applied Science and Humanities, Rajkiya Engineering College Ambedkar Nagar (Dr A.P.J. Abdul Kalam Technical University, Lucknow), Uttar Pradesh 224122, India.
| | - Vishal Singh Chandel
- Department of Applied Science and Humanities, Rajkiya Engineering College Ambedkar Nagar (Dr A.P.J. Abdul Kalam Technical University, Lucknow), Uttar Pradesh 224122, India.
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196, Japan
| | - Saurabh Srivastava
- Department of Applied Science and Humanities, Rajkiya Engineering College Ambedkar Nagar (Dr A.P.J. Abdul Kalam Technical University, Lucknow), Uttar Pradesh 224122, India.
| |
Collapse
|
2
|
Dong L, Jiang K, Shen Q, Xie L, Mei J, Yang S. Catalytic Oxidation of Chlorobenzene over HSiW/CeO 2 as a Co-Benefit of NO x Reduction: Remarkable Inhibition of Chlorobenzene Oxidation by NH 3. MATERIALS (BASEL, SWITZERLAND) 2024; 17:828. [PMID: 38399079 PMCID: PMC10890138 DOI: 10.3390/ma17040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
There is an urgent need to develop novel and high-performance catalysts for chlorinated volatile organic compound oxidation as a co-benefit of NOx. In this work, HSiW/CeO2 was used for chlorobenzene (CB) oxidation as a co-benefit of NOx reduction and the inhibition mechanism of NH3 was explored. CB oxidation over HSiW/CeO2 primarily followed the Mars-van-Krevelen mechanism and the Eley-Rideal mechanism, and the CB oxidation rate was influenced by the concentrations of surface adsorbed CB, Ce4+ ions, lattice oxygen species, gaseous CB, and surface adsorbed oxygen species. NH3 not only strongly inhibited CB adsorption onto HSiW/CeO2, but also noticeably decreased the amount of lattice oxygen species; hence, NH3 had a detrimental effect on the Mars-van-Krevelen mechanism. Meanwhile, NH3 caused a decrease in the amount of oxygen species adsorbed on HSiW/CeO2, which hindered the Eley-Rideal mechanism of CB oxidation. Hence, NH3 significantly hindered CB oxidation over HSiW/CeO2. This suggests that the removal of NOx and CB over this catalyst operated more like a two-stage process rather than a synergistic one. Therefore, to achieve simultaneous NOx and CB removal, it would be more meaningful to focus on improving the performances of HSiW/CeO2 for NOx reduction and CB oxidation separately.
Collapse
Affiliation(s)
| | | | | | | | - Jian Mei
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | | |
Collapse
|
3
|
Yontar AK, Çevik S. Effects of Plant Extracts and Green-Synthesized Silver Nanoparticles on the Polyvinyl Alcohol (PVA) Nanocomposite Films. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-023-07643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|