1
|
Li J, Yu C, Yu K, Chen Z, Xing D, Zha B, Xie W, Ouyang H. SPINT2 is involved in the proliferation, migration and phenotypic switching of aortic smooth muscle cells: Implications for the pathogenesis of thoracic aortic dissection. Exp Ther Med 2023; 26:546. [PMID: 37928510 PMCID: PMC10623238 DOI: 10.3892/etm.2023.12245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023] Open
Abstract
Thoracic aortic dissection (TAD) is a severe and extremely dangerous cardiovascular disease. Proliferation, migration and phenotypic switching of vascular smooth muscle cells (SMCs) are major pathogenetic mechanisms involved in the development of TAD. The present study was designed to investigate the expression and potential function of serine peptidase inhibitor Kunitz type 2 (SPINT2) in TAD. The gene expression profile data for ascending aorta from patients with TAD were downloaded from the GEO database with the accession number GSE52093. Bioinformatics analysis using GEO2R indicated that the differentially expressed SPINT2 was prominently decreased in TAD. The expression levels of SPINT2 mRNA and protein in aortic dissection specimens and normal aorta tissues were measured using reverse transcription-quantitative PCR and western blotting. SPINT2 expression was downregulated in clinical samples from aortic dissection specimens of patients with TAD compared with the corresponding expression noted in tissues derived from patients without TAD. In vitro, platelet-derived growth factor BB (PDGF-BB) was applied to induce the isolated primary mouse aortic SMC phenotypic modulation (a significant upregulation in the expression levels of synthetic markers), and the SMCs were infected with the adenoviral vector, Ad-SPINT2, to construct SPINT2-overexpressed cell lines. SMC viability was detected by an MTT assay and SMC proliferation was detected via the presence of Ki-67-positive cells (immunofluorescence staining). To explore the effects of SPINT2 on SMC migration, a wound healing assay was conducted. ELISA and western blotting assays were used to measure the content and expression levels of MMP-2 and MMP-9. The expression levels of vimentin, collagen I, α-SMA and SM22α were measured using western blotting. The PDGF-BB-induced proliferation and migration of SMCs were recovered by SPINT2 overexpression. The increase in the expression levels of SPINT2 reduced the expression levels of active matrix metalloproteinases (MMPs), MMP-2 and MMP-9. Overexpression of SPINT2 suppressed SMC switching from a contractile to a synthetic type, as evidenced by decreased vimentin and collagen I expression levels along with increased α-smooth muscle actin and smooth muscle protein 22-α expression levels. Furthermore, activation of ERK was inhibited in SPINT2-overexpressing SMCs. A specific ERK agonist, 12-O-tetradecanoylphorbol-13-acetate, reversed the SPINT2-mediated inhibition of SMC migration and the phenotypic switching. Collectively, the data indicated that SPINT2 was implicated in the proliferation, migration and phenotypic switching of aortic SMCs, suggesting that it may be involved in TAD progression.
Collapse
Affiliation(s)
- Jun Li
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Changjun Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Kangmin Yu
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zhiyong Chen
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Dan Xing
- Department of Medical Record Management, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Binshan Zha
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Wentao Xie
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Huan Ouyang
- Department of Vascular Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
2
|
Janacova L, Stenckova M, Lapcik P, Hrachovinova S, Bouchalova P, Potesil D, Hrstka R, Müller P, Bouchal P. Catechol-O-methyl transferase suppresses cell invasion and interplays with MET signaling in estrogen dependent breast cancer. Sci Rep 2023; 13:1285. [PMID: 36690660 PMCID: PMC9870911 DOI: 10.1038/s41598-023-28078-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/12/2023] [Indexed: 01/25/2023] Open
Abstract
Catechol-O-methyl transferase (COMT) is involved in detoxification of catechol estrogens, playing cancer-protective role in cells producing or utilizing estrogen. Moreover, COMT suppressed migration potential of breast cancer (BC) cells. To delineate COMT role in metastasis of estrogen receptor (ER) dependent BC, we investigated the effect of COMT overexpression on invasion, transcriptome, proteome and interactome of MCF7 cells, a luminal A BC model, stably transduced with lentiviral vector carrying COMT gene (MCF7-COMT). 2D and 3D assays revealed that COMT overexpression associates with decreased cell invasion (p < 0.0001 for Transwell assay, p < 0.05 for spheroid formation). RNA-Seq and LC-DIA-MS/MS proteomics identified genes associated with invasion (FTO, PIR, TACSTD2, ANXA3, KRT80, S100P, PREX1, CLEC3A, LCP1) being downregulated in MCF7-COMT cells, while genes associated with less aggressive phenotype (RBPMS, ROBO2, SELENBP, EPB41L2) were upregulated both at transcript (|log2FC|> 1, adj. p < 0.05) and protein (|log2FC|> 0.58, q < 0.05) levels. Importantly, proteins driving MET signaling were less abundant in COMT overexpressing cells, and pull-down confirmed interaction between COMT and Kunitz-type protease inhibitor 2 (SPINT2), a negative regulator of MET (log2FC = 5.10, q = 1.04-7). In conclusion, COMT may act as tumor suppressor in ER dependent BC not only by detoxification of catechol estrogens but also by suppressing cell invasion and interplay with MET pathway.
Collapse
Affiliation(s)
- Lucia Janacova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Michaela Stenckova
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Sarka Hrachovinova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - David Potesil
- Proteomics Core Facility, Central European Institute for Technology, Masaryk University, Brno, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Petr Müller
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| |
Collapse
|
3
|
Zhou Y, Guo Y, Wang Y. Identification and validation of a seven-gene prognostic marker in colon cancer based on single-cell transcriptome analysis. IET Syst Biol 2022; 16:72-83. [PMID: 35352485 PMCID: PMC8965382 DOI: 10.1049/syb2.12041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/06/2021] [Accepted: 12/04/2021] [Indexed: 11/25/2022] Open
Abstract
Colon cancer (CC) is one of the most commonly diagnosed tumours worldwide. Single-cell RNA sequencing (scRNA-seq) can accurately reflect the heterogeneity within and between tumour cells and identify important genes associated with cancer development and growth. In this study, scRNA-seq was used to identify reliable prognostic biomarkers in CC. ScRNA-seq data of CC before and after 5-fluorouracil treatment were first downloaded from the Gene Expression Omnibus database. The data were pre-processed, and dimensionality reduction was performed using principal component analysis and t-distributed stochastic neighbour embedding algorithms. Additionally, the transcriptome data, somatic variant data, and clinical reports of patients with CC were obtained from The Cancer Genome Atlas database. Seven key genes were identified using Cox regression analysis and the least absolute shrinkage and selection operator method to establish signatures associated with CC prognoses. The identified signatures were validated on independent datasets, and somatic mutations and potential oncogenic pathways were further explored. Based on these features, gene signatures, and other clinical variables, a more effective predictive model nomogram for patients with CC was constructed, and a decision curve analysis was performed to assess the utility of the nomogram. A prognostic signature consisting of seven prognostic-related genes, including CAV2, EREG, NGFRAP1, WBSCR22, SPINT2, CCDC28A, and BCL10, was constructed and validated. The proficiency and credibility of the signature were verified in both internal and external datasets, and the results showed that the seven-gene signature could effectively predict the prognosis of patients with CC under various clinical conditions. A nomogram was then constructed based on features such as the RiskScore, patients' age, neoplasm stage, and tumor (T), nodes (N), and metastases (M) classification, and the nomogram had good clinical utility. Higher RiskScores were associated with a higher tumour mutational burden, which was confirmed to be a prognostic risk factor. Gene set enrichment analysis showed that high-score groups were enriched in 'cytoplasmic DNA sensing', 'Extracellular matrix receptor interactions', and 'focal adhesion', and low-score groups were enriched in 'natural killer cell-mediated cytotoxicity', and 'T-cell receptor signalling pathways', among other pathways. A robust seven-gene marker for CC was identified based on scRNA-seq data and was validated in multiple independent cohort studies. These findings provide a new potential marker to predict the prognosis of patients with CC.
Collapse
Affiliation(s)
- Yang Zhou
- Medical Oncology Department of Gastrointestinal CancerLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityLiaoning ProvinceChina
| | - Yang Guo
- Shenyang Tenth People's Hospital (Shenyang Chest Hospital)ShenyangLiaoningP. R. China
| | - Yuanhe Wang
- Medical Oncology Department of Gastrointestinal CancerLiaoning Cancer Hospital & InstituteCancer Hospital of China Medical UniversityLiaoning ProvinceChina
| |
Collapse
|
4
|
Cai Y, Liang R, Xiao S, Huang Q, Zhu D, Shi GP, Ouyang Q, Yang M. Circ_0088194 Promotes the Invasion and Migration of Rheumatoid Arthritis Fibroblast-Like Synoviocytes via the miR-766-3p/MMP2 Axis. Front Immunol 2021; 12:628654. [PMID: 33692802 PMCID: PMC7937802 DOI: 10.3389/fimmu.2021.628654] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/06/2021] [Indexed: 01/19/2023] Open
Abstract
Dysregulation of circular RNAs (circRNAs) is involved in various human diseases. Fibroblast-like synoviocytes (FLSs), which form the lining of the joint, are epigenetically imprinted with an aggressive phenotype and contribute to joint destruction in rheumatoid arthritis (RA). In the present study, we identified a novel circRNA, Circ_0088194, which was upregulated in RA fibroblast-like synoviocytes (RA-FLSs) and correlated with the disease activity score in 28 joints. Overexpression of Circ_0088194 promoted RA-FLS migration and invasion, while inhibition of Circ_0088194 had the opposite effect. Mechanistically, Circ_0088194 acted as a miR-766-3p sponge to relieve the repressive effect of miR-766-3p on its target, MMP2 (encoding matrix metalloproteinase 2), thereby promoting migration and invasion. The expression level of Circ_0088194 was inversely correlated with that of miR-766-3p in RA-FLSs. Importantly, overexpression of miR-766-3p partially blocked the migration and invasion induced by Circ_0088194 overexpression. Collectively, this study identified a novel circRNA Circ_0088194 that promotes RA-FLS invasion and migration via the miR-766-3p/MMP2 axis. Circ_0088194 might represent a novel therapeutic target to prevent and treat RA.
Collapse
Affiliation(s)
- Yujie Cai
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Renge Liang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shibai Xiao
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qin Huang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingji Zhu
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Qingqing Ouyang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Min Yang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Pinto F, Costa ÂM, Andrade RP, Reis RM. Brachyury Is Associated with Glioma Differentiation and Response to Temozolomide. Neurotherapeutics 2020; 17:2015-2027. [PMID: 32785847 PMCID: PMC7851232 DOI: 10.1007/s13311-020-00911-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioblastomas (GBMs) are the most aggressive tumor type of the central nervous system, mainly due to their high invasiveness and innate resistance to radiotherapy and chemotherapy, with temozolomide (TMZ) being the current standard therapy. Recently, brachyury was described as a novel tumor suppressor gene in gliomas, and its loss was associated with increased gliomagenesis. Here, we aimed to explore the role of brachyury as a suppressor of glioma invasion, stem cell features, and resistance to TMZ. Using gene-edited glioma cells to overexpress brachyury, we found that brachyury-positive cells exhibit reduced invasive and migratory capabilities and stem cell features. Importantly, these brachyury-expressing cells have increased expression of differentiation markers, which corroborates the results from human glioma samples and in vivo tumors. Glioma cells treated with retinoic acid increased the differentiation status with concomitant increased expression of brachyury. We then selected TMZ-resistant (SNB-19) and TMZ-responsive (A172 and U373) cell lines to evaluate the role of brachyury in the response to TMZ treatment. We observed that both exogenous and endogenous brachyury activation, through overexpression and retinoic acid treatment, are associated with TMZ sensitization in glioma-resistant cell lines. In this study, we demonstrate that brachyury expression can impair aggressive glioma features associated with treatment resistance. Finally, we provide the first evidence that brachyury can be a potential therapeutic target in GBM patients who do not respond to conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Filipe Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto - IPATIMUP, 4200-135, Porto, Portugal
| | - Ângela M Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, 4200-135, Porto, Portugal
| | - Raquel P Andrade
- Centre for Biomedical Research - CBMR, University of Algarve, 8005-139, Faro, Portugal
- Algarve Biomedical Center, Campus Gambelas, Edificio 2. Ala Norte, 8005-139, Faro, Portugal
- Department of Medicine and Biomedical Sciences, University of Algarve, 8005-139, Faro, Portugal
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, 4710-057, Braga, Portugal.
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, 14784-400, Brazil.
| |
Collapse
|
6
|
Deng G, Zeng F, Su J, Zhao S, Hu R, Zhu W, Hu S, Chen X, Yin M. BET inhibitor suppresses melanoma progression via the noncanonical NF-κB/SPP1 pathway. Am J Cancer Res 2020; 10:11428-11443. [PMID: 33052224 PMCID: PMC7546000 DOI: 10.7150/thno.47432] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Bromodomain and extra-terminal domain (BET) inhibitors have shown profound efficacy against hematologic malignancies and solid tumors in preclinical studies. However, the underlying molecular mechanism in melanoma is not well understood. Here we identified secreted phosphoprotein 1 (SPP1) as a melanoma driver and a crucial target of BET inhibitors in melanoma. Methods: Bioinformatics analysis and meta-analysis were used to evaluate the SPP1 expression in normal tissues, primary melanoma, and metastatic melanoma. Real-time PCR (RT-PCR) and Western blotting were employed to quantify SPP1 expression in melanoma cells and tissues. Cell proliferation, wound healing, and Transwell assays were carried out to evaluate the effects of SPP1 and BET inhibitors in melanoma cells in vitro. A xenograft mouse model was used to investigate the effect of SPP1 and BET inhibitors on melanoma in vivo. Chromatin immunoprecipitation (ChIP) assay was performed to evaluate the regulatory mechanism of BET inhibitors on SPP1. Results: SPP1 was identified as a melanoma driver by bioinformatics analysis, and meta-analysis determined it to be a diagnostic and prognostic biomarker for melanoma. SPP1 overexpression was associated with poor melanoma prognosis, and silencing SPP1 suppressed melanoma cell proliferation, migration, and invasion. Through a pilot drug screen, we identified BET inhibitors as ideal therapeutic agents that suppressed SPP1 expression. Also, SPP1 overexpression could partially reverse the suppressive effect of BET inhibitors on melanoma. We further demonstrated that bromodomain-containing 4 (BRD4) regulated SPP1 expression. Notably, BRD4 did not bind directly to the SPP1 promoter but regulated SPP1 expression through NFKB2. Silencing of NFKB2 resembled the phenotype of BET inhibitors treatment and SPP1 silencing in melanoma. Conclusion: Our findings highlight SPP1 as an essential target of BET inhibitors and provide a novel mechanism by which BET inhibitors suppress melanoma progression via the noncanonical NF-κB/SPP1 pathway.
Collapse
|
7
|
Iacobas DA. Biomarkers, Master Regulators and Genomic Fabric Remodeling in a Case of Papillary Thyroid Carcinoma. Genes (Basel) 2020; 11:E1030. [PMID: 32887258 PMCID: PMC7565446 DOI: 10.3390/genes11091030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022] Open
Abstract
Publicly available (own) transcriptomic data have been analyzed to quantify the alteration in functional pathways in thyroid cancer, establish the gene hierarchy, identify potential gene targets and predict the effects of their manipulation. The expression data have been generated by profiling one case of papillary thyroid carcinoma (PTC) and genetically manipulated BCPAP (papillary) and 8505C (anaplastic) human thyroid cancer cell lines. The study used the genomic fabric paradigm that considers the transcriptome as a multi-dimensional mathematical object based on the three independent characteristics that can be derived for each gene from the expression data. We found remarkable remodeling of the thyroid hormone synthesis, cell cycle, oxidative phosphorylation and apoptosis pathways. Serine peptidase inhibitor, Kunitz type, 2 (SPINT2) was identified as the Gene Master Regulator of the investigated PTC. The substantial increase in the expression synergism of SPINT2 with apoptosis genes in the cancer nodule with respect to the surrounding normal tissue (NOR) suggests that SPINT2 experimental overexpression may force the PTC cells into apoptosis with a negligible effect on the NOR cells. The predictive value of the expression coordination for the expression regulation was validated with data from 8505C and BCPAP cell lines before and after lentiviral transfection with DDX19B.
Collapse
Affiliation(s)
- Dumitru A Iacobas
- Personalized Genomics Laboratory, CRI Center for Computational Systems Biology, Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA
| |
Collapse
|