1
|
Fang YP, Yang X, Zhang Y, Zhu XD, Wang XX, Liu Y, Shi W, Huang JY, Zhao Y, Zhang XL. LPS-induced senescence of macrophages aggravates calcification and senescence of vascular smooth muscle cells via IFITM3. Ren Fail 2024; 46:2367708. [PMID: 38973391 PMCID: PMC11232647 DOI: 10.1080/0886022x.2024.2367708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND Cellular senescence, macrophages infiltration, and vascular smooth muscle cells (VSMCs) osteogenic transdifferentiation participate in the pathophysiology of vascular calcification in chronic kidney disease (CKD). Senescent macrophages are involved in the regulation of inflammation in pathological diseases. In addition, senescent cells spread senescence to neighboring cells via Interferon-induced transmembrane protein3 (IFITM3). However, the role of senescent macrophages and IFITM3 in VSMCs calcification remains unexplored. AIMS To explore the hypothesis that senescent macrophages contribute to the calcification and senescence of VSMCs via IFITM3. METHODS Here, the macrophage senescence model was established using Lipopolysaccharides (LPS). The VSMCs were subjected to supernatants from macrophages (MCFS) or LPS-induced macrophages (LPS-MCFS) in the presence or absence of calcifying media (CM). Senescence-associated β-galactosidase (SA-β-gal), Alizarin red (AR), immunofluorescent staining, and western blot were used to identify cell senescence and calcification. RESULTS The expression of IFITM3 was significantly increased in LPS-induced macrophages and the supernatants. The VSMCs transdifferentiated into osteogenic phenotype, expressing higher osteogenic differentiation markers (RUNX2) and lower VSMCs constructive makers (SM22α) when cultured with senescent macrophages supernatants. Also, senescence markers (p16 and p21) in VSMCs were significantly increased by senescent macrophages supernatants treated. However, IFITM3 knockdown inhibited this process. CONCLUSIONS Our study showed that LPS-induced senescence of macrophages accelerated the calcification of VSMCs via IFITM3. These data provide a new perspective linking VC and aging, which may provide clues for diagnosing and treating accelerated vascular aging in patients with CKD.
Collapse
Affiliation(s)
- Ya-Ping Fang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Xin Yang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Ying Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Xiao-Dong Zhu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Xiao-Xu Wang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yan Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Wen Shi
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Jia-Yi Huang
- Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yu Zhao
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Xiao-Liang Zhang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Xie Q, Wang L, Liao X, Huang B, Luo C, Liao G, Yuan L, Liu X, Luo H, Shu Y. Research Progress into the Biological Functions of IFITM3. Viruses 2024; 16:1543. [PMID: 39459876 PMCID: PMC11512382 DOI: 10.3390/v16101543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are upregulated by interferons. They are not only highly conserved in evolution but also structurally consistent and have almost identical structural domains and functional domains. They are all transmembrane proteins and have multiple heritable variations in genes. The IFITM protein family is closely related to a variety of biological functions, including antiviral immunity, tumor formation, bone metabolism, cell adhesion, differentiation, and intracellular signal transduction. The progress of the research on its structure and related functions, as represented by IFITM3, is reviewed.
Collapse
Affiliation(s)
- Qian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Liangliang Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China;
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), WHO Collaborating Center for Standardization and Evaluation of Biologicals NHC Key Laboratory of Research on Quality and Standardization of Biotech Products and NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China
| | - Xinzhong Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Bi Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Guancheng Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Xuejie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China; (Q.X.); (X.L.); (B.H.); (C.L.); (G.L.); (L.Y.); (X.L.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, China
| |
Collapse
|
3
|
Bian Y, Shi J, Chen Z, Fang J, Chen W, Zou Y, Yao H, Tu J, Liao Y, Xie X, Shen J. A diagnostic signature developed based on the necroptosis-related genes and its association with immune infiltration in osteosarcoma. Heliyon 2024; 10:e35719. [PMID: 39253245 PMCID: PMC11381599 DOI: 10.1016/j.heliyon.2024.e35719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Osteosarcoma is a bone-derived malignancy that often leads to lung metastasis and death. Material and methods The RNA-seq data of TARGET-osteosarcoma were collected from TARGET database. GSE16088 and GSE12865 datasets of osteosarcoma x from Gene Expression Database (GEO) were donwloaded. ConsensusClusterPlus was used for molecular subtype classification. Univariate Cox and Lasso regression was employed to develop a risk model. To analyze the regulatory effects of model feature genes on the malignant phenotype of osteosarcoma cell lines, qRT-PCR, Transwell and wound healing assays were performed. The abundance of immune cell infiltration was assessed using MCP-Counter, Gene Set Enrichment Analysis (GSEA), and ESTIMATE. The Tumor Immune Dysfunction and Exclusion (TIDE) software was employed to evaluate immunotherapy and response to conventional chemotherapy drugs. Results Three clusters (C1, C2 and C3) were classified using 39 necroptosis score-associated genes. In general, C1 and C2 showed better prognosis outcome and lower death rate than C3. Specifically, C2 could benefit more from immunotherapy, while C3 was more sensitive to traditional medicines, and C1 had higher immune cell infiltration. Next, an 8-gene signature and a risk score model were developed, with a low risk score indicating better survival and immune cell infiltration. ROC analysis showed that 1-, 3-, and 5-year overall survival of osteosarcoma could be correctly predicted by the risk score model. Cellular experiments revealed that the model feature gene IFITM3 promoted the osteosarcoma cell migration and invasion. Furthermore, the overall survival of osteosarcoma patients from TARGET and validation datasets can be accurately evaluated using the nomogram model. Conclusions Our prognostic model developed using necroptosis genes could facilitate the prognostic prediction for patients suffering from osteosarcoma, offering potential osteosarcoma targets.
Collapse
Affiliation(s)
- Yiying Bian
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jixiang Shi
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziyun Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Ji Fang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Hao Yao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian Tu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
4
|
Otálora-Otálora BA, Payán-Gómez C, López-Rivera JJ, Pedroza-Aconcha NB, Aristizábal-Guzmán C, Isaza-Ruget MA, Álvarez-Moreno CA. Global transcriptomic network analysis of the crosstalk between microbiota and cancer-related cells in the oral-gut-lung axis. Front Cell Infect Microbiol 2024; 14:1425388. [PMID: 39228892 PMCID: PMC11368877 DOI: 10.3389/fcimb.2024.1425388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024] Open
Abstract
Background The diagnosis and treatment of lung, colon, and gastric cancer through the histologic characteristics and genomic biomarkers have not had a strong impact on the mortality rates of the top three global causes of death by cancer. Methods Twenty-five transcriptomic analyses (10 lung cancer, 10 gastric cancer, and 5 colon cancer datasets) followed our own bioinformatic pipeline based on the utilization of specialized libraries from the R language and DAVID´s gene enrichment analyses to identify a regulatory metafirm network of transcription factors and target genes common in every type of cancer, with experimental evidence that supports its relationship with the unlocking of cell phenotypic plasticity for the acquisition of the hallmarks of cancer during the tumoral process. The network's regulatory functional and signaling pathways might depend on the constant crosstalk with the microbiome network established in the oral-gut-lung axis. Results The global transcriptomic network analysis highlighted the impact of transcription factors (SOX4, TCF3, TEAD4, ETV4, and FOXM1) that might be related to stem cell programming and cancer progression through the regulation of the expression of genes, such as cancer-cell membrane receptors, that interact with several microorganisms, including human T-cell leukemia virus 1 (HTLV-1), the human papilloma virus (HPV), the Epstein-Barr virus (EBV), and SARS-CoV-2. These interactions can trigger the MAPK, non-canonical WNT, and IFN signaling pathways, which regulate key transcription factor overexpression during the establishment and progression of lung, colon, and gastric cancer, respectively, along with the formation of the microbiome network. Conclusion The global transcriptomic network analysis highlights the important interaction between key transcription factors in lung, colon, and gastric cancer, which regulates the expression of cancer-cell membrane receptors for the interaction with the microbiome network during the tumorigenic process.
Collapse
Affiliation(s)
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | - Juan Javier López-Rivera
- Grupo de Investigación INPAC, Specialized Laboratory, Clinica Universitaria Colombia, Clínica Colsanitas S.A., Bogotá, Colombia
| | | | - Claudia Aristizábal-Guzmán
- Grupo de Investigación INPAC, Unidad de Investigación, Fundación Universitaria Sanitas, Bogotá, Colombia
| | - Mario Arturo Isaza-Ruget
- Keralty, Sanitas International Organization, Grupo de Investigación INPAC, Fundación Universitaria Sanitas, Bogotá, Colombia
| | | |
Collapse
|
5
|
Li X. The Predictive Value of BUB1 in the Prognosis of Oral Squamous Cell Carcinoma. Int Dent J 2024:S0020-6539(24)00201-6. [PMID: 39147662 DOI: 10.1016/j.identj.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is the most common type of malignant tumour in the oral cavity, and it is known for its poor prognosis. Budding uninhibited by benzimidazoles 1 (BUB1) may be related to cancer prognosis; however, the specific relationship between BUB1 and OSCC prognosis remains largely unexplored. METHODS The mRNA levels of BUB1 were analysed using data from the TCGA_OSCC and GSE23558 cohorts. OSCC samples from the TCGA_OSCC dataset were divided into low- and high-BUB1 expression groups based on the median BUB1 level. Furthermore, results of survival analysis, tumour mutation burden (TMB), gene set enrichment analysis (GSEA) pathways, and drug-sensitivity analysis were compared between the 2 groups. RESULTS Based on the data from the TCGA_OSCC and GSE23558 cohorts, BUB1 mRNA levels were significantly upregulated in OSCC tissues compared to healthy controls. Moreover, high expression of BUB1 may serve as an independent indicator of poor prognosis in OSCC. Additionally, patients with high BUB1 expression also exhibited increased levels of immune checkpoints and TMB, suggesting that patients with high BUB1 expression may benefit from immunotherapy. Mechanistically, transcription factors ZFP64, TCF3, and ZNF281 were found to potentially bind to the promoter region of BUB1, thereby regulating its gene expression. Furthermore, GSEA results showed that BUB1 expression was closely related to cell cycle and tumour-related pathways in OSCC. Drug-sensitivity analysis showed that patients with high BUB1 expression may be more sensitive to gemcitabine, paclitaxel, or imatinib. CONCLUSIONS Collectively, results demonstrated that high BUB1 levels may be related to a poor prognosis of OSCC, highlighting its potential as a novel prognostic biomarker for OSCC.
Collapse
Affiliation(s)
- Xiaoqian Li
- Department of Stomatology, Tianjin First Central Hospital, Nankai District, Tianjin, P.R. China.
| |
Collapse
|
6
|
Wang H, Yuan S, Zheng Q, Zhang S, Zhang Q, Ji S, Wang W, Cao Y, Guo Y, Yang X, Geng H, Yang F, Xi S, Jin G, Zhang J, Gao Q, Bernards R, Qin W, Wang C. Dual Inhibition of CDK4/6 and XPO1 Induces Senescence With Acquired Vulnerability to CRBN-Based PROTAC Drugs. Gastroenterology 2024; 166:1130-1144.e8. [PMID: 38262581 DOI: 10.1053/j.gastro.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND & AIMS Despite the increasing number of treatment options available for liver cancer, only a small proportion of patients achieve long-term clinical benefits. Here, we aim to develop new therapeutic approaches for liver cancer. METHODS A compound screen was conducted to identify inhibitors that could synergistically induce senescence when combined with cyclin-dependent kinase (CDK) 4/6 inhibitor. The combination effects of CDK4/6 inhibitor and exportin 1 (XPO1) inhibitor on cellular senescence were investigated in a panel of human liver cancer cell lines and multiple liver cancer models. A senolytic drug screen was performed to identify drugs that selectively killed senescent liver cancer cells. RESULTS The combination of CDK4/6 inhibitor and XPO1 inhibitor synergistically induces senescence of liver cancer cells in vitro and in vivo. The XPO1 inhibitor acts by causing accumulation of RB1 in the nucleus, leading to decreased E2F signaling and promoting senescence induction by the CDK4/6 inhibitor. Through a senolytic drug screen, cereblon (CRBN)-based proteolysis targeting chimera (PROTAC) ARV-825 was identified as an agent that can selectively kill senescent liver cancer cells. Up-regulation of CRBN was a vulnerability of senescent liver cancer cells, making them sensitive to CRBN-based PROTAC drugs. Mechanistically, we find that ubiquitin specific peptidase 2 (USP2) directly interacts with CRBN, leading to the deubiquitination and stabilization of CRBN in senescent liver cancer cells. CONCLUSIONS Our study demonstrates a striking synergy in senescence induction of liver cancer cells through the combination of CDK4/6 inhibitor and XPO1 inhibitor. These findings also shed light on the molecular processes underlying the vulnerability of senescent liver cancer cells to CRBN-based PROTAC therapy.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Quan Zheng
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sisi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyi Ji
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Cao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuchen Guo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xupeng Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Haigang Geng
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Yang
- Department of Pharmacy, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuijun Xi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Guangzhi Jin
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianming Zhang
- Institute of Translational Medicine, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands.
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Hou L, Zou Z, Wang Y, Pi H, Yuan Z, He Q, Kuang Y, Zhao G. Exploring the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental verification. Aging (Albany NY) 2024; 16:6745-6756. [PMID: 38546402 PMCID: PMC11087090 DOI: 10.18632/aging.205680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/03/2024] [Indexed: 05/08/2024]
Abstract
Ginsenoside Rb1 is the major active constituent of ginseng, which is widely used in traditional Chinese medicine for the atherosclerosis treatment by anti-inflammatory, anti-oxidant and reducing lipid accumulation. We explored cellular target and molecular mechanisms of ginsenoside Rb1 based on network pharmacology and in vitro experimental validation. In this study, we predicted 17 potential therapeutic targets for ginsenoside Rb1 with atherosclerosis from public databases. We then used protein-protein interaction network to screen the hub targets. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment showed that the effects of ginsenoside Rb1 were meditated through multiple targets and pathways. Next, molecular docking results revealed that in the 10 core targets, CCND1 has the highest binding energy with ginsenoside Rb1. Vascular cell proliferation plays a critical role in atherosclerosis development. However, the effect and direct target of ginsenoside Rb1 in regulating vascular cell proliferation in atherosclerosis remains unclear. Edu straining results indicated that ginsenoside Rb1 inhibited the cell proliferation of endothelial cells, macrophages, and vascular smooth muscle cells. The protein immunoprecipitation (IP) analysis showed that ginsenoside Rb1 inhibited the vascular cell proliferation by suppressing the interaction of CCDN1 and CDK4. These findings systematically reveal that the anti-atherosclerosis mechanism of ginsenoside Rb1 by integrating network pharmacology and experimental validation, which provide evidence to treat atherosclerosis by using ginsenoside Rb1 and targeting CCND1.
Collapse
Affiliation(s)
- Lianjie Hou
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| | - Zhiming Zou
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510120, Guangdong, China
| | - Yu Wang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| | - Hui Pi
- Dali University, Dali 671003, Yunnan, China
| | - Zeyue Yuan
- Dali University, Dali 671003, Yunnan, China
| | - Qin He
- Dali University, Dali 671003, Yunnan, China
| | - Yongfang Kuang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People’s Hospital), Qingyuan 511518, Guangdong, China
| |
Collapse
|
8
|
Wang P, Pan Y, Zhang Y, Chen C, Hu J, Wang X. Role of interferon-induced transmembrane protein family in cancer progression: a special focus on pancreatic cancer. Med Oncol 2024; 41:85. [PMID: 38472606 DOI: 10.1007/s12032-024-02308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/19/2024] [Indexed: 03/14/2024]
Abstract
Human interferon-induced transmembrane protein family (IFITMs) consists of five main proteins. IFITM1, IFITM2, and IFITM3 can be induced by interferon, while IFITM5 and IFITM10 are insensitive to interferon. IFITMs has various functions, including well-researched antiviral effects. As a molecule whose expression is significantly increased by interferon in the immune microenvironment, IFITMs has drawn growing interest in recent years for their role in the cancer progression. Unlike antiviral effects, the role and mechanism of IFITMs in cancer progression have not been clearly studied, especially the role and molecular mechanism of IFITMs in pancreatic cancer are rarely reported in the literature. This article focuses on the role and potential mechanism of IFITMs in pancreatic cancer progression by analyzing the function and mechanism of IFITM1-3 in other cancers and conducting bioinformatics analysis using the databases, so as to provide a new target for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Yan Pan
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Yu Zhang
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Congliang Chen
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Junmei Hu
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China
| | - Xia Wang
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, 3-17 Renmin South Rd, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Zhang W, Hong W. Upregulation of miR-519d-3p Inhibits Viability, Proliferation, and G1/S Cell Cycle Transition of Oral Squamous Cell Carcinoma Cells Through Targeting CCND1. Cancer Biother Radiopharm 2024; 39:153-163. [PMID: 33052706 DOI: 10.1089/cbr.2020.3984] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: MicroRNA (miR)-519d-3p suppresses tumor development, however, its role in oral squamous cell carcinoma (OSCC) has yet to be determined. Materials and Methods: OSCC and adjacent tissues were collected (n = 45 for adjacent; n = 21 for Stage I-II OSCC; n = 24 for Stage III-IV OSCC). The cell viability, proliferation, and cell cycle of OSCC were, respectively, assessed by the Cell Counting Kit-8 (CCK-8), colony formation assay, and flow cytometry. Relative expressions of cell cycle-regulated proteins (Cyclin D1 [CCND1], CDK4, and CDK6) and miR-519d-3p were measured with Western blot and quantitative real-time polymerase chain reaction as needed. Dual-luciferase reporter assay was performed to verify the prediction of TargetScan that miR-519d-3p and CCND1 shared potential binding sites. Correlation analysis between miR-519d-3p and CCND1 was performed with Pearson's correlation test. Results: In OSCC tissues, downregulating miR-519d-3p expression correlated with a higher tumor grade. Upregulating miR-519d-3p expression inhibited OSCC cell viability and proliferation, increased cells in G0/G1 phase and reduced those in S/G2 phase, and downregulated the expressions of cell cycle-related protein (CDK4, CDK6). CCND1 was the target gene of miR-519d-3p, and overexpressed CCND1 reversed the effects of upregulation of miR-519d-3p on suppressing the viability, proliferation, and cell cycle of OSCC cells. Conclusions: miR-519d-3p upregulation suppressed the cell viability, proliferation, and G1/S cell cycle transition of OSCC through targeting CCND1. The current findings provide a possible clinical option for OSCC treatment.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Stomatology, Jingmen No.1 People's Hospital, Jingmen, Hubei, China
| | - Wei Hong
- Department of Stomatology, Jingmen No.1 People's Hospital, Jingmen, Hubei, China
| |
Collapse
|
10
|
Zhang J, Shi L, Duan J, Li M, Li C. Proteomic detection of COX-2 pathway-related factors in patients with adenomyosis. PeerJ 2024; 12:e16784. [PMID: 38239300 PMCID: PMC10795527 DOI: 10.7717/peerj.16784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024] Open
Abstract
Background Investigating the relationship between cyclooxygenase-2 (COX-2) pathway-related factors and clinical features in patients with adenomyosis by proteomics could provide potential therapeutic targets. Methods This study recruited 40 patients undergoing surgical hysterectomy and pathological diagnosis of adenomyosis, collected ectopic endometrial specimens, and recorded clinical data. The expression levels of COX-2 in ectopic uterus lesions were detected using the immunohistochemical (IHC) SP method. The 40 samples were then divided into a COX-2 low or high expression group. Five samples with the most typical expression levels were selected from each of the two groups and the differential proteins between the two groups were identified using label-free quantitative proteomics. WW domain-binding protein 2 (WBP2), interferon induced transmembrane protein 3 (IFITM3), and secreted frizzled-related protein 4 (SFRP4) were selected for further verification, and their relationships with COX-2 and clinical characteristics were analyzed. Results There were statistically significant differences in the expression of WBP2, IFITM3, and SFRP4 between the COX-2 low and high expression groups (P < 0.01). The expressions of COX-2, IFITM3, and SFRP4 were significantly correlated with dysmenorrhea between the two groups (P < 0.05), but not with uterine size or menstrual volume (P > 0.05). However, there was no significant correlation between the expression of WBP2 and dysmenorrhea, uterine size, and menstruation volume in both the high expression and low expression groups (P > 0.05). Conclusions COX-2, IFITM3, SFRP4, and WBP2 may be involved in the pathogenesis of adenomyosis. COX-2, IFITM3, and SFRP4 may serve as potential molecular biomarkers or therapeutic targets in dysmenorrhea in patients with early adenomyosis.
Collapse
Affiliation(s)
- Jihua Zhang
- Department of Gynecology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Luying Shi
- Department of Gynecology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingya Duan
- Department of Gynecology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Minmin Li
- Department of Gynecology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Canyu Li
- Department of Gynecology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Xiong Z, Xu X, Zhang Y, Ma C, Hou C, You Z, Shu L, Ke Y, Liu Y. IFITM3 promotes glioblastoma stem cell-mediated angiogenesis via regulating JAK/STAT3/bFGF signaling pathway. Cell Death Dis 2024; 15:45. [PMID: 38218875 PMCID: PMC10787840 DOI: 10.1038/s41419-023-06416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) has been previously verified to be an endosomal protein that prevents viral infection. Recent findings suggested IFITM3 as a key factor in tumor invasion and progression. To clarify the role and molecular mechanism of IFITM3 in Glioblastoma multiforme (GBM) progression, we investigated the expression of IFITM3 in glioma datasets culled from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA). Primary GBM stem cells (GSCs) were cultured and identified in vitro. Loss-of-function and gain-of-function experiments were established by using shRNAs and lentiviral vectors targeting IFITM3. Co-culture system of GSCs and vascular endothelial cells was constructed in a Transwell chamber. Tube formation and spheroid-based angiogenesis assays were performed to determine the angiogenic capacity of endothelial cells. Results revealed that IFITM3 is elevated in GBM samples and predictive of adverse outcome. Mechanistically, GSCs-derived IFITM3 causes activation of Jak2/STAT3 signaling and leads to robust secretion of bFGF into tumor environment, which eventually results in enhanced angiogenesis. Taken together, these evidence indicated IFITM3 as an essential factor in GBM angiogenesis. Our findings provide a new insight into mechanism by which IFITM3 modulates GBM angiogenesis.
Collapse
Affiliation(s)
- Zhangsheng Xiong
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
| | - Xiangdong Xu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
| | - Yuxuan Zhang
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Chengcheng Ma
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
| | - Chongxian Hou
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
| | - Zhongsheng You
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China
| | - Lingling Shu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, PR China.
- Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Guangzhou, PR China.
| | - Yiquan Ke
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China.
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China.
| | - Yang Liu
- Department of Neuro-oncological Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510060, PR China.
- Key Laboratory of Neurosurgery in Guangdong Province, Southern Medical University, Guangzhou, 510060, PR China.
| |
Collapse
|
12
|
Li J, Bao Y, Peng S, Jiang C, Zhu L, Zou S, Xu J, Li Y. M2 Macrophages-Derived Exosomal miRNA-23a-3p Promotes the Progression of Oral Squamous Cell Carcinoma by Targeting PTEN. Curr Issues Mol Biol 2023; 45:4936-4947. [PMID: 37367063 DOI: 10.3390/cimb45060314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Exosomes from tumor cells and immune cells regulate the tumor microenvironment through the biomolecules or microRNAs (miRNAs) they carry. This research aims to investigate the role of miRNA in exosomes derived from tumor-associated macrophages (TAMs) in the progression of oral squamous cell carcinoma (OSCC). RT-qPCR and Western blotting assays were used to determine the expression of genes and proteins in OSCC cells. CCK-8, Scratch assay and invasion-related proteins were utilized to detect the malignant progression of tumor cells. High-throughput sequencing predicted differentially expressed miRNAs in exosomes secreted by M0 and M2 macrophages. Compared with exosomes from M0 macrophages, exosomes from M2 macrophages led to enhanced proliferation and invasion of OSCC cells and inhibited their apoptosis. High-throughput sequencing results show that miR-23a-3p is differentially expressed in exosomes from M0 and M2 macrophages. MiRNA target gene database predicts that phosphatase and tensin homolog (PTEN) are target genes of miR-23a-3p. Further studies revealed that transfection of miR-23a-3p mimics inhibited PTEN expression in vivo and in vitro and promoted the malignant progression of OSCC cells, which was reversed by miR-23a-3p inhibitors. MiR-23a-3p in exosomes derived from M2 macrophages promotes malignant progression of OSCC. PTEN is a potential intracellular target of miR-23a-3p. MiR-23a-3p, an M2 macrophage-associated exosome, is a promising target for the future treatment of OSCC.
Collapse
Affiliation(s)
- Jun Li
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yongjie Bao
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Sisi Peng
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Chao Jiang
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Luying Zhu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Sihai Zou
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jie Xu
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Yong Li
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing 401147, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| |
Collapse
|
13
|
Friedlová N, Zavadil Kokáš F, Hupp TR, Vojtěšek B, Nekulová M. IFITM protein regulation and functions: Far beyond the fight against viruses. Front Immunol 2022; 13:1042368. [PMID: 36466909 PMCID: PMC9716219 DOI: 10.3389/fimmu.2022.1042368] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Interferons (IFNs) are important cytokines that regulate immune responses through the activation of hundreds of genes, including interferon-induced transmembrane proteins (IFITMs). This evolutionarily conserved protein family includes five functionally active homologs in humans. Despite the high sequence homology, IFITMs vary in expression, subcellular localization and function. The initially described adhesive and antiproliferative or pro-oncogenic functions of IFITM proteins were diluted by the discovery of their antiviral properties. The large set of viruses that is inhibited by these proteins is constantly expanding, as are the possible mechanisms of action. In addition to their beneficial antiviral effects, IFITM proteins are often upregulated in a broad spectrum of cancers. IFITM proteins have been linked to most hallmarks of cancer, including tumor cell proliferation, therapeutic resistance, angiogenesis, invasion, and metastasis. Recent studies have described the involvement of IFITM proteins in antitumor immunity. This review summarizes various levels of IFITM protein regulation and the physiological and pathological functions of these proteins, with an emphasis on tumorigenesis and antitumor immunity.
Collapse
Affiliation(s)
- Nela Friedlová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Filip Zavadil Kokáš
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Ted R. Hupp
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Bořivoj Vojtěšek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Marta Nekulová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| |
Collapse
|
14
|
Fang X, Zhang Y, Cao Y, Shan M, Song D, Ye C, Zhu D. Studies on Chemical Composition of Pueraria lobata and Its Anti-Tumor Mechanism. Molecules 2022; 27:molecules27217253. [PMID: 36364084 PMCID: PMC9657109 DOI: 10.3390/molecules27217253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
Abstract
Fourteen compounds were isolated from Pueraria lobata (Willd.) Ohwi by column chromatography and preparative thin-layer chromatography; the structures were identified by spectroscopic analysis and compared with data reported in the literature. Seven compounds were isolated and identified from Pueraria lobata for the first time: Linoleic acid, Sandwicensin, Isovanillin, Ethyl ferulate, Haginin A, Isopterofuran, 3′.7-Dihydroxyisoflavan. The other 10 compounds were structurally identified as follows: Lupenone, Lupeol, β-sitosterol, Genistein, Medicarpin, Coniferyl Aldehyde, Syringaldehyde. All compounds were evaluated for their ability to inhibit SW480 and SW620 cells using the CCK-8 method; compound 5 (Sandwicensin) had the best activity, and compounds 6, 9, 11 and 12 exhibited moderate inhibitory activity. In addition, the targets and signaling pathways of Sandwicensin treatment for CRC were mined using network pharmacology, and MAPK3, MTOR, CCND1 and CDK4 were found to be closely associated with Sandwicensin treatment for CRC; the GO and KEGG analysis showed that Sandwicensin may directly regulate the cycle, proliferation and apoptosis of CRC cells through cancer-related pathways.
Collapse
Affiliation(s)
- Xiaoxue Fang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun 130117, China
| | - Yegang Zhang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun 130117, China
| | - Yiming Cao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun 130117, China
| | - Mengyao Shan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun 130117, China
| | - Dimeng Song
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun 130117, China
| | - Chao Ye
- College of Pharmacy, Jilin Medical University, Jilin 132013, China
- Correspondence: (C.Y.); (D.Z.)
| | - Difu Zhu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Key Laboratory of Effective Components of Traditional Chinese Medicine, Changchun 130117, China
- Correspondence: (C.Y.); (D.Z.)
| |
Collapse
|
15
|
Comparative Proteomic Profiling of Ectosomes Derived from Thyroid Carcinoma and Normal Thyroid Cells Uncovers Multiple Proteins with Functional Implications in Cancer. Cells 2022; 11:cells11071184. [PMID: 35406748 PMCID: PMC8997476 DOI: 10.3390/cells11071184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Proteins carried by tumor-derived ectosomes play an important role in cancer progression, and are considered promising diagnostic markers. In the present study, a shotgun nanoLC–MS/MS proteomic approach was applied to profile and compare the protein content of ectosomes released in vitro by normal human thyroid follicular epithelial Nthy-ori 3-1 cells and human anaplastic thyroid carcinoma (TC) 8305C cells. Additionally, the pro-migratory and pro-proliferative effects of Nthy-ori 3-1- and 8305C-derived ectosomes exerted on the recipient cells were assessed in wound closure and Alamar Blue assays. A total of 919 proteins were identified in all replicates of 8305C-derived ectosomes, while Nthy-ori 3-1-derived ectosomes contained a significantly lower number of 420 identified proteins. Qualitative analysis revealed 568 proteins present uniquely in 8305C-derived ectosomes, suggesting their applicability in TC diagnosis and management. In addition, 8305C-derived ectosomes were able to increase the proliferation and motility rates of the recipient cells, likely due to the ectosomal transfer of the identified cancer-promoting molecules. Our description of ectosome protein content and its related functions provides the first insight into the role of ectosomes in TC development and progression. The results also indicate the applicability of some of these ectosomal proteins for further investigation regarding their potential as circulating TC biomarkers.
Collapse
|
16
|
Proteomic Analysis of Hypoxia-Induced Senescence of Human Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2021; 2021:5555590. [PMID: 34484348 PMCID: PMC8416403 DOI: 10.1155/2021/5555590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Methods Hypoxia in hBMSCs was induced for 0, 4, and 12 hours, and cellular senescence was evaluated by senescence-associated β-galactosidase (SA-β-gal) staining. Tandem mass tag (TMT) labeling was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for differential proteomic analysis of hypoxia in hBMSCs. Parallel reaction monitoring (PRM) analysis was used to validate the candidate proteins. Verifications of signaling pathways were evaluated by western blotting. Cell apoptosis was evaluated using Annexin V/7-AAD staining by flow cytometry. The production of reactive oxygen species (ROS) was detected by the fluorescent probe 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA). Results Cell senescence detected by SA-β-gal activity was higher in the 12-hour hypoxia-induced group. TMT analysis of 12-hour hypoxia-induced cells identified over 6000 proteins, including 686 differentially expressed proteins. Based on biological pathway analysis, we found that the senescence-associated proteins were predominantly enriched in the cancer pathways, PI3K-Akt pathway, and cellular senescence signaling pathways. CDK1, CDK2, and CCND1 were important nodes in PPI analyses. Moreover, the CCND1, UQCRH, and COX7C expressions were verified by PRM. Hypoxia induction for 12 hours in hBMSCs reduced CCND1 expression but promoted ROS production and cell apoptosis. Such effects were markedly reduced by the PI3K agonist, 740 Y-P, and attenuated by LY294002. Conclusions Hypoxia of hBMSCs inhibited CCND1 expression but promoted ROS production and cell apoptosis through activating the PI3K-dependent signaling pathway. These findings provided a detailed characterization of the proteomic profiles related to hypoxia-induced senescence of hBMSCs and facilitated our understanding of the molecular mechanisms leading to stem cell senescence.
Collapse
|
17
|
Cai Y, Ji W, Sun C, Xu R, Chen X, Deng Y, Pan J, Yang J, Zhu H, Mei J. Interferon-Induced Transmembrane Protein 3 Shapes an Inflamed Tumor Microenvironment and Identifies Immuno-Hot Tumors. Front Immunol 2021; 12:704965. [PMID: 34456915 PMCID: PMC8385493 DOI: 10.3389/fimmu.2021.704965] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is an interferon-induced membrane protein, which has been identified as a functional gene in multiple human cancers. The role of IFITM3 in cancer has been preliminarily summarized, but its relationship to antitumor immunity is still unclear. A pancancer analysis was conducted to investigate the expression pattern and immunological role of IFITM3 based on transcriptomic data downloaded from The Cancer Genome Atlas (TCGA) database. Next, correlations between IFITM3 and immunological features in the bladder cancer (BLCA) tumor microenvironment (TME) were assessed. In addition, the role of IFITM3 in estimating the clinical characteristics and the response to various therapies in BLCA was also evaluated. These results were next confirmed in the IMvigor210 cohort and a recruited cohort. In addition, correlations between IFITM3 and emerging immunobiomarkers, such as microbiota and N6-methyladenosine (m6A) genes, were assessed. IFITM3 was enhanced in most tumor tissues in comparison with adjacent tissues. IFITM3 was positively correlated with immunomodulators, tumor-infiltrating immune cells (TIICs), cancer immunity cycles, and inhibitory immune checkpoints. In addition, IFITM3 was associated with an inflamed phenotype and several established molecular subtypes. IFITM3 expression also predicted a notably higher response to chemotherapy, anti-EGFR therapy, and immunotherapy but a low response to anti-ERBB2, anti-ERBB4, and antiangiogenic therapy. In addition, IFITM3 was correlated with immune-related microbiota and m6A genes. In addition to BLCA, IFITM3 is expected to be a marker of high immunogenicity in most human cancers. In conclusion, IFITM3 expression can be used to identify immuno-hot tumors in most cancers, and IFITM3 may be a promising pancancer biomarker to estimate the immunological features of tumors.
Collapse
Affiliation(s)
- Yun Cai
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China
| | - Wenfei Ji
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China
| | - Chuan Sun
- Department of Geriatrics, Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Zhejiang Hospital, Hangzhou, China
| | - Rui Xu
- Wuxi College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xuechun Chen
- College of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yifan Deng
- College of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiadong Pan
- Wuxi College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Jiayue Yang
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Hongjun Zhu
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China
| | - Jie Mei
- Department of Oncology, Nantong Third People's Hospital Affiliated to Nantong University, Nantong, China.,Wuxi College of Clinical Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Wang H, Wang L, Li J, Fu F, Zheng Y, Zhang L. Molecular characterization, expression and functional analysis of yak IFITM3 gene. Int J Biol Macromol 2021; 184:349-357. [PMID: 34119542 DOI: 10.1016/j.ijbiomac.2021.06.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023]
Abstract
IFITM3 is interferon-induced transmembrane 3, which plays an extremely key role in anti-proliferation, anti-virus and anti-tumor diseases. In this study, the yak (Bos grunniens) IFITM3 (BgIFITM3) gene contained a 5'-untranslated region (UTR) (25 bp), a coding region (441 bp), and a 3'-UTR (115 bp). The expression of BgIFITM3 gene in liver was significantly higher than that in heart, spleen, lung and kidney (P < 0.01). BgIFITM3 protein was localized on the yak hepatocyte plasma membrane, and its expression was significantly different between 1 day and 15 months of age (P < 0.05). Moreover, the prokaryotic expression vector of BgIFITM3 protein was constructed and expressed successfully, with a molecular weight of 19.5 kDa. The activities of yak hepatocyte were significantly inhibited after treating with BgIFITM3 protein (10 and 20 μg/mL) (P < 0.01). The expression levels of ERBB-2, IRS-1, PI3KR-1, AKT-1 and MAPK-3 were significantly lower after treating with 20 μg/mL BgIFITM3 protein (P < 0.05). Besides, the activities of HepG2 cells were significantly inhibited after treating with BgIFITM3 protein (1, 10 and 20 μg/mL) (P < 0.05). While, the cloning ability and migration ability of HepG2 cells were significantly inhibited after treating with 10 μg/mL BgIFITM3 protein (P < 0.05). Finally, the mitochondria of HepG2 cells was concentrated, cristae widened, and the double film density of mitochondria was increased after treating with 10 μg/mL BgIFITM3 protein. After 10 μg/mL BgIFITM3 protein treating, the expression levels of VDAC-2, VDAC-3 and p53 genes were significantly increased, but the expression level of GPX-4 gene was significantly decreased (P < 0.01). Taken together, the BgIFITM3 protein could inhibit the proliferations of yak hepatocyte and HepG2 cells by regulating the PI3K/Akt pathway or ferroptosis-related genes, respectively. These results benefit for further study of the function of BgIFITM3 protein.
Collapse
Affiliation(s)
- Haipeng Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Juan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Fang Fu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Yao Zheng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Ling Zhang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
19
|
Circ_0000745 strengthens the expression of CCND1 by functioning as miR-488 sponge and interacting with HuR binding protein to facilitate the development of oral squamous cell carcinoma. Cancer Cell Int 2021; 21:271. [PMID: 34020639 PMCID: PMC8139082 DOI: 10.1186/s12935-021-01884-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/16/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The implication of circular RNAs (circRNAs) in human cancers has aroused much concern. In this study, we investigated the function of circ_0000745 and its potential functional mechanisms in oral squamous cell carcinoma (OSCC) to further understand OSCC pathogenesis. METHODS The expression of circ_0000745, miR-488 and cyclin D1 (CCND1) mRNA was measured by quantitative real-time polymerase chain reaction (qPCR). Cell proliferation capacity was assessed by cell counting kit-8 (CCK-8) assay and colony formation assay. Cell cycle progression and cell apoptosis were determined by flow cytometry assay. The protein levels of CCND1, PCNA, Cleaved-caspase 3 and HuR were detected by western blot. Animal study was conducted to identify the role of circ_0000745 in vivo. The targeted relationship was verified by dual-luciferase reporter assay, pull-down assay or RNA immunoprecipitation (RIP) assay. RESULTS The expression of circ_0000745 was increased in OSCC tissues and cells. Circ_0000745 downregulation inhibited OSCC cell proliferation and induced cell cycle arrest and apoptosis in vitro, as well as blocked tumor growth in vivo. MiR-488 was a target of circ_0000745, and circ_0000745 downregulation suppressed OSCC development by enriching miR-488. Besides, circ_0000745 regulated CCND1 expression by targeting miR-488. In addition, circ_0000745 regulated CCND1 expression by interacting with HuR protein. CCND1 knockdown also inhibited OSCC cell proliferation and induced cell cycle arrest and apoptosis in vitro, and CCND1 overexpression recovered the inhibitory effects on OSCC cell malignant behaviors caused by circ_0000745 downregulation. CONCLUSIONS Circ_0000745 regulated the expression of CCND1 partly by acting as miR-488 sponge and interacting with HuR protein, thus promoting the progression of OSCC.
Collapse
|
20
|
Cao R, Liu S, Zhang J, Ren X, Chen X, Cheng B, Xia J. Integrative Analysis of TP53INP2 in Head and Neck Squamous Cell Carcinoma. Front Genet 2021; 12:630794. [PMID: 33897760 PMCID: PMC8062980 DOI: 10.3389/fgene.2021.630794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
TP53INP2 plays an important role in regulating gene transcription and starvation-induced autophagy, however, its function in head and neck squamous cell carcinoma (HNSCC) remains unclear. Therefore, we assessed the expression and prognostic value of TP53INP2. In addition, RNAseq, miRNAseq, copy number variation, and mutation profiles from The Cancer Genome Atlas (TCGA) dataset were applied to evaluate the distinctive genomic patterns related to TP53INP2 expression. We found that TP53INP2 expression was lower in HNSCC compared with normal controls. Patients with higher TP53INP2 expression had longer survival time. Knockdown of TP53INP2 promoted cell viability. Functional analysis exhibited that TP53INP2 was linked to DNA replication, DNA repair, cell cycle, and multiple metabolic pathways. Moreover, TP53INP2 might affect the expression of multiple genes via enhancing the transcriptional activity of nuclear hormone receptors. A competing endogenous RNA (ceRNA) network consisting of 33 lncRNAs, eight miRNAs, and 13 mRNAs was constructed based on the expression of TP53INP2. Taken together, our study highlights the potential value of TP53INP2 in predicting the survival of HNSCC and its important role in the genesis and development of HNSCC.
Collapse
Affiliation(s)
- Ruoyan Cao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Suyang Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jiayu Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xianyue Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xijuan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.,Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Zhou P, Xiao L, Xu X. Identification of E2F transcription factor 7 as a novel potential biomarker for oral squamous cell carcinoma. Head Face Med 2021; 17:7. [PMID: 33637098 PMCID: PMC7908640 DOI: 10.1186/s13005-021-00258-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 02/05/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND As a tumor-accelerating transcriptional factor, E2F transcription factor 7 (E2F7) was up-regulated in many forms of cancers. Nevertheless, little has been reported about the impacts of E2F7 on oral squamous cell carcinoma (OSCC). Here, we aimed to probe whether E2F7 had influences on OSCC and its potential mechanism. METHODS The expression of E2F7 in OSCC tissues was analyzed using the data acquired from TCGA and ONCOMINE databases. E2F7 prognostic value in OSCC patients was analyzed utilizing TCGA database. The expression of E2F7 in OSCC cell lines was detected by qRT-PCR. Gain-and loss-function of E2F7 assays in TCA-83 and CAL27 cells were performed respectively to inquire the function of E2F7. Western blotting was applied to test the alternations of EMT-related markers. RESULTS In OSCC tissues, E2F7 was highly expressed. Besides, high expression of E2F7 predicted worse prognosis in OSCC patients. Moreover, E2F7 was over-expressed in TCA-83, HSC-4 and CAL27 (all OSCC cell lines) cells relative to that in HNOK (a normal cell line) cells. Gain-and loss-function assays displayed that deficiency of E2F7 suppresses CAL27 cell growth, migration, invasion and E2F7 high-expression resulted in inverse outcomes in TCA-83 cells. Finally, we found that silencing of E2F7 facilitated E-cadherin protein expression level and reduced N-cadherin, Vimentin and Snail protein levels in CAL27 cells, whilst E2F7 high-expression exhibited the opposite effects in TCA-83 cells. CONCLUSIONS These outcomes indicated that E2F7 performs a carcinogenic role in OSCC, which provides a theoretical basis for the therapeutic strategies of OSCC.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Stomatology, Jining No.1 People's Hospital, Jining, 272000, Shandong, China
| | - Lei Xiao
- Department of Stomatology, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Xiaonan Xu
- Department of Stomatology, Jining No.1 People's Hospital, Jining, 272000, Shandong, China.
| |
Collapse
|
22
|
Wang Q, Han J, Xu P, Jian X, Huang X, Liu D. Silencing of LncRNA SNHG16 Downregulates Cyclin D1 (CCND1) to Abrogate Malignant Phenotypes in Oral Squamous Cell Carcinoma (OSCC) Through Upregulating miR-17-5p. Cancer Manag Res 2021; 13:1831-1841. [PMID: 33654431 PMCID: PMC7910113 DOI: 10.2147/cmar.s298236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Background Targeting the long non-coding RNAs (LncRNAs)-microRNAs (miRNAs)-mRNA competing endogenous RNA (ceRNA) networks has been proved as an effective strategy to treat multiple cancers, including oral squamous cell carcinoma (OSCC). Based on this, the present study identified a novel LncRNA SNHG16/miR-17-5p/CCND1 signaling pathway that played an important role in regulating the pathogenesis of OSCC. Methods The expression levels of cancer-associated genes were examined by Real-Time qPCR and Western Blot at transcriptional and translated levels, respectively. CCK-8 assay was performed to determine cell proliferation, and cell apoptosis ratio was measured by the Annexin V-FITC/PI double staining assay. Transwell assay was performed to examine cell migration, and dual-luciferase reporter gene system assay was used to validate the ceRNA networks. Results LncRNA SNHG16 and CCND1 were upregulated, while miR-17-5p was downregulated in OSCC tissues and cell lines, compared to their normal counterparts. Also, miR-17-5p negatively correlated with both LncRNA SNHG16 and CCND1 mRNA, but LncRNA SNHG16 was positively relevant to CCND1 mRNA in OSCC tissues. By performing the gain- and loss-of-function experiments, we noticed that LncRNA SNHG16 overexpression aggravated the malignant phenotypes, such as cell proliferation, viability, migration and epithelial-mesenchymal transition (EMT) in OSCC cells, while LncRNA SNHG16 knock-down had opposite effects. Furthermore, our dual-luciferase reporter gene system evidenced that LncRNA SNHG16 sponged miR-17-5p to upregulate CCND1 in OSCC cells, and the inhibiting effects of LncRNA SNHG16 ablation on OSCC progression were abrogated by both downregulating miR-17-5p and overexpressing CCND1. Finally, the xenograft tumor-bearing mice models were established, and our data validated that LncRNA SNHG16 served as an oncogene to promote tumorigenicity of OSCC cells in vivo. Conclusion Taken together, targeting the LncRNA SNHG16/miR-17-5p/CCND1 axis hindered the development of OSCC, and this study provided potential diagnostic and therapeutic biomarkers for OSCC in clinic.
Collapse
Affiliation(s)
- Qiuling Wang
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China
| | - Jingxin Han
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China
| | - Pu Xu
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China
| | - Xinchun Jian
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xieshan Huang
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China
| | - Deyu Liu
- Stomatology Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, 570208, People's Republic of China
| |
Collapse
|
23
|
Dou J, Li L, Guo M, Mei F, Zheng D, Xu H, Xue R, Bao X, Zhao F, Zhang Y. Iron Oxide Nanoparticles Combined with Cytosine Arabinoside Show Anti-Leukemia Stem Cell Effects on Acute Myeloid Leukemia by Regulating Reactive Oxygen Species. Int J Nanomedicine 2021; 16:1231-1244. [PMID: 33633448 PMCID: PMC7900778 DOI: 10.2147/ijn.s278885] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND AIM Acute myeloid leukemia (AML), initiated and maintained by leukemia stem cells (LSCs), is often relapsed or refractory to therapy. The present study aimed at assessing the effects of nanozyme-like Fe3O4 nanoparticles (IONPs) combined with cytosine arabinoside (Ara-C) on LSCs in vitro and in vivo. METHODS The CD34+CD38-LSCs, isolated from human AML cell line KG1a by a magnetic activated cell sorting method, were treated with Ara-C, IONPs, and Ara-C+ IONPs respectively in vitro. The cellular proliferation, apoptosis, reactive oxygen species (ROS), and the related molecular expression levels in LSCs were analyzed using flow cytometry, RT-qPCR, and Western blot. The nonobese diabetic/severe combined immune deficiency mice were transplanted with LSCs or non-LSCs via tail vein, and then the mice were treated with Ara-C, IONPs and IONPs plus Ara-C, respectively. The therapeutic effects on the AML bearing mice were further evaluated. RESULTS LSCs indicated stronger cellular proliferation, more clone formation, and more robust resistance to Ara-C than non-LSCs. Compared with LSCs treated with Ara-C alone, LSCs treated with IONPs plus Ara-C showed a significant increase in apoptosis and ROS levels that might be regulated by nanozyme-like IONPs via improving the expression of pro-oxidation molecule gp91-phox but decreasing the expression of antioxidation molecule superoxide dismutase 1. The in vivo results suggested that, compared with the AML bearing mice treated with Ara-C alone, the mice treated with IONPs plus Ara-C markedly reduced the abnormal leukocyte numbers in peripheral blood and bone marrow and significantly extended the survival of AML bearing mice. CONCLUSION IONPs combined with Ara-C showed the effectiveness on reducing AML burden in the mice engrafted with LSCs and extending mouse survival by increasing LSC's ROS level to induce LSC apoptosis. Our findings suggest that targeting LSCs could control the AML relapse by using IONPs plus Ara-C.
Collapse
Affiliation(s)
- Jun Dou
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Luoyang Li
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Mei Guo
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Feng Mei
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Danfeng Zheng
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Hui Xu
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Rui Xue
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Xueyang Bao
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
24
|
Rajapaksa US, Jin C, Dong T. Malignancy and IFITM3: Friend or Foe? Front Oncol 2020; 10:593245. [PMID: 33364194 PMCID: PMC7753217 DOI: 10.3389/fonc.2020.593245] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/21/2020] [Indexed: 02/05/2023] Open
Abstract
The prevalence and incidence of cancers has risen over the last decade. Available treatments have improved outcomes, yet mortality and morbidity remain high, creating an urgent demand for personalized and new therapy targets. Interferon induced transmembrane protein (IFITM3) is highly expressed in cancers and is a marker of poor prognosis. In this review, we discuss recent advances in IFITM3 biology, the regulatory pathways, and its function within cancer as part of immunity and maintaining stemness. Overexpression of IFITM3 is likely an indirect effect of ongoing inflammation, immune and cancer epithelial-to-mesenchymal (EMT) related pathways i.e., interferons, TGF-β, WNT/β-catenin, etc. However, IFITM3 also influences tumorigenic phenotypes, such as cell proliferation, migration and invasion. Furthermore, IFITM3 plays a key role in cancer growth and maintenance. Silencing of IFITM3 reduces these phenotypes. Therefore, targeting of IFITM3 will likely have implications for potential cancer therapies.
Collapse
Affiliation(s)
- Ushani S Rajapaksa
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Chinese Academy of Medical Science Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Chen Jin
- Chinese Academy of Medical Science Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Department of Liver Surgery and Liver Transplantation, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Chinese Academy of Medical Science Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Huang F, Xin C, Lei K, Bai H, Li J, Chen Q. Noncoding RNAs in oral premalignant disorders and oral squamous cell carcinoma. Cell Oncol (Dordr) 2020; 43:763-777. [PMID: 32495292 DOI: 10.1007/s13402-020-00521-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) has the highest mortality rate among all head and neck cancers and a relatively low five-year survival rate. Generally, the development of an oral mucosal malignancy represents a multistep process beginning with normal oral mucosa epithelium and culminating in OSCC after transitioning through intermediary oral premalignant disorders (OPMDs), during which dysplasia is often observed. Noncoding RNAs (ncRNAs) are RNAs that are not translated into proteins, but still can participate in regulating neoplastic cell behavior. Recently, data have emerged on the role of ncRNAs in the progression of oral mucosal malignant diseases, but the exact mechanisms through which ncRNAs are involved remain to be elucidated. CONCLUSIONS Knowledge on ncRNAs has added an extra layer of complexity to our understanding of the malignant progression of oral mucosal diseases. The identification of ncRNAs in multiple body fluids as biomarkers may provide new diagnostic options that can be used for the diagnosis and prognosis of OPMDs and OSCC, respectively. Despite overall advances that have been made in cancer treatment, the treatment options for OPMDs and OSCC are still limited. Several studies have shown that ncRNA-based treatment regimens may hold promise as alternative methods for treating OPMDs and OSCC. The use of ncRNAs as therapeutic agents, including miR-155, miR-34 and lncRNA HOTAIR, appear promising.
Collapse
Affiliation(s)
- Fei Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Chuan Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kexin Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Hetian Bai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
26
|
Zhou J, Du G, Fu H. miR‑296‑3p promotes the proliferation of glioblastoma cells by targeting ICAT. Mol Med Rep 2020; 21:2151-2161. [PMID: 32323769 PMCID: PMC7115191 DOI: 10.3892/mmr.2020.11011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/04/2019] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNA/miRs) serve an important function in the regulation of gene expression, and have been indicated to mediate a number of cellular biological processes, including cell proliferation, the cell cycle, cell apoptosis and cell differentiation. The altered expression of miRNAs has been revealed to result in a variety of human diseases, including glioblastoma multiforme (GBM). The present study indicated an increase in miR‑296‑3p in glioma tumor types compared with normal brain, particularly in the samples from patients with high grade GBM. Antagonizing miR‑296‑3p was demonstrated to induce cell growth arrest and cell cycle redistribution in U251 cells. The miR‑296‑3p antagonist altered the expression of a number of key genes that are involved in cell cycle control, including cyclin D1 and p21. Additionally, the decrease of miR‑296‑3p increased inhibitor of β‑catenin and T cell factor (ICAT) expression, and increased miR‑296‑3p‑inhibited ICAT expression in U251 cells. Bioinformatics analysis indicated that ICAT is a target gene of miR‑296‑3p, which was further validated using a dual‑luciferase reporter assay. Through the regulation of ICAT, the miR‑296‑3p antagonist decreased β‑catenin protein expression and increased the expression of its target genes. Silencing ICAT was indicated to reverse the miR‑296‑3p downregulation‑induced inactivation of Wnt signaling and cell growth arrest in glioma cells. The present study also indicated a negative correlation between ICAT mRNA levels and miR‑296‑3p levels in glioma tumor types. In conclusion, the present study identified an oncogenic function of miR‑296‑3p in glioblastoma via the direct regulation of ICAT.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Guobo Du
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Hongmei Fu
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
27
|
Min J, Hu J, Luo C, Zhu J, Zhao J, Zhu Z, Wu L, Yuan R. IFITM3 upregulates c-myc expression to promote hepatocellular carcinoma proliferation via the ERK1/2 signalling pathway. Biosci Trends 2019; 13:523-529. [PMID: 31852866 DOI: 10.5582/bst.2019.01289] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jiaqi Min
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of General Surgery, Aviation General Hospital, Beijing, China
| | - Junwen Hu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chen Luo
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinfeng Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiefeng Zhao
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengming Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linquan Wu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rongfa Yuan
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
28
|
Wang H, Tang F, Bian E, Zhang Y, Ji X, Yang Z, Zhao B. IFITM3/STAT3 axis promotes glioma cells invasion and is modulated by TGF-β. Mol Biol Rep 2019; 47:433-441. [PMID: 31637620 DOI: 10.1007/s11033-019-05146-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/16/2019] [Indexed: 12/22/2022]
Abstract
Glioma is the most aggressive primary brain tumor. We have previously provided evidence that IFITM3 promoted glioma cells migration. However, the mechanism of how IFITM3 regulates glioma cells invasion and whether IFITM3 participates in TGF-β-mediated glioma invasion are still unknown. In this paper, we proved that IFITM3 was notably up-regulated in glioma tissues. Knockdown of IFITM3 suppressed STAT3 phosphorylation in vitro, and a specific STAT3 inhibitor AG490 reversed IFITM3-induced invasion of glioma cells. Furthermore, IFITM3 expression was induced by TGF-β in glioma and IFITM3 knockdown abolished TGF-β-mediated glioma cells invasion. Collectively, the results indicate that IFITM3/STAT3 axis may promote TGF-β-induced glioma cells invasion. This study provided some suggestions for the clinical treatment of the brain tumor.
Collapse
Affiliation(s)
- Hongliang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Feng Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Yile Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Xinghu Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China. .,Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui, China.
| |
Collapse
|
29
|
Identification of AUNIP as a candidate diagnostic and prognostic biomarker for oral squamous cell carcinoma. EBioMedicine 2019; 47:44-57. [PMID: 31409573 PMCID: PMC6796785 DOI: 10.1016/j.ebiom.2019.08.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors worldwide. Patients with poorly differentiated OSCC often exhibit a poor prognosis. AUNIP (Aurora Kinase A and Ninein Interacting Protein), also known as AIBp, plays a key role in cell cycle and DNA damage repair. However, the function of AUNIP in OSCC remains elusive. Methods The differentially expressed genes (DEGs) were obtained using R language. Receiver operating characteristic curve analysis was performed to identify diagnostic markers for OSCC. The effectiveness of AUNIP in diagnosing OSCC was evaluated by machine learning. AUNIP expression was analyzed in publicly available databases and clinical specimens. Bioinformatics analysis and in vitro experiments were conducted to explore biological functions and prognostic value of AUNIP in OSCC. Findings The gene integration analysis revealed 90 upregulated DEGs. One candidate biomarker, AUNIP, for the diagnosis of OSCC was detected, and its expression gradually increased along with malignant differentiation of OSCC. Bioinformatics analysis demonstrated that AUNIP could be associated with tumor microenvironment, human papillomavirus infection, and cell cycle in OSCC. The suppression of AUNIP inhibited OSCC cell proliferation and resulted in G0/G1 phase arrest in OSCC cells. The survival analysis showed that AUNIP overexpression predicted poor prognosis of OSCC patients. Interpretation: AUNIP could serve as a candidate diagnostic and prognostic biomarker for OSCC and suppression of AUNIP may be a potential approach to preventing and treating OSCC. Fund Taishan Scholars Project in Shandong Province (ts201511106) and the National Natural Science Foundation of China (Nos. 61603218).
Collapse
|