1
|
Veselá K, Kejík Z, Masařík M, Babula P, Dytrych P, Martásek P, Jakubek M. Curcumin: A Potential Weapon in the Prevention and Treatment of Head and Neck Cancer. ACS Pharmacol Transl Sci 2024; 7:3394-3418. [PMID: 39539276 PMCID: PMC11555516 DOI: 10.1021/acsptsci.4c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Head and neck cancers (HNC) are aggressive, difficult-to-treat tumors that can be caused by genetic factors but mainly by lifestyle or infection caused by the human papillomavirus. As the sixth most common malignancy, it presents a formidable therapeutic challenge with limited therapeutic modalities. Curcumin, a natural polyphenol, is appearing as a promising multitarget anticancer and antimetastatic agent. Numerous studies have shown that curcumin and its derivatives have the potential to affect signaling pathways (NF-κB, JAK/STAT, and EGFR) and molecular mechanisms that are crucial for the growth and migration of head and neck tumors. Furthermore, its ability to interact with the tumor microenvironment and trigger the immune system may significantly influence the organism's immune response to the tumor. Combining curcumin with conventional therapies such as chemotherapy or radiotherapy may improve the efficacy of treatment and reduce the side effects of treatment, thereby increasing its therapeutic potential. This review is a comprehensive overview that discusses both the benefits and limitations of curcumin and its therapeutic effects in the context of tumor biology, with an emphasis on molecular mechanisms in the context of HNC. This review also includes possibilities to improve the limiting properties of curcumin both in terms of the development of new derivatives, formulations, or combinations with conventional therapies that have potential as a new type of therapy for the treatment of HNC and subsequent use in clinical practice.
Collapse
Affiliation(s)
- Kateřina Veselá
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Zdeněk Kejík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Michal Masařík
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
- Department
of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Babula
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petr Dytrych
- First
Department of Surgery-Department of Abdominal, Thoracic Surgery and
Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121
08 Prague, Czech
Republic
| | - Pavel Martásek
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| | - Milan Jakubek
- BIOCEV,
First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department
of Paediatrics and Inherited Metabolic Disorders, First Faculty of
Medicine, Charles University and General
University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague 2, Czech Republic
| |
Collapse
|
2
|
Bhat SA, Chandramohan S, Subramanian S, Pajaniradje S, Yadav N, Rajagopalan R. Deciphering the cytotoxic potential of acamprosate and acamprosate loaded mesoporous silica nanoparticles in hepatocellular carcinoma: an in vitro and in silico approach. Drug Dev Ind Pharm 2024:1-20. [PMID: 39226131 DOI: 10.1080/03639045.2024.2400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/04/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Hepatocellular carcinoma (HCC) is a healthcare concern that causes most cancer-linked deaths around the world. This work was aimed at unraveling the anticancer potential of acamprosate and development of mesoporous silica nanoparticle (MSN) drug delivery system to increase the therapeutic efficacy of acamprosate. For this purpose, the MSNs were synthesized and encapsulated with acamprosate (MSN-Acamp). The MSN and MSN-Acamp were characterized by DLS, Zeta potential, UV spectroscopy, SEM, FTIR, XRD, DFT, and XPS. Biological effects were evaluated by MTT and lactate dehydrogenase assays. The apoptotic mode of cell death was evaluated by fluorescence imaging and DNA fragmentation assay. Cell cycle assessment and Annexin V-FITC/PI staining were performed to depict the phase of cell arrest and stage of apoptotic cells respectively. The acamprosate was found to exhibit cytotoxic effect and MSN-Acamp exhibited an increased cytotoxicity. Apoptotic mode of cell death was revealed by fluorescence imaging as nuclear fragmentation, production of reactive oxygen species (ROS), loss of membrane potential in mitochondria, and chromatin condensation/fragmentation were found. The docking results revealed that acamprosate had a considerable binding affinity with Bcl-2, Mcl-1, EGFR, and mTOR proteins. Overall, our results indicated that acamprosate and MSN-Acamp had a potent apoptotic effect and MSNs are propitious drug carriers to increase therapeutic effect in HCC.
Collapse
Affiliation(s)
- Suhail Ahmad Bhat
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sathyapriya Chandramohan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Srividya Subramanian
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Neena Yadav
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
3
|
Zhao C, Zhou X, Cao Z, Ye L, Cao Y, Pan J. Curcumin and analogues against head and neck cancer: From drug delivery to molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154986. [PMID: 37506572 DOI: 10.1016/j.phymed.2023.154986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is one of the most life-threatening diseases which also causes economic burden worldwide. To overcome the limitations of traditional therapies, investigation into alternative adjuvant treatments is crucial. PURPOSE Curcumin, a turmeric-derived compound, demonstrates significant therapeutic potential in diverse diseases, including cancer. Furthermore, research focuses on curcumin analogues and novel drug delivery systems, offering approaches for improved efficacy. This review aims to provide a comprehensive overview of curcumin's current findings, emphasizing its mechanisms of anti-HNSCC effects and potential for clinical application. METHOD An electronic search of Web of Science, MEDLINE, and Embase was conducted to identify literature about the application of curcumin or analogues in HNSCC. Titles and abstracts were screened to identify potentially eligible studies. Full-text articles will be obtained and independently evaluated by two authors to make the decision of inclusion in the review. RESULTS Curcumin's clinical application is hindered by poor bioavailability, prompting the exploration of methods to enhance it, such as curcumin analogues and novel drug delivery systems. Curcumin could exhibit anti-cancer effects by targeting cancer cells and modulating the tumor microenvironment in HNSCC. Mechanisms of action include cell cycle arrest, apoptosis promotion, reactive oxygen species induction, endoplasmic reticulum stress, inhibition of epithelial-mesenchymal transition, attenuation of extracellular matrix degradation, and modulation of tumor metabolism in HNSCC cells. Curcumin also targets various components of the tumor microenvironment, including cancer-associated fibroblasts, innate and adaptive immunity, and lymphovascular niches. Furthermore, curcumin enhances the anti-cancer effects of other drugs as adjunctive therapy. Two clinical trials report its potential clinical applications in treating HNSCC. CONCLUSION Curcumin has demonstrated therapeutic potential in HNSCC through in vitro and in vivo studies. Its effectiveness is attributed to its ability to modulate cancer cells and interact with the intricate tumor microenvironment. The development of curcumin analogues and novel drug delivery systems has shown promise in improving its bioavailability, thereby expanding its clinical applications. Further research and exploration in this area hold great potential for harnessing the full therapeutic benefits of curcumin in HNSCC treatment.
Collapse
Affiliation(s)
- Chengzhi Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Xueer Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Zhiwei Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Li Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China.
| | - Jian Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No. 1 Section 3rd, Renmin Nan Road, Chengdu 610041, PR China.
| |
Collapse
|
4
|
Chandramohan S, Chatterjee O, Pajaniradje S, Subramanian S, Bhat SA, Rajagopalan R. Role of indole curcumin in the epigenetic activation of apoptosis and cell cycle regulating genes. J Cancer Res Ther 2023; 19:601-609. [PMID: 37470582 DOI: 10.4103/jcrt.jcrt_28_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Head-and-neck squamous cell carcinoma is associated with the epigenetic silencing of various genes such as DAPK, ataxia telangiectasia mutated (ATM), BRCA1, p16INK4a, pVHL, p16, and RASSF1A. The most common epigenetic change observed in these genes is DNA methylation that directs the studies toward finding inhibitors for DNA methyltransferases (DNMTs), the protagonist in the action. The present study focuses on analyzing the possibility whether indole curcumin can reverse epigenetic changes of the various tumor suppressor genes, characteristically silenced by methylation, by inhibiting the major methylation enzyme DNA methyltransferase 1 or DNMT1. Materials and Methods The cytotoxic effects of indole curcumin were studied through the MTT and lactate dehydrogenase assays. To determine the apoptosis-mediated death of HEp-2 cells, fluorescence imaging using different stains was done. Gene or mRNA expression analysis was done for p53, ATM, and DAPK genes. Results The results obtained from this study clearly indicate that the indole analog of curcumin plays a remarkable role in activating genes involved in cell cycle regulation and apoptosis induction through epigenetic regulation. The influence that the drug has on the methylation status of gene promoter sequence of the ATM gene is also very significant. Conclusion Indole curcumin, being an analog of curcumin, promises to be a very useful drug molecule having various potential targets. The target selected for this study was DNMT1 enzyme and the drug seems to actually show the effects; it was predicted to be having on the target molecule.
Collapse
Affiliation(s)
- Sathyapriya Chandramohan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Oishi Chatterjee
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Srividya Subramanian
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Suhail Ahmad Bhat
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
5
|
Piwowarczyk L, Stawny M, Piwowarczyk K, Mlynarczyk DT, Muszalska-Kolos I, Wierzbicka M, Goslinski T, Jelinska A. Role of curcumin in selected head and neck lesions. Limitations on the use of the Hep-2 cell line: A critical review. Biomed Pharmacother 2022; 154:113560. [PMID: 36030583 DOI: 10.1016/j.biopha.2022.113560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/14/2022] [Indexed: 11/19/2022] Open
Abstract
Neoplastic diseases of the upper respiratory airways, as well as head and neck cancers, are a frequent cause of death and significantly affect the quality of life of both patients and survivors. As the frequency increases, new and improved treatment techniques are sought. Promising properties in this respect are expressed by a natural compound - curcumin. Along with its derivatives, it was found useful in the treatment of a series of cancers. Curcumin was found to be effective in clinical trials and in vitro, in vivo anticancer experiments. Nanoformulations (e.g., poly(lactide-co-glycolic acid)-based nanoparticles, nanoemulsions), and modifications of curcumin, as well as its combinations with other substances (e.g., catechins, cisplatin) or treatments (e.g., radiotherapy or local use in inhalation), were found to enhance the antitumor effect. This review aims to summarize the recent findings for the treatment of head and neck diseases, especially squamous cell carcinomas (HNSCCs), including drawing attention to the constant use of the misidentified Hep-2 cell line and proposing databases purposed at eliminating this problem. Moreover, this manuscript focuses on pointing out the molecular mechanisms of therapy that have been reached and emphasizing the shortcomings that still need to be addressed.
Collapse
Affiliation(s)
- Ludwika Piwowarczyk
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
| | - Maciej Stawny
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
| | - Krzysztof Piwowarczyk
- Chair and Department of Phoniatrics and Audiology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland.
| | - Dariusz T Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
| | - Izabela Muszalska-Kolos
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
| | - Malgorzata Wierzbicka
- Department of Otolaryngology and Laryngological Oncology, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland.
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
| | - Anna Jelinska
- Chair and Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland.
| |
Collapse
|
6
|
Sankaran H, Negi S, McShane LM, Zhao Y, Krushkal J. Pharmacogenomics of in vitro response of the NCI-60 cancer cell line panel to Indian natural products. BMC Cancer 2022; 22:512. [PMID: 35525914 PMCID: PMC9077913 DOI: 10.1186/s12885-022-09580-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/20/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Indian natural products have been anecdotally used for cancer treatment but with limited efficacy. To better understand their mechanism, we examined the publicly available data for the activity of Indian natural products in the NCI-60 cell line panel. METHODS We examined associations of molecular genomic features in the well-characterized NCI-60 cancer cell line panel with in vitro response to treatment with 75 compounds derived from Indian plant-based natural products. We analyzed expression measures for annotated transcripts, lncRNAs, and miRNAs, and protein-changing single nucleotide variants in cancer-related genes. We also examined the similarities between cancer cell line response to Indian natural products and response to reference anti-tumor compounds recorded in a U.S. National Cancer Institute (NCI) Developmental Therapeutics Program database. RESULTS Hierarchical clustering based on cell line response measures identified clustering of Phyllanthus and cucurbitacin products with known anti-tumor agents with anti-mitotic mechanisms of action. Curcumin and curcuminoids mostly clustered together. We found associations of response to Indian natural products with expression of multiple genes, notably including SLC7A11 involved in solute transport and ATAD3A and ATAD3B encoding mitochondrial ATPase proteins, as well as significant associations with functional single nucleotide variants, including BRAF V600E. CONCLUSION These findings suggest potential mechanisms of action and novel associations of in vitro response with gene expression and some cancer-related mutations that increase our understanding of these Indian natural products.
Collapse
Affiliation(s)
- Hari Sankaran
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, USA.
| | - Simarjeet Negi
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| | - Lisa M McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, USA
| | - Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
7
|
Arjunan A, Pajaniradje S, Francis AP, Subramanian S, Chandramohan S, Parthasarathi D, Sajith AM, Padusha MSA, Mathur PP, Rajagopalan R. Epigenetic modulation and apoptotic induction by a novel imidazo-benzamide derivative in human lung adenocarcinoma cells. Daru 2021; 29:377-387. [PMID: 34642906 DOI: 10.1007/s40199-021-00419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/03/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Lung cancer is the most commonly diagnosed and leading cause of cancer death worldwide. Imidazo-benzamides are considered to be good anti-cancer agents. The present study was aimed to investigate the cytotoxicity of a novel imidazo-benzamide derivative N-(2-(3-(tert-butyl)ureido)ethyl)-4-(1H-imidazol-1-yl)benzamide (TBUEIB) in lung cancer cell line A549. METHODS The antiproliferative activity of TBUEIB was investigated using MTT, LDH and trypan blue assay. The apoptotic potential was investigated using various staining techniques and further confirmed by DNA fragmentation assay and western blotting. RESULTS TBUEIB inhibited fifty precent A549 cells at a dose of 106 μM. The novel compound was found to exert a modulatory effect on apoptotic marker caspase-3 as well as epigenetic regulatory proteins like DNA Methyltransferase 1 (DNMT1). In silico studies with the compound and other epigenetic proteins such as Histone deacetylase (HDAC) and ubiquitin-like with PHD (plant homeodomain) and RING (Really Interesting New Gene) finger domains 1(UHRF1) showed good modulatory effects. CONCLUSION The overall results obtained in the study conclude that the novel compound TBUEIB has potential anti-cancer activities, mainly by targeting the expression of DNMT1 enzyme, which may have re-activated the major tumor suppressor genes involved in the cell cycle, leading to the apoptosis of the cancer cells. The results also indicate that the compound has more than one target in the epigenetic pathway implying that the compound may be a potential multi-target compound.
Collapse
Affiliation(s)
- Amrutha Arjunan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, Puducherry, 605 014, India
| | - Sankar Pajaniradje
- Centre for Nanoscience and Technology, Anna University, Chennai, Tamil Nadu, 600025, India
| | - Arul Prakash Francis
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, Puducherry, 605 014, India
| | - Srividya Subramanian
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, Puducherry, 605 014, India
| | - Sathyapriya Chandramohan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, Puducherry, 605 014, India
| | - D Parthasarathi
- Postgraduate and Research Department of Chemistry, Jamal Mohamed College, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 020, India
| | - Ayyiliath M Sajith
- Postgraduate and Research Department of Chemistry, Kasaragod Government College, Kannur University, Kasaragod, Kerala, 671123, India
| | - M Syed Ali Padusha
- Postgraduate and Research Department of Chemistry, Jamal Mohamed College, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 020, India
| | - P P Mathur
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, Puducherry, 605 014, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, Puducherry, 605 014, India.
| |
Collapse
|
8
|
Mohankumar K, Francis AP, Pajaniradje S, Rajagopalan R. Synthetic curcumin analog: inhibiting the invasion, angiogenesis, and metastasis in human laryngeal carcinoma cells via NF-kB pathway. Mol Biol Rep 2021; 48:6065-6074. [PMID: 34355287 DOI: 10.1007/s11033-021-06610-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/29/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND Laryngeal carcinoma, the most common among head and neck squamous cell carcinoma (HNSCC), induces 1% of all cancer deaths. Curcumin the active constituent of turmeric, is shown to be effective in the treatment of various cancers. In the present study, we explored the mechanistic role of bis-demethoxy curcumin analog (BDMC-A) as a chemotherapeutic agent. We investigated its inhibitory effect on invasion, angiogenesis, and metastasis in human laryngeal carcinoma (Hep-2) cells in comparison with curcumin. METHODS The effect of curcumin and BDMC-A on transcription factors (NF-κB, p65, c-Jun, c-Fos, STAT3, 5, PPAR-γ, β-catenin, COX-2, MMP-9, VEGF, TIMP-2) involved in signal transduction cascade, invasion, and angiogenesis in Hep-2 cells were quantified using Western blotting and RT-PCR technique. ELISA was used to measure the pro-inflammatory markers in Hep-2 cells treated with curcumin and BDMC-A. RESULTS The results showed that BDMC-A inhibits the transcription factors NF-κB, p65, c-Jun, c-Fos, STAT3, STAT5, PPAR-γ and β-catenin, which are responsible for tumor progression and malignancy. Moreover, BDMC-A treatment downregulated MMP-9, VEGF, TGF- β, IL-6 and IL-8 and upregulated TIMP-2 levels. The effects were more significant compared to curcumin. CONCLUSION Our overall results revealed that BDMC-A more effectively inhibited the markers of invasion, angiogenesis and metastasis in comparison with curcumin.
Collapse
Affiliation(s)
- Kumaravel Mohankumar
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India
| | - Arul Prakash Francis
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, 605 014, India.
| |
Collapse
|
9
|
The electrical pulse application enhances intra-cellular localization and potentiates cytotoxicity of curcumin in breast cancer cells. Bioelectrochemistry 2021; 140:107817. [PMID: 33940353 DOI: 10.1016/j.bioelechem.2021.107817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most common cancer of women, and fifth leading cause of mortality worldwide. Existing breast cancer regimens are costly and produce severe side effects. This highlights a need for the development of efficient novel therapies, which are cost effective and limit side effects. An electrical pulse (EP)-based chemo therapy, known as electrochemotherapy (ECT) using the natural compound curcumin could be an effective alternative. ECT is a non-surgical modality, which produces excellent anti-tumor efficacy at small drug concentrations due to increased uptake of drugs. In clinics, ECT is shown to be effective in treating advanced, recurrent, and metastatic breast cancers, which are refractory to multiple modalities. ECT with curcumin triggers apoptotic cell death in breast cancer cells and could be an effective alternative, due to curcumin's low cost and reduced side-effects. However, there is a lack of studies quantifying the uptake of curcumin in response to EP application. Towards this, we determined the uptake of different curcuminoids (curcumin, desmethoxycurcumin, and bisdemethoxycurcumin) upon EP application and their impact on cell cytotoxicity. Additionally, we studied the combined effect of calcium chloride (CaCl2) and a curcuminoids (Cur) mixture, based on initial studies suggesting calcium electroporation as a potential inexpensive anti-cancer treatment. Our results indicate EP with Cur increases cellular uptake, cell shrinkage, and cytotoxicity. The EP + Cur resulted in the highest uptake of the bisdemethoxycurcumin. Further, EP also potentiated the cytotoxicity of CaCl2 and of the Cur and CaCl2 combination against breast cancer cells and caused apoptosis. Our preliminary data pave the way to further studies on Cur and CaCl2 combination treating breast cancer.
Collapse
|
10
|
Recent advances in α,β-unsaturated carbonyl compounds as mitochondrial toxins. Eur J Med Chem 2019; 183:111687. [DOI: 10.1016/j.ejmech.2019.111687] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/24/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023]
|
11
|
Hsiao YT, Kuo CL, Chueh FS, Liu KC, Bau DT, Chung JG. Curcuminoids Induce Reactive Oxygen Species and Autophagy to Enhance Apoptosis in Human Oral Cancer Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:1145-1168. [PMID: 29976081 DOI: 10.1142/s0192415x1850060x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Numerous studies support the use of herbal medicine or natural products for chemotherapy in human cancers. Reports have associated curcumin (CUR), dimethoxy curcumin (DMC) and bisdemethoxycurcumin (BDMC) with numerous biological activities including anticancer activities, but no available information have shown that these induced apoptotic cell death and autophagy in human oral cancer cells. In the present study, we investigated the effect of CUR, DMC and BDMC on the cell viability, apoptotic cell death, reactive oxygen species (ROS), Ca[Formula: see text], mitochondria membrane potential (MMP) and caspase activities using flow cytometry assay and autophagy by monodansylcadaverine (MDC) and acridine orange (AO) staining in human oral cancer SAS cells. Results indicated that CUR, DMC and BDMC decreased total viable cell number through the induction of cell autophagy and apoptosis in SAS cells. Cells were pretreated with N-acetyl-cysteine (NAC), 3-methyladenine (3MA), rapamycin and carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoro-methylketone (Z-VAD-fmk) and then were treated with CUR, DMC and BDMC that led to increased total viable cell number when compared to CUR, DMC and BDMC treatments only. Results indicated induced apoptotic cell death through ROS, mitochondria-dependent pathway and induction of cell autophagy. Based on those observations, we suggest that CUR, DMC and BDMC could be used as a potential anticancer agent in human oral cancer.
Collapse
Affiliation(s)
- Yung-Ting Hsiao
- * Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chao-Lin Kuo
- † Department of Chinese Medicine Resources, China Medical University, Taichung, Taiwan
| | - Fu-Shin Chueh
- ¶ Department of Food Nutrition and Health Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Kuo-Ching Liu
- ‡ Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Da-Tian Bau
- § Graduate Institute of Biomedical and Sciences, China Medical University, Taichung, Taiwan.,** Terry Fox Cancer Research Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Gung Chung
- * Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,∥ Department of Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
12
|
Hsiao YT, Kuo CL, Lin JJ, Huang WW, Peng SF, Chueh FS, Bau DT, Chung JG. Curcuminoids combined with gefitinib mediated apoptosis and autophagy of human oral cancer SAS cells in vitro and reduced tumor of SAS cell xenograft mice in vivo. ENVIRONMENTAL TOXICOLOGY 2018; 33:821-832. [PMID: 29717538 DOI: 10.1002/tox.22568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/03/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Gefitinib has been used for cancer patients and curcumin (CUR), demethoxycurcumin (DMC), or bisdemethoxycurcumin (BDMC) also shown to induce cancer cell apoptosis. However, no report shows the combination of gefitinib with, CUR, DMC, or BDMC induce cell apoptosis and autophagy in human oral cancer cells. In this study, we investigated the effects of gefitinib with or without CUR, DMC, or BDMC co-treatment on the cell viability, apoptotic cell death, autophagy, mitochondria membrane potential (MMP), and caspase-3 activities by flow cytometry assay and autophagy by acridine orange (AO) staining in human oral cancer SAS cells. Results indicated that gefitinib co-treated with CUR, DMC, or BDMC decreased total viable cell number through the induction of cell apoptosis and autophagy and decreased the levels of MMP and increased caspase-3 activities in SAS cells. Western blotting indicated that gefitinib combined with CUR, DMC, or BDMC led to decrease Bcl-2 protein expression which is an antiapoptotic protein and to increase ATG5, Beclin 1, p62/SQSTM1, and LC3 expression that associated with cell autophagy in SAS cells. Gefitinib combined with CUR and DMC led to significantly reduce the tumor weights and volumes in SAS cell xenograft nude mice but did not affect the total body weights. Based on those observations, we suggest that the combination of gefitinib with CUR, DMC, and BDMC can be a potential anticancer agent for human oral cancer in future.
Collapse
Affiliation(s)
- Yung-Ting Hsiao
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chao-Lin Kuo
- Department of Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan
| | - Jen-Jyh Lin
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - Wen-Wen Huang
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Wufeng, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Biomedical and Sciences, China Medical University, Taichung, Taiwan
- Terry Fox Cancer Research Laboratory, Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
13
|
Lu XT, Ma Y, Zhang HJ, Jin MQ, Tang JH. Enantioselective apoptosis and oxidative damage induced by individual isomers of profenofos in primary hippocampal neurons. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:505-515. [PMID: 28541776 DOI: 10.1080/03601234.2017.1303324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The purpose of this study was to investigate the apoptosis-related cytotoxic effects and molecular mechanisms of individual isomers of profenofos (PFF) on primary hippocampal neurons at 1.0 to 20 mg L-1. The cell viability and lactate dehydrogenase (LDH) efflux indicated that (-)-PFF exposure was associated with more toxic effects than (+)-PFF above the concentration of 5 mg L-1 (P < 0.5). Flow cytometric results showed that the percentages of apoptotic cells incubated with 20 mg L-1 (-)-PFF, (+)-PFF and rac-PFF for 24 h reached 23.4%, 9.2% and 14.2% (P < 0.01), respectively. Hippocampal neurons incubated with (-)-PFF, (+)-PFF and rac-PFF exhibited a dose-dependent accumulation of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) and a dose-dependent inhibition of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activity, implying that the defense system of the tests induces oxidative damage. A statistically significant difference was observed between the two enantiomers at 5 mg L-1 and above. Moreover, the results showed that (-)-PFF exposure caused a significant loss in mitochondrial transmembrane potential (MMP), an upregulation of Ca2+ and Bax protein expression, a downregulation of Bcl-2 protein expression, and the activation of caspase-3 and caspase-9 in a dose-dependent manner; (+)-PFF and rac-PFF exhibited these effects to a lesser degree. All results suggest that PFF induced apoptosis in rat hippocampal neurons via the mitochondria-mediated pathway, and oxidative stress is one of the factors of PFF-induced apoptosis. In addition, (-)-PFF appears to play an important role in oxidative stress and apoptosis, indicating that enantioselectivity should be considered when assessing ecotoxicological effects and health risks of chiral pesticides.
Collapse
Affiliation(s)
- Xian T Lu
- a College of Materials and Environmental Engineering , Hangzhou Dianzi University , Hangzhou , China
| | - Yun Ma
- b College of Environment , Zhejiang University of Technology , Hangzhou , China
| | - Hang J Zhang
- c Department of Environmental Sciences , Hangzhou Normal University , Hangzhou , China
| | - Mei Q Jin
- a College of Materials and Environmental Engineering , Hangzhou Dianzi University , Hangzhou , China
| | - Jun H Tang
- a College of Materials and Environmental Engineering , Hangzhou Dianzi University , Hangzhou , China
| |
Collapse
|
14
|
Ronsard L, Ganguli N, Singh VK, Mohankumar K, Rai T, Sridharan S, Pajaniradje S, Kumar B, Rai D, Chaudhuri S, Coumar MS, Ramachandran VG, Banerjea AC. Impact of Genetic Variations in HIV-1 Tat on LTR-Mediated Transcription via TAR RNA Interaction. Front Microbiol 2017; 8:706. [PMID: 28484443 PMCID: PMC5399533 DOI: 10.3389/fmicb.2017.00706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/05/2017] [Indexed: 01/10/2023] Open
Abstract
HIV-1 evades host defense through mutations and recombination events, generating numerous variants in an infected patient. These variants with an undiminished virulence can multiply rapidly in order to progress to AIDS. One of the targets to intervene in HIV-1 replication is the trans-activator of transcription (Tat), a major regulatory protein that transactivates the long terminal repeat promoter through its interaction with trans-activation response (TAR) RNA. In this study, HIV-1 infected patients (n = 120) from North India revealed Ser46Phe (20%) and Ser61Arg (2%) mutations in the Tat variants with a strong interaction toward TAR leading to enhanced transactivation activities. Molecular dynamics simulation data verified that the variants with this mutation had a higher binding affinity for TAR than both the wild-type Tat and other variants that lacked Ser46Phe and Ser61Arg. Other mutations in Tat conferred varying affinities for TAR interaction leading to differential transactivation abilities. This is the first report from North India with a clinical validation of CD4 counts to demonstrate the influence of Tat genetic variations affecting the stability of Tat and its interaction with TAR. This study highlights the co-evolution pattern of Tat and predominant nucleotides for Tat activity, facilitating the identification of genetic determinants for the attenuation of viral gene expression.
Collapse
Affiliation(s)
- Larance Ronsard
- Laboratory of Virology, National Institute of ImmunologyDelhi, India.,Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur HospitalDelhi, India
| | - Nilanjana Ganguli
- Laboratory of Virology, National Institute of ImmunologyDelhi, India
| | - Vivek K Singh
- Centre for Bioinformatics, School of Life Sciences, Pondicherry UniversityPondicherry, India
| | - Kumaravel Mohankumar
- Department of Biochemistry and Molecular Biology, Pondicherry UniversityPondicherry, India.,Department of Veterinary Physiology and Pharmacology, Texas A&M University, College StationTX, USA
| | - Tripti Rai
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical SciencesDelhi, India
| | - Subhashree Sridharan
- Department of Biochemistry and Molecular Biology, Pondicherry UniversityPondicherry, India.,Department of Symptom Research, The University of Texas MD Anderson Cancer Center, HoustonTX, USA
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, Pondicherry UniversityPondicherry, India
| | - Binod Kumar
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, ChicagoIL, USA
| | - Devesh Rai
- Department of Microbiology, All India Institute of Medical SciencesDelhi, India
| | - Suhnrita Chaudhuri
- Department of Neurological Surgery, Northwestern University, ChicagoIL, USA
| | - Mohane S Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry UniversityPondicherry, India
| | | | - Akhil C Banerjea
- Laboratory of Virology, National Institute of ImmunologyDelhi, India
| |
Collapse
|
15
|
In-silico and in-vitro anti-cancer potential of a curcumin analogue (1E, 6E)-1, 7-di (1H-indol-3-yl) hepta-1, 6-diene-3, 5-dione. Biomed Pharmacother 2017; 85:389-398. [DOI: 10.1016/j.biopha.2016.11.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 01/17/2023] Open
|
16
|
Ribeiro IP, Caramelo F, Marques F, Domingues A, Mesquita M, Barroso L, Prazeres H, Julião MJ, Baptista IP, Ferreira A, Melo JB, Carreira IM. WT1, MSH6, GATA5 and PAX5 as epigenetic oral squamous cell carcinoma biomarkers - a short report. Cell Oncol (Dordr) 2016; 39:573-582. [PMID: 27491556 DOI: 10.1007/s13402-016-0293-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Oral squamous cell carcinoma (OSCC) is a frequently occurring aggressive malignancy with a heterogeneous clinical behavior. Based on the paucity of specific early diagnostic and prognostic biomarkers, which hampers the appropriate treatment and, ultimately the development of novel targeted therapies, we aimed at identifying such biomarkers through a genetic and epigenetic analysis of these tumors. METHODS 93 primary OSCCs were subjected to DNA copy number alteration (CNA) and methylation status analyses using methylation-specific multiplex ligation-dependent probe amplification (MS-MPLA). The genetic and epigenetic OSCC profiles obtained were associated with the patients' clinic-pathological features. RESULTS We found that WT1 gene promoter methylation is a predictor of a better prognosis and that MSH6 and GATA5 gene promoter methylation serve as predictors of a worse prognosis. GATA5 gene promoter methylation was found to be significantly associated with a shorter survival rate. In addition, we found that PAX5 gene promoter methylation was significantly associated with tongue tumors. To the best of our knowledge, this is the first study that highlights this specific set of genes as epigenetic diagnostic and prognostic biomarkers in OSCC. CONCLUSIONS Our data highlight the importance of epigenetically assessing OSCCs to identify key genes that may serve as diagnostic and prognostic biomarkers and, potentially, as candidate therapeutic targets.
Collapse
Affiliation(s)
- Ilda Patrícia Ribeiro
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Polo Ciências da Saúde, 3000-354, Coimbra, Portugal.,CIMAGO - Center of Investigation on Environment Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal
| | - Francisco Caramelo
- Laboratory of Biostatistics and Medical Informatics, IBILI - Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal
| | - Francisco Marques
- CIMAGO - Center of Investigation on Environment Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal.,Department of Dentistry, Faculty of Medicine, University of Coimbra, 3000-075, Coimbra, Portugal.,Stomatology Unit, Coimbra Hospital and University Centre (CHUC), EPE, 3000-075, Coimbra, Portugal
| | - Ana Domingues
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Polo Ciências da Saúde, 3000-354, Coimbra, Portugal
| | - Margarida Mesquita
- Maxillofacial Surgery Department, Coimbra Hospital and University Centre (CHUC), EPE, 3000-075, Coimbra, Portugal
| | - Leonor Barroso
- Maxillofacial Surgery Department, Coimbra Hospital and University Centre (CHUC), EPE, 3000-075, Coimbra, Portugal
| | - Hugo Prazeres
- Molecular Pathology Laboratory, Portuguese Institute of Oncology of Coimbra FG, EPE, 3000-075, Coimbra, Portugal
| | - Maria José Julião
- Department of Pathology, Coimbra Hospital and University Centre (CHUC), EPE, 3000-075, Coimbra, Portugal
| | - Isabel Poiares Baptista
- CIMAGO - Center of Investigation on Environment Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal.,Department of Dentistry, Faculty of Medicine, University of Coimbra, 3000-075, Coimbra, Portugal
| | - Artur Ferreira
- Maxillofacial Surgery Department, Coimbra Hospital and University Centre (CHUC), EPE, 3000-075, Coimbra, Portugal
| | - Joana Barbosa Melo
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Polo Ciências da Saúde, 3000-354, Coimbra, Portugal.,CIMAGO - Center of Investigation on Environment Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal
| | - Isabel Marques Carreira
- Cytogenetics and Genomics Laboratory, Faculty of Medicine, University of Coimbra, Polo Ciências da Saúde, 3000-354, Coimbra, Portugal. .,CIMAGO - Center of Investigation on Environment Genetics and Oncobiology - Faculty of Medicine, University of Coimbra, 3000-354, Coimbra, Portugal.
| |
Collapse
|
17
|
Lee JJ, Lee SY, Park JH, Kim DD, Cho HJ. Cholesterol-modified poly(lactide-co-glycolide) nanoparticles for tumor-targeted drug delivery. Int J Pharm 2016; 509:483-491. [PMID: 27286639 DOI: 10.1016/j.ijpharm.2016.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 12/11/2022]
Abstract
Poly(lactide-co-glycolide)-cholesterol (PLGA-C)-based nanoparticles (NPs) were developed for the tumor-targeted delivery of curcumin (CUR). PLGA-C/CUR NPs with ∼200nm mean diameter, narrow size distribution, and neutral zeta potential were fabricated by a modified emulsification-solvent evaporation method. The existence of cholesterol moiety in PLGA-C copolymer was confirmed by proton nuclear magnetic resonance ((1)H NMR) analysis. In vitro stability of developed NPs after 24h incubation was confirmed in phosphate buffered saline (PBS) and serum media. Sustained (∼6days) and pH-responsive drug release profiles from PLGA-C NPs were presented. Blank PLGA and PLGA-C NPs exhibited a negligible cytotoxicity in Hep-2 (human laryngeal carcinoma) cells in the tested concentration range. According to the results of flow cytometry and confocal laser scanning microscopy (CLSM) studies, PLGA-C NPs presented an improved cellular accumulation efficiency, compared to PLGA NPs, in Hep-2 cells. Enhanced in vivo tumor targetability of PLGA-C NPs, compared to PLGA NPs, in Hep-2 tumor-xenografted mouse model was also verified by a real-time near-infrared fluorescence (NIRF) imaging study. Developed PLGA-C NPs may be a candidate of efficient and biocompatible nanosystems for tumor-targeted drug delivery and cancer imaging.
Collapse
Affiliation(s)
- Jeong-Jun Lee
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Song Yi Lee
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Ju-Hwan Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
18
|
Liu J, Wei X, Wu Y, Wang Y, Qiu Y, Shi J, Zhou H, Lu Z, Shao M, Yu L, Tong L. Giganteaside D induces ROS-mediated apoptosis in human hepatocellular carcinoma cells through the MAPK pathway. Cell Oncol (Dordr) 2016; 39:333-42. [PMID: 27016209 DOI: 10.1007/s13402-016-0273-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 10/22/2022] Open
Abstract
PURPOSE Every year, almost one million individuals are diagnosed with hepatocellular carcinoma (HCC) worldwide and more than 690,000 patients die of it. At present, most therapeutic anti-HCC agents are not effective, which is due to the appearance of chemo-resistance and/or toxic side effects. Therefore, it is imperative to find novel more effective anti-HCC agents. Here, we evaluated the effect of giganteaside D (GD), an oleanolic acid saponin from P. scabiosaefolia, on the growth and apoptosis of HCC cells. METHODS AND RESULTS Using MTT and clonogenic assays, we found that GD exhibited a significant growth inhibitory effect on the HCC-derived cell lines HepG2 and Bel-7402. In addition, we found that GD induced mitochondria-mediated apoptosis in these HCC-derived cells, as indicated by a decreased mitochondrial potential, activation of Caspase-9 and Caspase-3, cleavage of PARP and release of Cytochrome C from the mitochondria. Besides, we found that GD stimulated the generation of reactive oxygen species (ROS) and that blockage of ROS attenuated the GD-induced mitochondria-mediated apoptosis. Additionally, we found that GD treatment led to a decrease in phosphorylated Erk (p-Erk) and triggered the generation of p-JNK, both components of the mitogen-activated protein kinase (MAPK) signaling pathway. Inhibition of Erk or JNK by specific inhibitors or siRNAs augmented or attenuated the cytotoxic and apoptotic effects of GD. CONCLUSIONS From our results we conclude that GD can induce ROS-mediated apoptosis in HCC-derived cells through the MAPK pathway. This observation may open up avenues to explore the future use of GD as a HCC chemotherapeutic agent.
Collapse
Affiliation(s)
- Junshan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiduan Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yafeng Wu
- Inpatient Department, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Yanni Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yuwen Qiu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Junmin Shi
- Southern Institute of Pharmaceutical Research, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Hongling Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Zibin Lu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Meng Shao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Linzhong Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Li Tong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
19
|
Robles-Escajeda E, Das U, Ortega NM, Parra K, Francia G, Dimmock JR, Varela-Ramirez A, Aguilera RJ. A novel curcumin-like dienone induces apoptosis in triple-negative breast cancer cells. Cell Oncol (Dordr) 2016; 39:265-77. [PMID: 26920032 DOI: 10.1007/s13402-016-0272-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 12/31/2022] Open
Abstract
PURPOSE According to the World Health Organization (WHO), breast cancer is the most common cancer affecting women worldwide. In the USA ~12.3 % of all women are expected to be diagnosed with various types of breast cancer, exhibiting varying degrees of therapeutic response rates. Therefore, the identification of novel anti-breast cancer drugs is of paramount importance. METHODS The 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore was incorporated into a number of cytotoxins. Three of the resulting dienones, 2a, 2b and 2c, were tested for their anti-neoplastic potencies in a variety of human breast cancer-derived cell lines, including the triple negative MDA-MB-231 cell line and its metastatic variant, using a live-cell bio-imaging method. Special emphasis was put on dienone 2c, since its anti-cancer activity and its mode of inflicting cell death have so far not been reported. RESULTS We found that all three dienones exhibited potent cytotoxicities towards the breast cancer-derived cell lines tested, whereas significantly lower toxicities were observed towards the non-cancerous human breast cell line MCF-10A. The dienones 2b and 2c exhibited the greatest selective cytotoxicity at submicromolar concentration levels. We found that these two dienones induced phosphatidylserine externalization in MDA-MB-231 cells in a concentration-dependent manner, suggesting that their cytotoxic effect might be mediated by apoptosis. This possibility was confirmed by our observation that the dienone 2c can induce mitochondrial depolarization, caspase-3 activation, cell cycle disruption and DNA fragmentation in MDA-MB-231 cells. CONCLUSION Our findings indicate that dienone 2c uses the mitochondrial/intrinsic pathway to inflict apoptosis in triple negative MDA-MB-231 breast cancer-derived cells. This observation warrants further assessment of dienone 2c as a potential anti-breast cancer drug.
Collapse
Affiliation(s)
- Elisa Robles-Escajeda
- Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Umashankar Das
- Drug Discovery & Development Research Group, College of Pharmacy & Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - Nora M Ortega
- Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Karla Parra
- Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Giulio Francia
- Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA
| | - Jonathan R Dimmock
- Drug Discovery & Development Research Group, College of Pharmacy & Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK, S7N 5C9, Canada
| | - Armando Varela-Ramirez
- Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA.
| | - Renato J Aguilera
- Cytometry, Screening and Imaging Core Facility, Border Biomedical Research Center, Department of Biological Sciences, the University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968-0519, USA.
| |
Collapse
|
20
|
Genetic and functional characterization of HIV-1 Vif on APOBEC3G degradation: First report of emergence of B/C recombinants from North India. Sci Rep 2015; 5:15438. [PMID: 26494109 PMCID: PMC4616021 DOI: 10.1038/srep15438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 07/02/2015] [Indexed: 12/12/2022] Open
Abstract
HIV-1 is characterized by high genetic heterogeneity which is a challenge for developing therapeutics. Therefore, it is necessary to understand the extent of genetic variations that HIV is undergoing in North India. The objective of this study was to determine the role of genetic and functional role of Vif on APOBEC3G degradation. Vif is an accessory protein involved in counteracting APOBEC3/F proteins. Genetic analysis of Vif variants revealed that Vif C variants were closely related to South African Vif C whereas Vif B variants and Vif B/C showed distinct geographic locations. This is the first report to show the emergence of Vif B/C in our population. The functional domains, motifs and phosphorylation sites were well conserved. Vif C variants differed in APOBEC3G degradation from Vif B variants. Vif B/C revealed similar levels of APOBEC3G degradation to Vif C confirming the presence of genetic determinants in C-terminal region. High genetic diversity was observed in Vif variants which may cause the emergence of more complex and divergent strains. These results reveal the genetic determinants of Vif in mediating APOBEC3G degradation and highlight the genetic information for the development of anti-viral drugs against HIV. Importance: Vif is an accessory HIV-1 protein which plays significant role in the degradation of human DNA-editing factor APOBEC3G, thereby impeding the antiretroviral activity of APOBEC3G. It is known that certain natural polymorphisms in Vif could degrade APOBEC3G relatively higher rate, suggesting its role in HIV-1 pathogenesis. This is the first report from North India showcasing genetic variations and novel polymorphisms in Vif gene. Subtype C is prevalent in India, but for the first time we observed putative B/C recombinants with a little high ability to degrade APOBEC3G indicating adaptation and evolving nature of virus in our population. Indian Vif C variants were able to degrade APOBEC3G well in comparison to Vif B variants. These genetic changes were most likely selected during adaptation of HIV to our population. These results elucidate that the genetic determinants of Vif and highlights the potential targets for therapeutics.
Collapse
|
21
|
NF-κB signaling in cancer stem cells: a promising therapeutic target? Cell Oncol (Dordr) 2015; 38:327-39. [PMID: 26318853 DOI: 10.1007/s13402-015-0236-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are regulated by several signaling pathways that ultimately control their maintenance and expansion. NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) forms a protein complex that controls DNA transcription and, as such, plays an important role in proliferation, inflammation, angiogenesis, invasion and metastasis. The NF-κB signaling pathway, which has been found to be constitutively activated in CSCs from a variety of cancers, participates in the maintenance, expansion, proliferation and survival of CSCs. Targeted disruption of this pathway may profoundly impair the adverse phenotype of CSCs and may provide a therapeutic opportunity to remove the CSC fraction. In particular, it may be attractive to use specific NF-κB inhibitors in chronic therapeutic schemes to reduce disease progression. Exceptional low toxicity profiles of these inhibitors are a prerequisite for use in combined treatment regimens and to avoid resistance. CONCLUSION Although still preliminary, recent evidence shows that such targeted strategies may be useful in adjuvant chemo-preventive settings.
Collapse
|
22
|
BDMC-A, an analog of curcumin, inhibits markers of invasion, angiogenesis, and metastasis in breast cancer cells via NF-κB pathway--A comparative study with curcumin. Biomed Pharmacother 2015; 74:178-86. [PMID: 26349982 DOI: 10.1016/j.biopha.2015.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/26/2015] [Indexed: 12/20/2022] Open
Abstract
Breast cancer chemoprevention has become increasingly important in India as it faces a potential breast cancer epidemic over the next decade. Curcumin, the active ingredient in turmeric is a well known chemopreventive agent that possesses various therapeutic properties including antioxidants and anti-inflammatory effects. In the present study, we have investigated the inhibitory effects of BDMC-A, an analog of curcumin, on invasion, angiogenesis and metastasis markers using in vitro with MCF-7 cells and in silico studies, hence proved that BDMC-A has more potential than curcumin. Mechanistic studies revealed that BDMC-A might have exerted its activity by inhibiting metastatic and angiogenic pathways by modulating the expression of proteins upstream to NF-κB (TGF-β, TNF-α, IL-1β and c-Src), and NF-κB signaling cascade (c-Rel, COX-2, MMP-9, VEGF, IL-8) and by upregulating TIMP-2 levels. An in silico molecular docking study with NF-κB revealed that the docking score and interaction of BDMC-A with NF-κB-DNA binding was more efficient when compared to curcumin. Our overall results showed that BDMC-A more effectively inhibited invasion, angiogenesis and metastasis markers compared to curcumin. The activity can be attributed to the presence of hydroxyl group in the ortho position in its structure. Further research are going on to prove its potential as a therapeutic agent for breast cancer.
Collapse
|
23
|
Patel S, Kumar L, Singh N. Metformin and epithelial ovarian cancer therapeutics. Cell Oncol (Dordr) 2015; 38:365-75. [DOI: 10.1007/s13402-015-0235-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2015] [Indexed: 12/13/2022] Open
|
24
|
Abstract
PURPOSE Although an anti-tumor effect of emodin has been reported before, its effect on human gynecological cancer cells has so far not been studied. Here, we assessed the effect of emodin on cervical cancer-derived (Hela), choriocarcinoma-derived (JAR) and ovarian cancer-derived (HO-8910) cells, and investigated the possible underlying molecular and cellular mechanisms. METHODS AND RESULTS The respective cells were treated with 0, 5, 10 or 15 μM emodin for 72 h. Subsequently, MTT and Transwell in vitro migration assays revealed that emodin significantly decreased the viability and invasive capacity of the gynecological cancer-derived cells tested. We found that emodin induced apoptosis and significantly decreased mitochondrial membrane potential and ATP release in these cells. We also found that emodin may exert its apoptotic effects via regulating the activity of caspase-9 and the expression of cleaved-caspase-3. Moreover, we found that emodin induced a cell cycle arrest at the G0/G1 phase, possibly through down-regulating the key cell cycle regulators Cyclin D and Cyclin E. Interestingly, emodin also led to autophagic cell death, as revealed by increased MAP LC3 expression, a marker of the autophagosome, and decreased expression of the autophagy regulators Beclin-1 and Atg12-Atg5. Finally, we found that the protein levels of both VEGF and VEGFR-2 were significantly decreased in emodin-treated cells, suggesting an anti-angiogenic effect of emodin on gynecological cancer-derived cells. CONCLUSIONS Our results suggest that emodin exhibits an anti-tumor effect on gynecological cancer-derived cells, possibly through multiple mechanisms including the induction of apoptosis and autophagy, the arrest of the cell cycle, and the inhibition of angiogenesis. Our findings may provide a basis for the design of potential emodin-based strategies for the treatment of gynecological tumors.
Collapse
|
25
|
Birsu Cincin Z, Unlu M, Kiran B, Sinem Bireller E, Baran Y, Cakmakoglu B. Anti-proliferative, apoptotic and signal transduction effects of hesperidin in non-small cell lung cancer cells. Cell Oncol (Dordr) 2015; 38:195-204. [DOI: 10.1007/s13402-015-0222-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2015] [Indexed: 01/19/2023] Open
|