1
|
Resende PVS, Gomes INF, Peixoto MC, Stringhetta GR, Arantes LMRB, Kuzmin VA, Borissevitch I, Reis RM, de Lima Vazquez V, Ferreira LP, Oliveira RJS. Evaluation of the antineoplastic properties of the photosensitizer biscyanine in 2D and 3D tumor cell models and artificial skin models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 262:113078. [PMID: 39671777 DOI: 10.1016/j.jphotobiol.2024.113078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Photodynamic Therapy (PDT) is a therapeutic modality that combines the application of a photoactive compound (photosensitizer, PS) with low-power light to generate reactive oxygen species in the target tissue, resulting in cytotoxic damage and cell death, while sparing adjacent tissues. The objective of this study was to evaluate the phototoxicity of a cyanine dye with two chromophores (biscyanines, BCD) in systems with varying levels of cellular organization, and we used the Photogem® (a photosensitizer approved by the Brazilian ANVISA agency for clinical use in Photodynamic Therapy) as a positive control. MATERIALS AND METHODS The cytotoxicity of the compounds was assessed in vitro in 2D monolayers, 3D spheroid cultures, and artificial skin models. Four tumoral cell lines A375 (melanoma), HCB-541 (cutaneous squamous cell carcinoma), Vu120T and Vu147T (head and neck cancer), and two normal cell lines fibroblastic HFF-1 and keratinocyte HACAT were used in this study. Cell viability, migration, production of reactive oxygen species, expression of proteins linked to DNA damage and repair, internalization, and skin permeation of PS agents. RESULTS Light irradiation in the presence of the PS resulted in greater cytotoxic effects for BCD as compared to Photogem®, which was accompanied by an increase in the production of reactive oxygen species including H2O2, elevated levels of cleaved PARP, and a higher rate of phosphorylated H2AX protein. BCD demonstrated enhanced internalization and bioaccumulation in the spheroids and equivalent skin models. CONCLUSION BCD, as a photosensitizer, showed higher cytotoxicity, with an increased ability to generate reactive oxygen species. This led to reduced cell viability, inhibited migration, and upregulated DNA damage-related proteins. Additionally, its enhanced cellular uptake improved skin barrier permeability, making BCD a strong candidate for in vivo Photodynamic Therapy.
Collapse
Affiliation(s)
| | | | - Maria Clara Peixoto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | | | | | - Iouri Borissevitch
- Departamento de Física da Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| | - Vinícius de Lima Vazquez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Department of Surgery, Melanoma and Sarcoma, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | - Renato José Silva Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil; Barretos School of Health Sciences Dr. Paulo Prata-FACISB, Barretos 14785-002, SP, Brazil.
| |
Collapse
|
2
|
Vieira Cardoso II, Nunes Rosa M, Antunes Moreno D, Barbosa Tufi LM, Pereira Ramos L, Bourdeth Pereira LA, Silva L, Soares Galvão JM, Tosi IC, Van Helvoort Lengert A, Cavalcanti Da Cruz M, Teixeira SA, Reis RM, Lopes LF, Tomazini Pinto M. Cisplatin‑resistant germ cell tumor models: An exploration of the epithelial‑mesenchymal transition regulator SLUG. Mol Med Rep 2024; 30:228. [PMID: 39392037 PMCID: PMC11484538 DOI: 10.3892/mmr.2024.13352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/27/2024] [Indexed: 10/12/2024] Open
Abstract
Germ cell tumors (GCTs) constitute diverse neoplasms arising in the gonads or extragonadal locations. Testicular GCTs (TGCTs) are the predominant solid tumors in adolescents and young men. Despite cisplatin serving as the primary therapeutic intervention for TGCTs, 10‑20% of patients with advanced disease demonstrate resistance to cisplatin‑based chemotherapy, and epithelial‑mesenchymal transition (EMT) is a potential contributor to this resistance. EMT is regulated by various factors, including the snail family transcriptional repressor 2 (SLUG) transcriptional factor, and, to the best of our knowledge, remains unexplored within TGCTs. Therefore, the present study investigated the EMT transcription factor SLUG in TGCTs. In silico analyses were performed to investigate the expression of EMT markers in TGCTs. In addition, a cisplatin‑resistant model for TGCTs was developed using the NTERA‑2 cell line, and a mouse model was also established. Subsequently, EMT was assessed both in vitro and in vivo within the cisplatin‑resistant models using quantitative PCR and western blot analyses. The results of the in silico analysis showed that the different histologies exhibited distinct expression profiles for EMT markers. Seminomas exhibited a lower expression of EMT markers, whereas embryonal carcinomas and mixed GCT demonstrated high expression. Notably, patients with lower SLUG expression had longer median progression‑free survival (46.4 months vs. 28.0 months, P=0.022). In the in vitro analysis, EMT‑associated genes [fibronectin; vimentin (VIM); actin, α2, smooth muscle; collagen type I α1; transforming growth factor‑β1; and SLUG] were upregulated in the cisplatin‑resistant NTERA‑2 (NTERA‑2R) cell line after 72 h of cisplatin treatment. Consistent with this finding, the NTERA‑2R mouse model demonstrated a significant upregulation in the expression levels of VIM and SLUG. In conclusion, the present findings suggested that SLUG may serve a crucial role in connecting EMT with the development of cisplatin resistance, and targeting SLUG may be a putative therapeutic strategy to mitigate cisplatin resistance.
Collapse
Affiliation(s)
| | - Marcela Nunes Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784400, Brazil
| | - Daniel Antunes Moreno
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784400, Brazil
| | | | - Lorrayne Pereira Ramos
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784400, Brazil
| | | | - Lenilson Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784400, Brazil
| | | | - Isabela Cristiane Tosi
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784400, Brazil
| | | | | | | | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784400, Brazil
- Life and Health Sciences Research Institute Medical School, University of Minho, 710057 Braga, Portugal
| | - Luiz Fernando Lopes
- Barretos Children's Cancer Hospital, Hospital de Amor, Barretos, São Paulo 14784400, Brazil
| | - Mariana Tomazini Pinto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784400, Brazil
- Barretos Children's Cancer Hospital, Hospital de Amor, Barretos, São Paulo 14784400, Brazil
| |
Collapse
|
3
|
Lengert AVH, Tassinari TA, Lourenço ATDO, Peronni KC, Castro PDTOE, Pereira JEM, Lopes LF, Melendez ME. Development and evaluation of high-resolution melting assays for direct and simultaneous pathogen identification in bloodstream infections in pediatric oncology patients. Diagn Microbiol Infect Dis 2024; 110:116426. [PMID: 39163789 DOI: 10.1016/j.diagmicrobio.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 06/19/2024] [Accepted: 07/05/2024] [Indexed: 08/22/2024]
Abstract
Blood culture, the gold-standard method for identifying pathogens in bloodstream infections, is time-consuming and demonstrates low sensitivity. These drawbacks are related to high mortality, especially among pediatric oncology patients presenting febrile neutropenia episodes. Here we describe two novel High-Resolution Melting assays designed for pathogen detection in bloodstream infections. The assays were initially evaluated using five sepsis-associated pathogens. Both assays demonstrated 100 % specificity, detected as low as 100 fg of bacterial DNA, and exhibited reproducibility. Clinical isolates from blood cultures were 100 % identified by both assays. Moreover, blind and direct identification of blood samples from pediatric cancer patients demonstrated sensitivities of 61.5 % and 69.2 % for "Primer Set 1" and "Primer Set 2", respectively. Our study highlights the potential of HRM-based assays as a rapid and efficient diagnostic approach for sepsis-related microorganisms. Further advancements could enhance their clinical utility for better management of febrile neutropenia episodes, especially in pediatric oncology patients.
Collapse
Affiliation(s)
- Andre van Helvoort Lengert
- Molecular Oncology Research Center, Barretos Cancer Hospital, 1331, Antenor Duarte Vilela St, Barretos, SP, 14784-400, Brazil.
| | - Tiago Alexandre Tassinari
- Molecular Oncology Research Center, Barretos Cancer Hospital, 1331, Antenor Duarte Vilela St, Barretos, SP, 14784-400, Brazil
| | | | - Kamila Chagas Peronni
- National Institute of Science and Technology in Stem Cell and Cell Therapy, Center for Cell-based Therapy-CEPID/FAPESP, Ribeirao Preto, SP, 14051-140, Brazil
| | | | | | - Luiz Fernando Lopes
- Barretos Children's and Young Adults Cancer Hospital, 3025, Joao Baroni St, Barretos, SP, 14784-390, Brazil
| | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, 1331, Antenor Duarte Vilela St, Barretos, SP, 14784-400, Brazil; National Cancer Institute, 37, André Cavalcanti St, Rio de Janeiro, RJ, 20231-050, Brazil.
| |
Collapse
|
4
|
Laus AC, Gomes INF, da Silva ALV, da Silva LS, Milan MB, AparecidaTeixeira S, Martin ACBM, do Nascimento Braga Pereira L, de Carvalho CEB, Crovador CS, de Paula FE, Nascimento FC, de Freitas HT, de Lima Vazquez V, Reis RM, da Silva-Oliveira RJ. Establishment and molecular characterization of HCB-541, a novel and aggressive human cutaneous squamous cell carcinoma cell line. Hum Cell 2024; 37:1170-1183. [PMID: 38565739 PMCID: PMC11194207 DOI: 10.1007/s13577-024-01054-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common type of skin cancer that can result in significant morbidity, although it is usually well-managed and rarely metastasizes. However, the lack of commercially available cSCC cell lines hinders our understanding of this disease. This study aims to establish and characterize a new metastatic cSCC cell line derived from a Brazilian patient. A tumor biopsy was taken from a metastatic cSCC patient, immortalized, and named HCB-541 after several passages. The cytokeratin expression profile, karyotypic alterations, mutational analysis, mRNA and protein differential expression, tumorigenic capacity in xenograft models, and drug sensitivity were analyzed. The HCB-541 cell line showed a doubling time between 20 and 30 h and high tumorigenic capacity in the xenograft mouse model. The HCB-541 cell line showed hypodiploid and hypotetraploidy populations. We found pathogenic mutations in TP53 p.(Arg248Leu), HRAS (Gln61His) and TERT promoter (C228T) and high-level microsatellite instability (MSI-H) in both tumor and cell line. We observed 37 cancer-related genes differentially expressed when compared with HACAT control cells. The HCB-541 cells exhibited high phosphorylated levels of EGFR, AXL, Tie, FGFR, and ROR2, and high sensitivity to cisplatin, carboplatin, and EGFR inhibitors. Our study successfully established HCB-541, a new cSCC cell line that could be useful as a valuable biological model for understanding the biology and therapy of metastatic skin cancer.
Collapse
Affiliation(s)
- Ana Carolina Laus
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Izabela Natalia Faria Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Aline Larissa Virginio da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Luciane Sussuchi da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Mirella Baroni Milan
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Silvia AparecidaTeixeira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Ana Carolina Baptista Moreno Martin
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Letícia do Nascimento Braga Pereira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | | | - Camila Souza Crovador
- Department of Surgery of Melanoma and Sarcoma, Barretos Cancer Hospital, São Paulo, Brazil
| | - Flávia Escremin de Paula
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Flávia Caroline Nascimento
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Helder Teixeira de Freitas
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
| | - Vinicius de Lima Vazquez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
- Department of Surgery of Melanoma and Sarcoma, Barretos Cancer Hospital, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil
- Life and Health Sciences Research Institute (ICVS) Medical School, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, São Paulo, Brazil
| | - Renato José da Silva-Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Antenor Duarte Villela, 1331, Barretos, São Paulo, Zip Code: 14784 400, Brazil.
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, São Paulo, Brazil.
| |
Collapse
|
5
|
Fujiike AY, de Oliveira LCB, Ribeiro DL, Pereira ÉR, Okuyama NCM, Dos Santos AGP, de Syllos Cólus IM, Serpeloni JM. Effects of docetaxel on metastatic prostate (DU-145) carcinoma cells cultured as 2D monolayers and 3D multicellular tumor spheroids. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:227-244. [PMID: 38095149 DOI: 10.1080/15287394.2023.2293218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Docetaxel (DTX) is one of the chemotherapeutic drugs indicated as a first-line treatment against metastatic prostate cancer (mPCa). This study aimed to compare the impact of DTX on mPCa (DU-145) tumor cells cultured as 2D monolayers and 3D multicellular tumor spheroids (MCTS) in vitro. The cells were treated with DTX (1-96 µM) at 24, 48, or 72 hr in cell viability assays (resazurin, phosphatase acid, and lactate dehydrogenase). Cell death was assessed with fluorescent markers and proliferation by clonogenic assay (2D) and morphology, volume, and integrity assay (3D). The cell invasion was determined using transwell (2D) and extracellular matrix (ECM) (3D). Results showed that DTX decreased cell viability in both culture models. In 2D, the IC50 (72 hr) values were 11.06 μM and 14.23 μM for resazurin and phosphatase assays, respectively. In MCTS, the IC50 values for the same assays were 114.9 μM and 163.7 μM, approximately 10-fold higher than in the 2D model. The % of viable cells decreased, while the apoptotic cell number was elevated compared to the control in 2D. In 3D spheroids, only DTX 24 μM induced apoptosis. DTX (≥24 μM at 216 hr) lowered the volume, and DTX 96 μM completely disintegrated the MCTS. DTX reduced the invasion of mPCa cells to matrigel (2D) and migration from MCTS to the ECM. Data demonstrated significant differences in drug response between 2D and 3D cell culture models using mPCa DU-145 tumor cells. MCTS resembles the early stages of solid tumors in vivo and needs to be considered in conjunction with 2D cultures when searching for new therapeutic targets.
Collapse
Affiliation(s)
- Andressa Yuri Fujiike
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Larissa Cristina Bastos de Oliveira
- Division of Cancer Biology and Genetics, Cancer Research Institute, and Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Diego Luis Ribeiro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (ICB/USP), São Paulo, Brazil
| | - Érica Romão Pereira
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Nádia Calvo Martins Okuyama
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | | | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| |
Collapse
|
6
|
Arantes LMRB, Silva-Oliveira RJ, de Carvalho AC, Melendez ME, Sorroche BP, de Jesus Teixeira R, Tostes K, Palmero EI, Reis RM, Carvalho AL. Unveiling the role of MGMT and DAPK hypermethylation in response to anti-EGFR agents: Molecular insights for advancing HNSCC treatment. Head Neck 2024; 46:461-472. [PMID: 38095042 DOI: 10.1002/hed.27602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) is frequently activated in head and neck squamous cell carcinoma (HNSCC) and serves as a valuable target for therapy. Despite the availability of the EGFR inhibitors Cetuximab, Afatinib, and Allitinib, there are limited predictive markers for their response. Understanding molecular aberrations in HNSCC could facilitate the identification of new strategies for patient clinical and biological classification, offering novel therapeutic avenues. METHODS We assessed CCNA1, DCC, MGMT, CDKN2A/p16, and DAPK methylation status in HNSCC cell lines and their association with anti-EGFR treatment response. RESULTS MGMT methylation status displayed high sensitivity and specificity in distinguishing sensitive and resistant HNSCC cell lines to Afatinib (AUC = 0.955) and Allitinib (AUC = 0.935). Moreover, DAPK methylation status predicted response to Allitinib with high accuracy (AUC = 0.852), indicating their putative predictive biomarker roles. CONCLUSION These findings hold promise for the development of more personalized and effective treatment approaches for HNSCC patients.
Collapse
Affiliation(s)
| | - Renato José Silva-Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital - Pio XII, Barretos, Brazil
- Barretos School of Health Sciences, Dr. Paulo Prata-FACISB, Barretos, Brazil
| | | | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital - Pio XII, Barretos, Brazil
- Molecular Carcinogenesis Program, National Cancer Institute - INCA, Rio de Janeiro, Brazil
| | - Bruna Pereira Sorroche
- Molecular Oncology Research Center, Barretos Cancer Hospital - Pio XII, Barretos, Brazil
| | | | - Katiane Tostes
- Molecular Oncology Research Center, Barretos Cancer Hospital - Pio XII, Barretos, Brazil
| | - Edenir Inez Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital - Pio XII, Barretos, Brazil
- Department of Genetics, Brazilian National Cancer Institute - INCA, Rio de Janeiro, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital - Pio XII, Barretos, Brazil
- Life and Health Sciences Research Institute - ICVS, Health Sciences School, University of Minho - Braga, Braga, Portugal
| | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital - Pio XII, Barretos, Brazil
| |
Collapse
|
7
|
Klein MDO, Francisco LFV, Gomes INF, Serrano SV, Reis RM, Silveira HCS. Hazard assessment of antineoplastic drugs and metabolites using cytotoxicity and genotoxicity assays. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 892:503704. [PMID: 37973299 DOI: 10.1016/j.mrgentox.2023.503704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
Antineoplastic drugs are among the most toxic pharmaceuticals. Their release into the aquatic ecosystems has been reported, giving rise to concerns about the adverse effects, including cytotoxicity and genotoxicity, that they may have on exposed organisms. In this study, we analyzed the cytotoxicity and genotoxicity of 5-fluorouracil (5-FU) and its metabolite alpha-fluoro-beta-alanine (3-NH2-F); gemcitabine (GEM) and its metabolite 2'-deoxy-2',2'-difluorouridine (2-DOH-DiF); as well as cyclophosphamide (CP) on the HepG2 cell line. Drug concentrations were based on those previously observed in the effluent of a major cancer hospital in Brazil. The study found that GEM, 2-DOH-DiF and 5-FU resulted in reduced cell viability. No reduction in cell viability was observed for CP and 3-NH2-F. Genotoxic assessment revealed damage in the form of nucleoplasmic bridges for CP and 3-NH2-F. The tested concentrations of all compounds resulted in significantly increased MNi and NBUDs. The results showed that these compounds induced cytotoxic and genotoxic effects in HepG2 cells at concentrations found in the environment. To the best of our knowledge, this study is the first to report on the cytogenotoxic impacts of the metabolites 3-NH2-F and 2-DOH-DiF in HepG2 cells. These findings may help in the development of public policies that could minimize potential environmental contamination.
Collapse
Affiliation(s)
| | | | | | - Sergio V Serrano
- Barretos School of Health Sciences-FACISB, Barretos, São Paulo 14785-002, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Henrique C S Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784-400, Brazil; University of Cuiabá, Cuiabá, Mato Grosso, Brazil; University of Anhaguera, São Paulo, Brazil.
| |
Collapse
|
8
|
Bravo Perina L, Faria Gomes IN, Alcantara Pelloso AR, Silva VAO, Rebolho Batista Arantes LM, Eliseo Melendez M. Combined effect of the pro-apoptotic rhTRAIL protein and HSV-1 virus in head and neck cancer cell lines. Sci Rep 2023; 13:18023. [PMID: 37865660 PMCID: PMC10590400 DOI: 10.1038/s41598-023-44888-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Knowledge on the molecular and clinical characteristics of head and neck squamous cell carcinoma (HNSCC) is vast. However, an effective therapy that increases the life expectancy of these patients, with a 5-year overall survival of 50%, is still unknown. Here we evaluated the combined effect of the pro-apoptotic protein rhTRAIL with the replication-competent wild-type HSV-1 virus in head and neck cancer cell lines. We observed a difference in the modulation profile of proteins related to apoptotic pathways in the studied cell lines. The HCB289 exhibited caspase-9 activation in the presence of the HSV-1 virus, while the UD-SCC-2 exhibited caspase-8 activation in the presence of rhTRAIL. Both cell lines exhibited PARP activation by combining rhTRAIL and HSV-1 virus treatment. Flow cytometry analysis exhibited greater induction of late apoptosis for the HCB289 and UD-SCC-2 after the combination treatment of the HSV-1 and rhTRAIL. However, the UD-SCC-2 also presented induction of late apoptosis by the presence of rhTRAIL in monotherapy. These data suggest an enhancement of the effect of the combination treatment of the rhTRAIL and the HSV-1 on reducing viability and induction of cell death.
Collapse
Affiliation(s)
- Lucas Bravo Perina
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, 14784-400, Brazil
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, RJ, 20230-240, Brazil
| | | | - Ana Rúbia Alcantara Pelloso
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, 14784-400, Brazil
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, RJ, 20230-240, Brazil
| | - Viviane Aline Oliveira Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, 14784-400, Brazil
- Department of Pathology and Legal Medicine, Medical School of the Federal University of Bahia, Salvador, BA, 40026-010, Brazil
- Laboratory of Pathology and Molecular Biology, Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador, BA, 40296-710, Brazil
| | | | - Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, 14784-400, Brazil.
- Molecular Carcinogenesis Program, National Cancer Institute (INCA), Rio de Janeiro, RJ, 20230-240, Brazil.
| |
Collapse
|
9
|
da Silva-Oliveira RJ, Gomes INF, da Silva LS, Lengert AVH, Laus AC, Melendez ME, Munari CC, Cury FDP, Longato GB, Reis RM. Efficacy of Combined Use of Everolimus and Second-Generation Pan-EGRF Inhibitors in KRAS Mutant Non-Small Cell Lung Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23147774. [PMID: 35887120 PMCID: PMC9317664 DOI: 10.3390/ijms23147774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
Background: EGFR mutations are present in approximately 15−50% of non-small cell lung cancer (NSCLC), which are predictive of anti-EGFR therapies. At variance, NSCLC patients harboring KRAS mutations are resistant to those anti-EGFR approaches. Afatinib and allitinib are second-generation pan-EGFR drugs, yet no predictive biomarkers are known in the NSCLC context. In the present study, we evaluated the efficacy of pan-EGFR inhibitors in a panel of 15 lung cancer cell lines associated with the KRAS mutations phenotype. Methods: KRAS wild-type sensitive NCI-H292 cell line was further transfected with KRAS mutations (p.G12D and p.G12S). The pan-EGFR inhibitors’ activity and biologic effect of KRAS mutations were evaluated by cytotoxicity, MAPK phospho-protein array, colony formation, migration, invasion, and adhesion. In addition, in vivo chicken chorioallantoic membrane assay was performed in KRAS mutant cell lines. The gene expression profile was evaluated by NanoString. Lastly, everolimus and pan-EGFR combinations were performed to determine the combination index. Results: The GI50 score classified two cell lines treated with afatinib and seven treated with allitinib as high-sensitive phenotypes. All KRAS mutant cell lines demonstrated a resistant profile for both therapies (GI50 < 30%). The protein array of KRAS edited cells indicated a significant increase in AKT, CREB, HSP27, JNK, and, importantly, mTOR protein levels compared with KRAS wild-type cells. The colony formation, migration, invasion, adhesion, tumor perimeter, and mesenchymal phenotype were increased in the H292 KRAS mutated cells. Gene expression analysis showed 18 dysregulated genes associated with the focal adhesion-PI3K-Akt-mTOR-signaling correlated in KRAS mutant cell lines. Moreover, mTOR overexpression in KRAS mutant H292 cells was inhibited after everolimus exposure, and sensitivity to afatinib and allitinib was restored. Conclusions: Our results indicate that allitinib was more effective than afatinib in NSCLC cell lines. KRAS mutations increased aggressive behavior through upregulation of the focal adhesion-PI3K-Akt-mTOR-signaling in NSCLC cells. Significantly, everolimus restored sensibility and improved cytotoxicity of EGFR inhibitors in the KRAS mutant NSCLC cell lines.
Collapse
Affiliation(s)
- Renato José da Silva-Oliveira
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
- Correspondence: (R.J.d.S.-O.); (R.M.R.)
| | - Izabela Natalia Faria Gomes
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Luciane Sussuchi da Silva
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - André van Helvoort Lengert
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Ana Carolina Laus
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Matias Eliseo Melendez
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Carla Carolina Munari
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Fernanda de Paula Cury
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Giovanna Barbarini Longato
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
| | - Rui Manuel Reis
- Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (I.N.F.G.); (L.S.d.S.); (A.v.H.L.); (A.C.L.); (M.E.M.); (C.C.M.); (F.d.P.C.); (G.B.L.)
- Life and Health Sciences Research Institute (ICVS) Medical School, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (R.J.d.S.-O.); (R.M.R.)
| |
Collapse
|
10
|
Brusatol Inhibits Proliferation and Metastasis of Colorectal Cancer by Targeting and Reversing the RhoA/ROCK1 Pathway. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7132159. [PMID: 35647190 PMCID: PMC9132670 DOI: 10.1155/2022/7132159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022]
Abstract
Brusatol (BRU) is an important compound extracted from Brucea javanica oil, whose pharmacological effects are able to induce a series of biological effects, including inhibition of tumor cell growth, anti-inflammatory, antiviral, and antitumor. Currently, there are so few studies about the brusatol effects on colorectal cancer that its anticancer mechanism has not been clearly defined. In this study, we made an in-depth investigation into the brusatol effect towards the proliferation and metastasis of colon cancer and the possible mechanism. The inhibitory effect of BRU on the proliferation of colorectal cancer cells was unveiled via CCK-8 method and colony formation assay, while the inhibitory effect of BRU on migration and invasion of colorectal cancer cells was revealed by scratch assay and transwell assay. In addition, Western blot results also revealed that BRU inhibited not only the expressions of RhoA and ROCK1 but also the protein expressions of EMT-related markers e-cadherin, N-cadherin, Vimentin, MMP2, and MMP9 in colon cancer cells. Through the xenotransplantation model, our in vivo experiment further verified the antitumor effect of BRU on colon cancer cells in vitro, and the results were consistent with the protein expression trend. In conclusion, BRU may inhibit the proliferation and metastasis of colorectal cancer by influencing EMT through RhoA/ROCK1 pathway.
Collapse
|
11
|
The Antitumoral/Antimetastatic Action of the Flavonoid Brachydin A in Metastatic Prostate Tumor Spheroids In Vitro Is Mediated by (Parthanatos) PARP-Related Cell Death. Pharmaceutics 2022; 14:pharmaceutics14050963. [PMID: 35631550 PMCID: PMC9147598 DOI: 10.3390/pharmaceutics14050963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022] Open
Abstract
Metastatic prostate cancer (mPCa) is resistant to several chemotherapeutic agents. Brachydin A (BrA), a glycosylated flavonoid extracted from Fridericia platyphylla, displays a remarkable antitumoral effect against in vitro mPCa cells cultured as bidimensional (2D) monolayers. Considering that three-dimensional (3D) cell cultures provide a more accurate response to chemotherapeutic agents, this study investigated the antiproliferative/antimetastatic effects of BrA and the molecular mechanisms underlying its action in mPCa spheroids (DU145) in vitro. BrA at 60–100 μM was cytotoxic, altered spheroid morphology/volume, and suppressed cell migration and tumor invasiveness. High-content analysis revealed that BrA (60–100 µM) reduced mitochondrial membrane potential and increased apoptosis and necrosis markers, indicating that it triggered cell death mechanisms. Molecular analysis showed that (i) 24-h treatment with BrA (80–100 µM) increased the protein levels of DNA disruption markers (cleaved-PARP and p-γ-H2AX) as well as decreased the protein levels of anti/pro-apoptotic (BCL-2, BAD, and RIP3K) and cell survival markers (p-AKT1 and p-44/42 MAPK); (ii) 72-h treatment with BrA increased the protein levels of effector caspases (CASP3, CASP7, and CASP8) and inflammation markers (NF-kB and TNF-α). Altogether, our results suggest that PARP-mediated cell death (parthanatos) is a potential mechanism of action. In conclusion, BrA confirms its potential as a candidate drug for preclinical studies against mPCa.
Collapse
|
12
|
de Kort WWB, Spelier S, Devriese LA, van Es RJJ, Willems SM. Predictive Value of EGFR-PI3K-AKT-mTOR-Pathway Inhibitor Biomarkers for Head and Neck Squamous Cell Carcinoma: A Systematic Review. Mol Diagn Ther 2021; 25:123-136. [PMID: 33686517 PMCID: PMC7956931 DOI: 10.1007/s40291-021-00518-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Understanding molecular pathogenesis of head and neck squamous cell carcinomas (HNSCC) has considerably improved in the last decades. As a result, novel therapeutic strategies have evolved, amongst which are epidermal growth factor receptor (EGFR)-targeted therapies. With the exception of cetuximab, targeted therapies for HNSCC have not yet been introduced into clinical practice. One important aspect of new treatment regimes in clinical practice is presence of robust biomarkers predictive for therapy response. METHODS We performed a systematic search in PubMed, Embase and the Cochrane library. Articles were included if they investigated a biomarker for targeted therapy in the EGFR-PI3K-AKT-mTOR-pathway. RESULTS Of 83 included articles, 52 were preclinical and 33 were clinical studies (two studies contained both a preclinical and a clinical part). We classified EGFR pathway inhibitor types and investigated the type of biomarker (biomarker on epigenetic, DNA, mRNA or protein level). CONCLUSION Several EGFR-PI3K-AKT-mTOR-pathway inhibitor biomarkers have been researched for HNSCC but few of the investigated biomarkers have been adequately confirmed in clinical trials. A more systematic approach is needed to discover proper biomarkers as stratifying patients is essential to prevent unnecessary costs and side effects.
Collapse
Affiliation(s)
- W. W. B. de Kort
- Department of Pathology, University Medical Center Utrecht, PO Box 885500, 3508 GA Utrecht, The Netherlands
| | - S. Spelier
- Department of Pathology, University Medical Center Utrecht, PO Box 885500, 3508 GA Utrecht, The Netherlands
| | - L. A. Devriese
- Department of Medical Oncology, University Medical Center Utrecht, PO Box 885500, 3508 GA Utrecht, The Netherlands
| | - R. J. J. van Es
- Department of Oral and Maxillofacial Surgery, University Medical Center Utrecht, PO Box 885500, 3508 GA Utrecht, The Netherlands
- Department of Head and Neck Surgical Oncology, Utrecht Cancer Center, University Medical Center Utrecht, PO Box 885500, 3508 GA Utrecht, The Netherlands
| | - S. M. Willems
- Department of Pathology, University Medical Center Utrecht, PO Box 885500, 3508 GA Utrecht, The Netherlands
- Department of Pathology, University Medical Center Groningen, PO Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
13
|
Ibáñez-Redín G, Materon EM, Furuta RHM, Wilson D, do Nascimento GF, Melendez ME, Carvalho AL, Reis RM, Oliveira ON, Gonçalves D. Screen-printed electrodes modified with carbon black and polyelectrolyte films for determination of cancer marker carbohydrate antigen 19-9. Mikrochim Acta 2020; 187:417. [DOI: 10.1007/s00604-020-04404-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/17/2020] [Indexed: 11/24/2022]
|
14
|
Pinto F, Costa ÂM, Santos GC, Matsushita MM, Costa S, Silva VA, Miranda-Gonçalves V, Lopes CM, Clara CA, Becker AP, Neder L, Hajj GN, da Cunha IW, Jones C, Andrade RP, Reis RM. The T-box transcription factor brachyury behaves as a tumor suppressor in gliomas. J Pathol 2020; 251:87-99. [PMID: 32154590 DOI: 10.1002/path.5419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 12/19/2022]
Abstract
The oncogene brachyury (TBXT) is a T-box transcription factor that is overexpressed in multiple solid tumors and is associated with tumor aggressiveness and poor patient prognosis. Gliomas comprise the most common and aggressive group of brain tumors, and at the present time the functional and clinical impact of brachyury expression has not been investigated previously in these neoplasms. Brachyury expression (mRNA and protein) was assessed in normal brain (n = 67), glioma tissues (n = 716) and cell lines (n = 42), and further in silico studies were undertaken using genomic databases totaling 3115 samples. Our glioma samples were analyzed for copy number (n = 372), promoter methylation status (n = 170), and mutation status (n = 1569 tissues and n = 52 cell lines) of the brachyury gene. The prognostic impact of brachyury expression was studied in 1524 glioma patient tumors. The functional impact of brachyury on glioma proliferation, viability, and cell death was evaluated both in vitro and in vivo. Brachyury was expressed in the normal brain, and significantly downregulated in glioma tissues. Loss of brachyury was associated with tumor aggressiveness and poor survival in glioma patients. Downregulation of brachyury was not associated with gene deletion, promoter methylation, or inactivating point mutations. Brachyury re-expression in glioma cells was found to decrease glioma tumorigenesis by induction of autophagy. These data strongly suggest that brachyury behaves as a tumor suppressor gene in gliomas by modulating autophagy. It is important to note that brachyury constitutes an independent positive biomarker of patient prognosis. Our findings indicate that the role of brachyury in tumorigenesis may be tissue-dependent and demands additional investigation to guide rational interventions. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Filipe Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto - IPATIMUP, Porto, Portugal
| | - Ângela M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Gisele C Santos
- Department of Pathology, Barretos Cancer Hospital, São Paulo, Brazil
| | | | - Sandra Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Viviane Ao Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Vera Miranda-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Celeste M Lopes
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Carlos A Clara
- Neurosurgery Department, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Aline P Becker
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Luciano Neder
- Department of Pathology and Forensic Medicine, Faculty of Medicine of Ribeirão Preto, University of São Paulo (FMRP-USP), São Paulo, Brazil
| | - Glaucia Nm Hajj
- International Research Center, AC Camargo Cancer Center, São Paulo, Brazil
| | - Isabela W da Cunha
- Department of Molecular Diagnosis, Anatomic Pathology Department, AC Camargo Cancer Center, São Paulo, Brazil
| | - Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research (ICR), Sutton, UK
| | - Raquel P Andrade
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,Regenerative Medicine Program; Department of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.,CBMR, Centre for Biomedical Research, Universidade do Algarve, Faro, Portugal
| | - Rui M Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| |
Collapse
|
15
|
Alves ALV, Costa AM, Martinho O, da Silva VD, Jordan P, Silva VAO, Reis RM. WNK2 Inhibits Autophagic Flux in Human Glioblastoma Cell Line. Cells 2020; 9:E485. [PMID: 32093151 PMCID: PMC7072831 DOI: 10.3390/cells9020485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 01/07/2023] Open
Abstract
Autophagy is a cell-survival pathway with dual role in tumorigenesis, promoting either tumor survival or tumor death. WNK2 gene, a member of the WNK (with no lysine (K)) subfamily, acts as a tumor suppressor gene in gliomas, regulating cell migration and invasion; however, its role in autophagy process is poorly explored. The WNK2-methylated human glioblastoma cell line A172 WT (wild type) was compared to transfected clones A172 EV (empty vector), and A172 WNK2 (WNK2 overexpression) for the evaluation of autophagy using an inhibitor (bafilomycin A1-baf A1) and an inducer (everolimus) of autophagic flux. Western blot and immunofluorescence approaches were used to monitor autophagic markers, LC3A/B and SQSTM1/p62. A172 WNK2 cells presented a significant decrease in LC3B and p62 protein levels, and in LC3A/B ratio when compared with control cells, after treatment with baf A1 + everolimus, suggesting that WNK2 overexpression inhibits the autophagic flux in gliomas. The mTOR pathway was also evaluated under the same conditions, and the observed results suggest that the inhibition of autophagy mediated by WNK2 occurs through a mTOR-independent pathway. In conclusion, the evaluation of the autophagic process demonstrated that WNK2 inhibits the autophagic flux in glioblastoma cell line.
Collapse
Affiliation(s)
- Ana Laura Vieira Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, 14784 400 Barretos, Brazil; (A.L.V.A.); (O.M.); (V.D.d.S.); (V.A.O.S.)
| | - Angela Margarida Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT—Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Olga Martinho
- Molecular Oncology Research Center, Barretos Cancer Hospital, 14784 400 Barretos, Brazil; (A.L.V.A.); (O.M.); (V.D.d.S.); (V.A.O.S.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT—Government Associate Laboratory, 4806-909 Braga, Portugal
| | - Vinicius Duval da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, 14784 400 Barretos, Brazil; (A.L.V.A.); (O.M.); (V.D.d.S.); (V.A.O.S.)
| | - Peter Jordan
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, 1649-016 Lisbon, Portugal;
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Viviane Aline Oliveira Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, 14784 400 Barretos, Brazil; (A.L.V.A.); (O.M.); (V.D.d.S.); (V.A.O.S.)
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, 14784 400 Barretos, Brazil; (A.L.V.A.); (O.M.); (V.D.d.S.); (V.A.O.S.)
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT—Government Associate Laboratory, 4806-909 Braga, Portugal
| |
Collapse
|
16
|
Pereira MS, Celeiro SP, Costa ÂM, Pinto F, Popov S, de Almeida GC, Amorim J, Pires MM, Pinheiro C, Lopes JM, Honavar M, Costa P, Pimentel J, Jones C, Reis RM, Viana-Pereira M. Loss of SPINT2 expression frequently occurs in glioma, leading to increased growth and invasion via MMP2. Cell Oncol (Dordr) 2019; 43:107-121. [PMID: 31701492 DOI: 10.1007/s13402-019-00475-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE High-grade gliomas (HGG) remain one of the most aggressive tumors, which is primarily due to its diffuse infiltrative nature. Serine proteases and metalloproteases are known to play key roles in cellular migration and invasion mechanisms. SPINT2, also known as HAI-2, is an important serine protease inhibitor that can affect MET signaling. SPINT2 has been found to be frequently downregulated in various tumors, whereby hypermethylation of its promoter appears to serve as a common mechanism. Here, we assessed the clinical relevance of SPINT2 expression and promoter hypermethylation in pediatric and adult HGG and explored its functional role. METHODS A series of 371 adult and 77 pediatric primary HGG samples was assessed for SPINT2 protein expression (immunohistochemistry) and promoter methylation (methylation-specific PCR) patterns. After SPINT2 knockdown and knock-in in adult and pediatric HGG cell lines, a variety of in vitro assays was carried out to determine the role of SPINT2 in glioma cell viability and invasion, as well as their mechanistic associations with metalloprotease activities. RESULTS We found that SPINT2 protein expression was frequently absent in adult (85.3%) and pediatric (100%) HGG samples. The SPINT2 gene promoter was found to be hypermethylated in approximately half of both adult and pediatric gliomas. Through functional assays we revealed a suppressor activity of SPINT2 in glioma cell proliferation and viability, as well as in their migration and invasion. These functions appear to be mediated in part by MMP2 expression and activity. CONCLUSIONS We conclude that dysregulation of SPINT2 is a common event in both pediatric and adult HGG, in which SPINT2 may act as a tumor suppressor.
Collapse
Affiliation(s)
- Márcia Santos Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sónia Pires Celeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ângela Margarida Costa
- I3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,INEB - Institute of Biomedical Engineering, Porto, Portugal
| | - Filipe Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Sergey Popov
- Department of Cellular Pathology, University Hospital of Wales, Cardiff, United Kingdom
| | | | - Júlia Amorim
- Department of Oncology, Hospital de Braga, Braga, Portugal
| | - Manuel Melo Pires
- Unity of Neuropathology, Centro Hospitalar Universitário Porto, Porto, Portugal
| | - Célia Pinheiro
- Department of Neurosurgery, Centro Hospitalar Universitário Porto, Porto, Portugal
| | - José Manuel Lopes
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Department of Pathology, Hospital São João, Porto, Portugal
| | - Mrinalini Honavar
- Department of Pathology, Hospital Pedro Hispano, Matosinhos, Portugal
| | - Paulo Costa
- Department of Radiotherapy, Hospital de Braga, Braga, Portugal
| | - José Pimentel
- Laboratory of Neuropathology, Hospital de Santa Maria, Lisbon, Portugal
| | - Chris Jones
- Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal. .,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.
| | - Marta Viana-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
17
|
Gomes INF, Silva-Oliveira RJ, Oliveira Silva VA, Rosa MN, Vital PS, Barbosa MCS, Dos Santos FV, Junqueira JGM, Severino VGP, Oliveira BG, Romão W, Reis RM, Ribeiro RIMDA. Annona coriacea Mart. Fractions Promote Cell Cycle Arrest and Inhibit Autophagic Flux in Human Cervical Cancer Cell Lines. Molecules 2019; 24:molecules24213963. [PMID: 31683835 PMCID: PMC6864525 DOI: 10.3390/molecules24213963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/30/2023] Open
Abstract
Plant-based compounds are an option to explore and perhaps overcome the limitations of current antitumor treatments. Annona coriacea Mart. is a plant with a broad spectrum of biological activities, but its antitumor activity is still unclear. The purpose of our study was to determine the effects of A. coriacea fractions on a panel of cervical cancer cell lines and a normal keratinocyte cell line. The antitumor effect was investigated in vitro by viability assays, cell cycle, apoptosis, migration, and invasion assays. Intracellular signaling was assessed by Western blot, and major compounds were identified by mass spectrometry. All fractions exhibited a cytotoxic effect on cisplatin-resistant cell lines, SiHa and HeLa. C3 and C5 were significantly more cytotoxic and selective than cisplatin in SiHa and Hela cells. However, in CaSki, a cisplatin-sensitive cell line, the compounds did not demonstrate higher cytotoxicity when compared with cisplatin. Alkaloids and acetogenins were the main compounds identified in the fractions. These fractions also markedly decreased cell proliferation with p21 increase and cell cycle arrest in G2/M. These effects were accompanied by an increase of H2AX phosphorylation levels and DNA damage index. In addition, fractions C3 and C5 promoted p62 accumulation and decrease of LC3II, as well as acid vesicle levels, indicating the inhibition of autophagic flow. These findings suggest that A. coriacea fractions may become effective antineoplastic drugs and highlight the autophagy inhibition properties of these fractions in sensitizing cervical cancer cells to treatment.
Collapse
Affiliation(s)
- Izabela N Faria Gomes
- Experimental Pathology Laboratory, Federal University of São João del Rei-CCO/UFSJ, Divinópolis 35501-296, Brazil.
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil.
| | | | | | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil.
| | - Patrik S Vital
- Experimental Pathology Laboratory, Federal University of São João del Rei-CCO/UFSJ, Divinópolis 35501-296, Brazil.
| | - Maria Cristina S Barbosa
- Laboratory of Cell Biology and Mutagenesis, Federal University of São João del Rei-CCO/UFSJ, Divinópolis 35501-296, Brazil.
| | - Fábio Vieira Dos Santos
- Laboratory of Cell Biology and Mutagenesis, Federal University of São João del Rei-CCO/UFSJ, Divinópolis 35501-296, Brazil.
| | - João Gabriel M Junqueira
- Special Academic Unit of Physics and Chemistry, Federal University of Goiás, Catalão 75704-020, Brazil.
| | - Vanessa G P Severino
- Special Academic Unit of Physics and Chemistry, Federal University of Goiás, Catalão 75704-020, Brazil.
| | - Bruno G Oliveira
- Petroleomic and forensic chemistry laboratory, Department of Chemistry, Federal Institute of Espirito Santo, Vitória, ES 29075-910, Brazil.
| | - Wanderson Romão
- Petroleomic and forensic chemistry laboratory, Department of Chemistry, Federal Institute of Espirito Santo, Vitória, ES 29075-910, Brazil.
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil.
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, 4710-057 Braga, Portugal.
- 3ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal.
| | | |
Collapse
|
18
|
Mei YB, Luo SB, Ye LY, Zhang Q, Guo J, Qiu XJ, Xie SL. Validated UPLC-MS/MS method for quantification of fruquintinib in rat plasma and its application to pharmacokinetic study. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2865-2871. [PMID: 31616134 PMCID: PMC6699497 DOI: 10.2147/dddt.s199362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 07/25/2019] [Indexed: 11/23/2022]
Abstract
A new, simple, and sensitive ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for quantification of fruquintinib was established to assess the pharmacokinetics of fruquintinib in the rat. The internal standard working solution was added to the plasma sample for extraction before analysis. The Acquity UPLC BEH C18 chromatography column (2.1 mm ×50 mm, 1.7 μm) was used to separated analytes under gradient elution using acetonitrile and 0.1% formic acid as the mobile phase. Positive multiple reaction monitoring modes were chosen to detect fruquintinib and diazepam (IS). The precursor-to-product ion transitions were 394.2 → 363.2 for fruquintinib and m/z 285 → 154 for IS. The current method was linear over the concentration range of 1.0-1000 ng/mL for fruquintinib with a correlation coefficient of 0.9992 or better. The matrix effect of fruquintinib and IS was acceptable under the current method. The intra- and interday precision (RSD%) and accuracy (RE%) were within 11.9% and ±13.7%, respectively. The recovery, stability, and sensitivity were validated according to the United States Food and Drug Administration (FDA) regulations for bioanalytical method validation. The analytical method had been validated and applied to a pharmacokinetic study of fruquintinib in rat.
Collapse
Affiliation(s)
- Yi-Bin Mei
- Department of Cardiology, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Shun-Bin Luo
- Department of Clinical Pharmacy, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Ling-Yan Ye
- Department of Cardiology, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Qiang Zhang
- Department of Clinical Laboratory, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Jing Guo
- Department of Regional Medical Union, The People's Hospital of Lishui, Lishui, Zhejiang 323000, People's Republic of China
| | - Xiang-Jun Qiu
- Department of pharmacology, Medical College of Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Sai-Li Xie
- Department of Ultrasonic imaging, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
19
|
Ibáñez-Redín G, Furuta RH, Wilson D, Shimizu FM, Materon EM, Arantes LMRB, Melendez ME, Carvalho AL, Reis RM, Chaur MN, Gonçalves D, Oliveira Jr ON. Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:1502-1508. [DOI: 10.1016/j.msec.2019.02.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/01/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022]
|
20
|
Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur J Med Chem 2019; 170:55-72. [DOI: 10.1016/j.ejmech.2019.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 12/30/2022]
|
21
|
Establishment, molecular and biological characterization of HCB-514: a novel human cervical cancer cell line. Sci Rep 2019; 9:1913. [PMID: 30760827 PMCID: PMC6374403 DOI: 10.1038/s41598-018-38315-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/19/2018] [Indexed: 01/28/2023] Open
Abstract
Cervical cancer is the fourth most common cancer in women. Although cure rates are high for early stage disease, clinical outcomes for advanced, metastatic, or recurrent disease remain poor. To change this panorama, a deeper understanding of cervical cancer biology and novel study models are needed. Immortalized human cancer cell lines such as HeLa constitute crucial scientific tools, but there are few other cervical cancer cell lines available, limiting our understanding of a disease known for its molecular heterogeneity. This study aimed to establish novel cervical cancer cell lines derived from Brazilian patients. We successfully established one (HCB-514) out of 35 cervical tumors biopsied. We confirmed the phenotype of HCB-514 by verifying its’ epithelial and tumor origin through cytokeratins, EpCAM and p16 staining. It was also HPV-16 positive. Whole-exome sequencing (WES) showed relevant somatic mutations in several genes including BRCA2, TGFBR1 and IRX2. A copy number variation (CNV) analysis by nanostring and WES revealed amplification of genes mainly related to kinases proteins involved in proliferation, migration and cell differentiation, such as EGFR, PIK3CA, and MAPK7. Overexpression of EGFR was confirmed by phospho RTK-array and validated by western blot analysis. Furthermore, the HCB-514 cell line was sensitive to cisplatin. In summary, this novel Brazilian cervical cancer cell line exhibits relevant key molecular features and constitutes a new biological model for pre-clinical studies.
Collapse
|
22
|
Modified ingenol semi-synthetic derivatives from Euphorbia tirucalli induce cytotoxicity on a large panel of human cancer cell lines. Invest New Drugs 2019; 37:1029-1035. [DOI: 10.1007/s10637-019-00728-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/04/2019] [Indexed: 02/05/2023]
|
23
|
Muller SP, Silva VAO, Silvestrini AVP, de Macedo LH, Caetano GF, Reis RM, Mazzi MV. Crotoxin from Crotalus durissus terrificus venom: In vitro cytotoxic activity of a heterodimeric phospholipase A2 on human cancer-derived cell lines. Toxicon 2018; 156:13-22. [DOI: 10.1016/j.toxicon.2018.10.306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/03/2018] [Accepted: 10/29/2018] [Indexed: 12/15/2022]
|
24
|
Silva VAO, Alves ALV, Rosa MN, Silva LRV, Melendez ME, Cury FP, Gomes INF, Tansini A, Longato GB, Martinho O, Oliveira BG, Pinto FE, Romão W, Ribeiro RIMA, Reis RM. Hexane partition from Annona crassiflora Mart. promotes cytotoxity and apoptosis on human cervical cancer cell lines. Invest New Drugs 2018; 37:602-615. [PMID: 30155717 DOI: 10.1007/s10637-018-0657-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/14/2018] [Indexed: 12/23/2022]
Abstract
Cervical cancer is the third most commonly diagnosed tumor type and the fourth cause of cancer-related death in females. Therapeutic options for cervical cancer patients remain very limited. Annona crassiflora Mart. is used in traditional medicine as antimicrobial and antineoplastic agent. However, little is known about its antitumoral properties. In this study the antineoplastic effect of crude extract and derived partitions from A. crassiflora Mart in cervical cancer cell lines was evaluated. The crude extract significantly alters cell viability of cervical cancer cell lines as well as proliferation and migration, and induces cell death in SiHa cells. Yet, the combination of the crude extract with cisplatin leads to antagonistic effect. Importantly, the hexane partition derived from the crude extract presented cytotoxic effect both in vitro and in vivo, and initiates cell responses, such as DNA damage (H2AX activity), apoptosis via intrinsic pathway (cleavage of caspase-9, caspase-3, poly (ADP-ribose) polymerase (PARP) and mitochondrial membrane depolarization) and decreased p21 expression by ubiquitin proteasome pathway. Concluding, this work shows that hexane partition triggers several biological responses such as DNA damage and apoptosis, by intrinsic pathways, and was also able to promote a direct decrease in tumor perimeter in vivo providing a basis for further investigation on its antineoplastic activity on cervical cancer.
Collapse
Affiliation(s)
- Viviane A O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Ana Laura V Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Larissa R V Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Matias E Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Fernanda P Cury
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Izabela N F Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Aline Tansini
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil
| | - Giovanna B Longato
- Research Laboratory in Cellular and Molecular Biology of Tumors and Bioactive Compounds, San Francisco University, Bragança Paulista, 12916900, São Paulo, Brazil
| | - Olga Martinho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710057, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, 4806909, Portugal
| | - Bruno G Oliveira
- Petroleomic and Forensic Laboratory, Chemistry Department, Federal University of Espírito Santo, Vitória, 29075-910, ES, Brazil
| | - Fernanda E Pinto
- Petroleomic and Forensic Laboratory, Chemistry Department, Federal University of Espírito Santo, Vitória, 29075-910, ES, Brazil
| | - Wanderson Romão
- Petroleomic and Forensic Laboratory, Chemistry Department, Federal University of Espírito Santo, Vitória, 29075-910, ES, Brazil
| | - Rosy I M A Ribeiro
- Laboratory of Experimental Pathology, Federal University of São João del Rei-CCO/UFSJ, Divinópolis, 35501-296, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784400, São Paulo, Brazil. .,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, 4710057, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, 4806909, Portugal.
| |
Collapse
|
25
|
Silva VAO, Rosa MN, Miranda-Gonçalves V, Costa AM, Tansini A, Evangelista AF, Martinho O, Carloni AC, Jones C, Lima JP, Pianowski LF, Reis RM. Euphol, a tetracyclic triterpene, from Euphorbia tirucalli induces autophagy and sensitizes temozolomide cytotoxicity on glioblastoma cells. Invest New Drugs 2018; 37:223-237. [DOI: 10.1007/s10637-018-0620-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023]
|
26
|
Melendez ME, Silva-Oliveira RJ, Silva Almeida Vicente AL, Rebolho Batista Arantes LM, Carolina de Carvalho A, Epstein AL, Reis RM, Carvalho AL. Construction and characterization of a new TRAIL soluble form, active at picomolar concentrations. Oncotarget 2018; 9:27233-27241. [PMID: 29930761 PMCID: PMC6007462 DOI: 10.18632/oncotarget.25519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 05/14/2018] [Indexed: 12/13/2022] Open
Abstract
Apoptosis induction has emerged as a treatment option for anticancer therapy. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), a type II transmembrane protein, is a potent and specific pro-apoptotic protein ligand, which activates the extrinsic apoptosis pathway of the cell death receptors. Here we describe the construction and characterization of a new soluble TRAIL, sfTRAIL, stabilized with the trimerization Foldon domain from the Fibritin protein of the bacteriophage T4. Supernatants of 0.22 μM-filtered supernatants were produced in Vero-transduced cells with HSV1-derived viral amplicon vectors. Experiments were undertaken in two known TRAIL-sensitive (U373 and MDA.MB.231) and two TRAIL-resistant (MCF7 and A549) cell lines, to determine (i) whether the sfTRAIL protein is synthetized and, (ii) whether sfTRAIL could induce receptor-mediated apoptosis. Our results showed that sfTRAIL was able to induce apoptosis at concentrations as low as 1899.29 pg/mL (27.71 pM), independently of caspase-9 activation, and reduction in cell viability at 998.73 fM.
Collapse
Affiliation(s)
- Matias Eliseo Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | | | | | | | - Alberto Luis Epstein
- UMR1179, INSERM-UVSQ, Handicap Neuromusculaire, Biotherapie et Pharmacologie Appliquées, Université de Versailles-Saint Quentin en Yvelines, Versailles, France
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - André Lopes Carvalho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| |
Collapse
|
27
|
Silva VAO, Rosa MN, Tansini A, Oliveira RJS, Martinho O, Lima JP, Pianowski LF, Reis RM. In vitro screening of cytotoxic activity of euphol from Euphorbia tirucalli on a large panel of human cancer-derived cell lines. Exp Ther Med 2018; 16:557-566. [PMID: 30112023 PMCID: PMC6090420 DOI: 10.3892/etm.2018.6244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/13/2018] [Indexed: 12/15/2022] Open
Abstract
A large number of classic antineoplastic agents are derived from plants. Euphorbia tirucalli L. (Euphorbiaceae) is a subtropical and tropical plant, used in Brazilian folk medicine against many diseases, including cancer, yet little is known about its true anticancer properties. The present study evaluated the antitumor effect of the tetracyclic triterpene alcohol, euphol, the main constituent of E. tirucalli in a panel of 73 human cancer lines from 15 tumor types. The biological effect of euphol in pancreatic cells was also assessed. The combination index was further used to explore euphol interactions with standard drugs. Euphol showed a cytotoxicity effect against several cancer cell lines (IC50 range, 1.41–38.89 µM), particularly in esophageal squamous cell (11.08 µM) and pancreatic carcinoma cells (6.84 µM), followed by prostate, melanoma, and colon cancer. Cytotoxicity effects were seen in all cancer cell lines, with more than half deemed highly sensitive. Euphol inhibited proliferation, motility and colony formation in pancreatic cancer cells. Importantly, euphol exhibited synergistic interactions with gemcitabine and paclitaxel in pancreatic and esophageal cell lines, respectively. To the best of our knowledge, this study constitutes the largest in vitro screening of euphol efficacy on cancer cell lines and revealed its in vitro anti-cancer properties, particularly in pancreatic and esophageal cell lines, suggesting that euphol, either as a single agent or in combination with conventional chemotherapy, is a potential anti-cancer drug.
Collapse
Affiliation(s)
| | - Marcela Nunes Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784 400, Brazil
| | - Aline Tansini
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784 400, Brazil
| | - Renato J S Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784 400, Brazil
| | - Olga Martinho
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784 400, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga/Guimarães 4806-909, Portugal
| | - João Paulo Lima
- Medical Oncology Department, AC Camargo Cancer Center, São Paulo, SP 01509-010, Brazil
| | - Luiz F Pianowski
- Kyolab Laboratório de Pesquisa Farmacêutica Ltda, Valinhos, SP 13273-105, Brazil
| | - Rui M Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784 400, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga/Guimarães 4806-909, Portugal
| |
Collapse
|
28
|
Silva ECA, Cárcano FM, Bonatelli M, Zaia MG, Morais-Santos F, Baltazar F, Lopes LF, Scapulatempo-Neto C, Pinheiro C. The clinicopathological significance of monocarboxylate transporters in testicular germ cell tumors. Oncotarget 2018; 9:20386-20398. [PMID: 29755659 PMCID: PMC5945514 DOI: 10.18632/oncotarget.24910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/26/2018] [Indexed: 12/14/2022] Open
Abstract
Background Metabolic reprogramming is one of the hallmarks of cancer. The hyperglycolytic phenotype is often associated with the overexpression of metabolism-associated proteins, such as monocarboxylate transporters (MCTs). MCTs are little explored in germ cell tumors (GCTs), thus, the opportunity to understand the relevance of these metabolic markers and their chaperone CD147 in this type of tumor arises. The main aim of this study was to evaluate the expression of MCT1, MCT2, MCT4 and CD147 in testicular GCT samples and the clinicopathological significance of these metabolism related proteins. Results MCT1, MCT4 and CD147 were associated with higher stages, higher M and N stages and histological type, while MCT4 was also associated with higher risk stratification, presence of vascular invasion, and lower overall and event free survival. MCT4 silencing in JEG-3 had no significant effect in cell viability, proliferation and death, as well as extracellular levels of glucose and lactate. However, MCT4-silenced cells showed an increase in migration and invasion. Conclusion The proteins herein studied, with the exception of MCT2, were associated with characteristics of worse prognosis, lower global and event free survival of patients with GCTs. Also, in vitro MCT4 silencing stimulated cell migration and invasion. Materials and Methods Immunohistochemical expression was evaluated on samples from 149 adult patients with testicular GCT, arranged in Tissue Microarrays (TMAs), and associated with the clinicopathological data. Also, MCT4 silencing studies using siRNA were performed in JEG-3 cells.
Collapse
Affiliation(s)
- Eduardo C A Silva
- Pathology Department, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Flavio M Cárcano
- Medical Oncology Department, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.,Barretos School of Health Sciences Dr. Paulo Prata - FACISB, Barretos, São Paulo, Brazil
| | - Murilo Bonatelli
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Maurício G Zaia
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Filipa Morais-Santos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luiz F Lopes
- Barretos School of Health Sciences Dr. Paulo Prata - FACISB, Barretos, São Paulo, Brazil.,Barretos Children's Cancer Hospital, Barretos, São Paulo, Brazil
| | - Cristovam Scapulatempo-Neto
- Pathology Department, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Céline Pinheiro
- Barretos School of Health Sciences Dr. Paulo Prata - FACISB, Barretos, São Paulo, Brazil.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| |
Collapse
|
29
|
Bauhinia variegata candida Fraction Induces Tumor Cell Death by Activation of Caspase-3, RIP, and TNF-R1 and Inhibits Cell Migration and Invasion In Vitro. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4702481. [PMID: 29770331 PMCID: PMC5889885 DOI: 10.1155/2018/4702481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/28/2017] [Accepted: 02/13/2018] [Indexed: 11/17/2022]
Abstract
Metastasis remains the most common cause of death in cancer patients. Inhibition of metalloproteinases (MMPs) is an interesting approach to cancer therapy because of their role in the degradation of extracellular matrix (ECM), cell-cell, and cell-ECM interactions, modulating key events in cell migration and invasion. Herein, we show the cytotoxic and antimetastatic effects of the third fraction (FR3) from Bauhinia variegata candida (Bvc) stem on human cervical tumor cells (HeLa) and human peripheral blood mononuclear cells (PBMCs). FR3 inhibited MMP-2 and MMP-9 activity, indicated by zymogram. This fraction was cytotoxic to HeLa cells and noncytotoxic to PBMCs and decreased HeLa cell migration and invasion. FR3 is believed to stimulate extrinsic apoptosis together with necroptosis, assessed by western blotting. FR3 inhibited MMP-2 activity in the HeLa supernatant, differently from the control. The atomic mass spectrometry (ESI-MS) characterization suggested the presence of glucopyranosides, D-pinitol, fatty acids, and phenolic acid. These findings provide insight suggesting that FR3 contains components with potential tumor-selective cytotoxic action in addition to the action on the migration of tumor cells, which may be due to inhibition of MMPs.
Collapse
|
30
|
Miranda-Gonçalves V, Cardoso-Carneiro D, Valbom I, Cury FP, Silva VA, Granja S, Reis RM, Baltazar F, Martinho O. Metabolic alterations underlying Bevacizumab therapy in glioblastoma cells. Oncotarget 2017; 8:103657-103670. [PMID: 29262591 PMCID: PMC5732757 DOI: 10.18632/oncotarget.21761] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022] Open
Abstract
Anti-VEGF therapy with Bevacizumab is approved for glioblastoma treatment, however, it is known that tumors acquired resistance and eventually became even more aggressive and infiltrative after treatment. In the present study we aimed to unravel the potential cellular mechanisms of resistance to Bevacizumab in glioblastoma in vitro models. Using a panel of glioblastoma cell lines we found that Bevacizumab is able to block the secreted VEGF by the tumor cells and be internalized to the cytoplasm, inducing cytotoxicity in vitro. We further found that Bevacizumab increases the expression of hypoxic (HIF-1α and CAIX) and glycolytic markers (GLUT1 and MCT1), leading to higher glucose uptake and lactate production. Furthermore, we showed that part of the consumed glucose by the tumor cells can be stored as glycogen, hampering cell dead following Bevacizumab treatment. Importantly, we found that this change on the glycolytic metabolism occurs independently of hypoxia and before mitochondrial impairment or autophagy induction. Finally, the combination of Bevacizumab with glucose uptake inhibitors decreased in vivo tumor growth and angiogenesis and shift the expression of glycolytic proteins. In conclusion, we reported that Bevacizumab is able to increase the glucose metabolism on cancer cells by abrogating autocrine VEGF in vitro. Define the effects of anti-angiogenic drugs at the cellular level can allow us to discover ways to revert acquired resistance to this therapeutic approaches in the future.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Cardoso-Carneiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Valbom
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernanda Paula Cury
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Viviane Aline Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui M Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| |
Collapse
|
31
|
Increased EGFR expression induced by a novel oncogene, CUG2, confers resistance to doxorubicin through Stat1-HDAC4 signaling. Cell Oncol (Dordr) 2017; 40:549-561. [DOI: 10.1007/s13402-017-0343-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2017] [Indexed: 12/22/2022] Open
|
32
|
AKT can modulate the in vitro response of HNSCC cells to irreversible EGFR inhibitors. Oncotarget 2017; 8:53288-53301. [PMID: 28881811 PMCID: PMC5581110 DOI: 10.18632/oncotarget.18395] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 05/16/2017] [Indexed: 12/14/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in up to 90% of head and neck squamous cell carcinoma (HNSCC) tumors. Cetuximab is the first targeted (anti-EGFR) therapy approved for the treatment of HNSCC patients. However, its efficacy is limited due to primary and secondary resistance, and there is no predict biomarkers of response. New generation of EGFR inhibitors with pan HER targeting and irreversible action, such as afatinib and allitinib, represents a significant therapeutic promise. In this study, we intend to compare the potential cytotoxicity of two anti-EGFR inhibitors (afatinib and allitinib) with cetuximab and to identify potential predictive biomarkers of response in a panel of HNSCC cell lines. The mutational analysis in the eight HNSCC cell lines revealed an EGFR mutation (p.H773Y) and gene amplification in the HN13 cells. According to the growth inhibition score (GI), allitinib was the most cytotoxic drug, followed by afatinib and finally cetuximab. The higher AKT phosphorylation level was associated with resistance to anti-EGFR agents. Therefore, we further performed drug combinations with anti-AKT agent (MK2206) and AKT1 gene editing, which demonstrated afatinib and allitinib sensitivity restored. Additionally, in silico analysis of TCGA database showed that AKT1 overexpression was present in 14.7% (41/279) of HNSCC cases, and was associated with perineural invasion in advanced stage. In conclusion, allitinib presented a greater cytotoxic profile when compared to afatinib and cetuximab. AKT pathway constitutes a predictive marker of allitinib response and combination with AKT inhibitors could restore response and increase treatment success.
Collapse
|
33
|
Macedo T, Silva-Oliveira RJ, Silva VAO, Vidal DO, Evangelista AF, Marques MMC. Overexpression of mir-183 and mir-494 promotes proliferation and migration in human breast cancer cell lines. Oncol Lett 2017; 14:1054-1060. [PMID: 28693273 DOI: 10.3892/ol.2017.6265] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/03/2017] [Indexed: 12/19/2022] Open
Abstract
Breast cancer (BC) is a leading cause of cancer-associated mortality in females worldwide. MicroRNAs (miRNAs or miRs), a type of non-coding RNA, have been reported to be important in the regulation of BC onset and progression. Several studies have implicated the role of miR-183 and miR-494 in different types of cancer. However, the biological functions of these miRNAs in BC remain largely unknown. In the present study, the expression of both miRNAs was assessed in the MDA-MB-231 and MDA-MB-468 BC cell lines. It was hypothesized that miR-183 and miR-494 serve an important role in regulating the expression of key genes associated with the metastatic phenotype of BC cells. To further understand their role, the expression of these miRNAs was restored in selected BC cell lines. Functional assays revealed that overexpression of miR-183 or miR-494 modulated the proliferation and migration of MDA-MB-231 and MDA-MB-468 cells in vitro. Additionally, retinoblastoma 1 (RB1) was identified to be a downstream target of both miRNAs by in silico analysis. Western blotting revealed that upregulation of miR-183 was associated with downregulation of RB1 protein in MDA-MB-231 cells. In conclusion, the present results support the hypothesis that miR-183 and miR-494 serve a pivotal role in BC metastasis, and that miR-183 may act as an oncogene by targeting RB1 protein in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Taciane Macedo
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784-400, Brazil
| | - Renato J Silva-Oliveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784-400, Brazil
| | - Viviane A O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784-400, Brazil
| | - Daniel O Vidal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784-400, Brazil
| | - Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784-400, Brazil
| | - Marcia M C Marques
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP 14784-400, Brazil.,Barretos School of Health Sciences, Barretos, SP 14785-002, Brazil
| |
Collapse
|
34
|
Martinho O, Silva-Oliveira R, Cury FP, Barbosa AM, Granja S, Evangelista AF, Marques F, Miranda-Gonçalves V, Cardoso-Carneiro D, de Paula FE, Zanon M, Scapulatempo-Neto C, Moreira MA, Baltazar F, Longatto-Filho A, Reis RM. HER Family Receptors are Important Theranostic Biomarkers for Cervical Cancer: Blocking Glucose Metabolism Enhances the Therapeutic Effect of HER Inhibitors. Theranostics 2017; 7:717-732. [PMID: 28255362 PMCID: PMC5327645 DOI: 10.7150/thno.17154] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/21/2016] [Indexed: 12/17/2022] Open
Abstract
Persistent HPV infection alone is not sufficient for cervical cancer development, which requires additional molecular alterations for tumor progression and metastasis ultimately leading to a lethal disease. In this study, we performed a comprehensive analysis of HER family receptor alterations in cervical adenocarcinoma. We detected overexpression of HER protein, mainly HER2, which was an independent prognostic marker for these patients. By using in vitro and in vivo approaches, we provided evidence that HER inhibitors, allitinib and lapatinib, were effective in reducing cervical cancer aggressiveness. Furthermore, combination of these drugs with glucose uptake blockers could overcome the putative HIF1-α-mediated resistance to HER-targeted therapies. Thus, we propose that the use of HER inhibitors in association with glycolysis blockers can be a potentially effective treatment option for HER-positive cervical cancer patients.
Collapse
Affiliation(s)
- Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Renato Silva-Oliveira
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Fernanda P. Cury
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Ana Martins Barbosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Fábio Marques
- Department of Pathology of the School of Medicine of the Federal University of Goiás, Brazil
| | - Vera Miranda-Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Diana Cardoso-Carneiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Flávia E. de Paula
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Maicon Zanon
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | | | - Marise A.R. Moreira
- Department of Pathology of the School of Medicine of the Federal University of Goiás, Brazil
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Adhemar Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos, São Paulo, Brazil
- Laboratory of Medical Investigation (LIM) 14, Faculty of Medicine, São Paulo State University, Brazil
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Molecular Oncology Research Center (CPOM), Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| |
Collapse
|
35
|
Silva-Oliveira RJ, Lopes GF, Camargos LF, Ribeiro AM, Santos FVD, Severino RP, Severino VGP, Terezan AP, Thomé RG, Santos HBD, Reis RM, Ribeiro RIMDA. Tapirira guianensis Aubl. Extracts Inhibit Proliferation and Migration of Oral Cancer Cells Lines. Int J Mol Sci 2016; 17:E1839. [PMID: 27834805 PMCID: PMC5133839 DOI: 10.3390/ijms17111839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022] Open
Abstract
Cancer of the head and neck is a group of upper aerodigestive tract neoplasms in which aggressive treatments may cause harmful side effects to the patient. In the last decade, investigations on natural compounds have been particularly successful in the field of anticancer drug research. Our aim is to evaluate the antitumor effect of Tapirira guianensis Aubl. extracts on a panel of head and neck squamous cell carcinoma (HNSCC) cell lines. Analysis of secondary metabolites classes in fractions of T. guianensis was performed using Nuclear Magnetic Resonance (NMR). Mutagenicity effect was evaluated by Ames mutagenicity assay. The cytotoxic effect, and migration and invasion inhibition were measured. Additionally, the expression level of apoptosis-related molecules (PARP, Caspases 3, and Fas) and MMP-2 was detected using Western blot. Heterogeneous cytotoxicity response was observed for all fractions, which showed migration inhibition, reduced matrix degradation, and decreased cell invasion ability. Expression levels of MMP-2 decreased in all fractions, and particularly in the hexane fraction. Furthermore, overexpression of FAS and caspase-3, and increase of cleaved PARP indicates possible apoptosis extrinsic pathway activation. Antiproliferative activity of T. guianensis extract in HNSCC cells lines suggests the possibility of developing an anticancer agent or an additive with synergic activities associated with conventional anticancer therapy.
Collapse
Affiliation(s)
| | - Gabriela Francine Lopes
- Laboratory of Experimental Pathology, Federal University of São João del Rei-CCO/UFSJ, Divinópolis 35501-296, Brazil.
| | - Luiz Fernando Camargos
- Laboratory of Mutagenesis, Federal University of São João del Rei-CCO/UFSJ, Divinópolis 35501-296, Brazil.
| | - Ana Maciel Ribeiro
- Medical School, Federal University of Minas Gerais-UFMG, Belo Horizonte 31270-901, Brazil.
| | - Fábio Vieira Dos Santos
- Laboratory of Mutagenesis, Federal University of São João del Rei-CCO/UFSJ, Divinópolis 35501-296, Brazil.
| | - Richele Priscila Severino
- Special Academic Unit of Physics and Chemistry, Federal University of Goiás, Catalão 75704-020, Brazil.
| | | | - Ana Paula Terezan
- Special Academic Unit of Physics and Chemistry, Federal University of Goiás, Catalão 75704-020, Brazil.
| | - Ralph Gruppi Thomé
- Laboratory of Tissue Processing, Federal University of São João del Rei-CCO/UFSJ, Divinópolis 35501-296, Brazil.
| | - Hélio Batista Dos Santos
- Laboratory of Tissue Processing, Federal University of São João del Rei-CCO/UFSJ, Divinópolis 35501-296, Brazil.
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil.
- Life and Health Sciences Research Institute (ICVS), Health Sciences School, University of Minho, Braga 4710-057, Portugal.
- 3ICVS/3B's-PT Government Associate Laboratory, Braga 4710-057, Portugal.
| | | |
Collapse
|