1
|
Lammert FC, Pannhausen J, Noetzel E, Friedland F, Wirtz J, Herfs Y, Leypold S, Gan L, Weiskirchen R, Schnitzler T, Knüchel R, Maurer J, Jonigk DD, Rose M, Gaisa NT. Dual role of GRHL3 in bladder carcinogenesis depending on histological subtypes. Mol Oncol 2024; 18:1397-1416. [PMID: 38429970 PMCID: PMC11164254 DOI: 10.1002/1878-0261.13623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/23/2024] [Accepted: 02/20/2024] [Indexed: 03/03/2024] Open
Abstract
The effect of grainyhead-like transcription factor 3 (GRHL3) on cancer development depends on the cancer subtypes as shown in tumor entities such as colorectal or oral squamous cell carcinomas. Here, we analyzed the subtype-specific role of GRHL3 in bladder carcinogenesis, comparing common urothelial carcinoma (UC) with squamous bladder cancer (sq-BLCA). We examined GRHL3 mRNA and protein expression in cohorts of patient samples, its prognostic role and its functional impact on tumorigeneses in different molecular and histopathological subtypes of bladder cancer. We showed for GRHL3 a reverse expression in squamous and urothelial bladder cancer subtypes. Stably GRHL3-overexpressing EJ28, J82, and SCaBER in vitro models revealed a tumor-suppressive function in squamous and an oncogenic role in the urothelial cancer cells affecting cell and colony growth, and migratory and invasive capacities. Transcriptomic profiling demonstrated highly subtype-specific GRHL3-regulated expression networks coined by the enrichment of genes involved in integrin-mediated pathways. In SCaBER, loss of ras homolog family member A (RHOA) GTPase activity was demonstrated to be associated with co-regulation of eukaryotic translation initiation factor 4E family member 3 (EIF4E3), a potential tumor suppressor gene. Thus, our data provide for the first time a detailed insight into the role of the transcription factor GRHL3 in different histopathological subtypes of bladder cancer.
Collapse
Affiliation(s)
- Franziska C. Lammert
- Institute of Pathology, University HospitalRWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Julia Pannhausen
- Institute of Pathology, University HospitalRWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Erik Noetzel
- Institute of Biological Information Processing 2 (IBI‐2), Mechanobiology, Forschungszentrum Jülich GmbHGermany
| | - Florian Friedland
- Institute of Biological Information Processing 2 (IBI‐2), Mechanobiology, Forschungszentrum Jülich GmbHGermany
| | - Julia Wirtz
- Institute of Pathology, University HospitalRWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Yannick Herfs
- Institute of Biological Information Processing 2 (IBI‐2), Mechanobiology, Forschungszentrum Jülich GmbHGermany
| | - Sophie Leypold
- Institute of Pathology, University HospitalRWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
| | - Lin Gan
- IZKF AachenMedical Faculty of the RWTH Aachen UniversityGermany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University HospitalRWTH Aachen UniversityGermany
| | - Tician Schnitzler
- Institute of Pathology, University HospitalRWTH Aachen UniversityGermany
| | - Ruth Knüchel
- Institute of Pathology, University HospitalRWTH Aachen UniversityGermany
| | - Jochen Maurer
- Department of Obstetrics and GynecologyUniversity Hospital AachenGermany
| | - Danny D. Jonigk
- Institute of Pathology, University HospitalRWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
- German Center for Lung Research, DZL, BREATHHanoverGermany
| | - Michael Rose
- Institute of Pathology, University HospitalRWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
- Institute of Pathology, University HospitalUniversity of UlmGermany
| | - Nadine T. Gaisa
- Institute of Pathology, University HospitalRWTH Aachen UniversityGermany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD)Germany
- Institute of Pathology, University HospitalUniversity of UlmGermany
| |
Collapse
|
2
|
Sanguedolce F, Zanelli M, Palicelli A, Bisagni A, Zizzo M, Ascani S, Pedicillo MC, Cormio A, Falagario UG, Carrieri G, Cormio L. HER2 Expression in Bladder Cancer: A Focused View on Its Diagnostic, Prognostic, and Predictive Role. Int J Mol Sci 2023; 24:ijms24043720. [PMID: 36835131 PMCID: PMC9962688 DOI: 10.3390/ijms24043720] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease from a molecular, morphological, and clinical standpoint. HER2 is a known oncogene involved in bladder carcinogenesis. Assessing HER2 overexpression as a result of its molecular changes in a routine pathology practice using immunohistochemistry might be a useful adjunct in several scenarios, namely (1) to correctly identify flat urothelial lesions and inverted urothelial lesions in the diagnostic setting; (2) to provide prognostic hints in both non-muscle invasive (NMI) and muscle invasive (MI) tumors, thus supplementing risk stratification tools, especially when evaluating higher-risk tumors such as those with variant morphology; (3) to improve antibody panels as a surrogate marker of BC molecular subtyping. Furthermore, the potential of HER2 as a therapeutic target has been only partly explored so far, in light of the ongoing development of novel target therapies.
Collapse
Affiliation(s)
- Francesca Sanguedolce
- Pathology Unit, Policlinico Riuniti, University of Foggia, 71122 Foggia, Italy
- Correspondence:
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy
| | | | - Angelo Cormio
- Urology Unit, Azienda Ospedaliero-Universitaria Ospedali Riuniti Di Ancona, Università Politecnica Delle Marche, 60126 Ancona, Italy
| | - Ugo Giovanni Falagario
- Department of Urology and Renal Transplantation, Policlinico Riuniti, University of Foggia, 71122 Foggia, Italy
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, Policlinico Riuniti, University of Foggia, 71122 Foggia, Italy
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, Policlinico Riuniti, University of Foggia, 71122 Foggia, Italy
- Department of Urology, Bonomo Teaching Hospital, 76123 Andria, Italy
| |
Collapse
|
3
|
Are We Ready to Implement Molecular Subtyping of Bladder Cancer in Clinical Practice? Part 1: General Issues and Marker Expression. Int J Mol Sci 2022; 23:ijms23147819. [PMID: 35887164 PMCID: PMC9319819 DOI: 10.3390/ijms23147819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022] Open
Abstract
Bladder cancer (BC) is a heterogeneous disease with highly variable clinical and pathological features, and resulting in different outcomes. Such heterogeneity ensues from distinct pathogenetic mechanisms and may consistently affect treatment responses in single patients. Thus, over the last few years, several groups have developed molecular classification schemes for BC, mainly based on their mRNA expression profiles. A “consensus” classification has recently been proposed to combine the published systems, agreeing on a six-cluster scheme with distinct prognostic and predictive features. In order to implement molecular subtyping as a risk-stratification tool in routine practice, immunohistochemistry (IHC) has been explored as a readily accessible, relatively inexpensive, standardized surrogate method, achieving promising results in different clinical settings. The first part of this review deals with the steps resulting in the development of a molecular subtyping of BC, its prognostic and predictive implications, and the main features of immunohistochemical markers used as surrogates to stratify BC into pre-defined molecular clusters.
Collapse
|
4
|
Heterogenous NECTIN4 expression in urothelial high-risk non-muscle-invasive bladder cancer. Virchows Arch 2022; 481:83-92. [PMID: 35484425 PMCID: PMC9226103 DOI: 10.1007/s00428-022-03328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022]
Abstract
High-grade non-muscle-invasive bladder cancer (HG NMIBC) patients are at high risk (HR) of progression to muscle-invasion. Bladder-preserving therapies for this patient subgroup are limited, and additional treatments are desirable. Recently, enfortumab vedotin, targeting cancer-associated NECTIN4, has been approved for the treatment of advanced urothelial carcinoma. However, data on the expression of NECTIN4 and its therapeutic potential for HR NMIBC are scarce. Here, NECTIN4 was immunohistochemically analyzed in urothelial HG NMIBC by studying cohorts of carcinoma in situ (CIS)/T1HG (N = 182 samples), HG papillary tumors from mixed-grade lesions (mixed TaHG) (N = 87) and papillary HG tumors without a history of low-grade disease (pure TaHG/T1HG) (N = 98) from overall 225 patients. Moreover, inter-lesional NECTIN4 heterogeneity in multifocal HG NMIBC tumors was determined. A high prevalence of NECTIN4 positivity was noted across HG NMIBC subgroups (91%, N = 367 samples), with 77% of samples showing moderate/strong expression. Heterogenous NECTIN4 levels were observed between HG NMIBC subgroups: non-invasive areas of CIS/T1HG and pure TaHG/T1HG samples showed NECTIN4 positivity in 96% and 99%, with 88% and 83% moderate/strong expressing specimens, respectively, whereas significantly lower NECTIN4 levels were detected in mixed TaHG lesions (72% positivity, 48% of samples with moderate/strong NECTIN4 expression). Moreover, higher NECTIN4 heterogeneity was observed in patients with multifocal mixed TaHG tumors (22% of patients) compared to patients with multifocal CIS/T1HG and pure TaHG/T1HG tumors (9% and 5%). Taken together, NECTIN4-directed antibody–drug conjugates might be promising for the treatment of HR NMIBC patients, especially for those exhibiting CIS/T1HG and pure TaHG/T1HG tumors without a history of low-grade disease.
Collapse
|
5
|
Iakymenko OA, Briski LM, Delma KS, Jorda M, Kryvenko ON. Utility of D2-40, Cytokeratin 5/6, and High-Molecular-weight Cytokeratin (Clone 34βE12) in Distinguishing Intraductal Spread of Urothelial Carcinoma From Prostatic Stromal Invasion. Am J Surg Pathol 2022; 46:454-463. [PMID: 34560681 DOI: 10.1097/pas.0000000000001816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Intraductal spread of urothelial carcinoma (UC) is not an uncommon finding in bladder cancer that requires appropriate clinical management. The presence of prostatic stromal invasion in non-muscle-invasive bladder cancer upstages the disease, necessitating cisplatin-based neoadjuvant chemotherapy and subsequent cystroprostatectomy. However, the identification of prostatic stromal invasion can be challenging, especially in biopsy and transurethral resection specimens. We assess the utility of D2-40, CK5/6, and high-molecular-weight cytokeratin (HMWCK) immunohistochemistry as an ancillary tool to differentiate prostatic stromal invasion from intraductal UC spread. We reviewed 13 cystoprostatectomies performed for UC with prostatic involvement. The presence of stromal invasion was histologically determined by the presence of circumferential retraction artifact, paradoxical differentiation, complex architecture, and desmoplastic reaction. The areas of interest were subsequently stained with D2-40, CK5/6, and HMWCK (clone 34βE12). Four bladder biopsies were used as a control to assess labeling in the benign urothelium. Nine cases had histologic evidence of prostatic stromal invasion (4 transmurally through bladder wall). D2-40 highlighted basal cells in all benign prostatic ducts and was consistently negative in UC, benign urothelium, prostatic adenocarcinoma, and benign luminal prostatic epithelium. D2-40 and CK5/6 performed similarly for intraductal UC, labeling only the basal cell layer with the exception of 1 case with squamous differentiation where CK5/6 exhibited full thickness staining. HMWCK diffusely stained 9 of 10 intraductal UCs without squamous differentiation and 1 intraductal UC with squamous differentiation. All 8 cases of invasive UC without squamous differentiation were negative for D2-40. Seven of these cases had focal CK5/6 and diffuse HMWCK staining. In 1 case of invasive UC with squamous differentiation, all stains were positive. D2-40 is expressed in prostatic basal cells, but it is not expressed in the benign or neoplastic urothelium. D2-40 and CK5/6 effectively highlight the intraductal spread of UC. While invasive UC is negative for D2-40, CK5/6 is usually patchy and localized to the periphery of the tumor nests. HMWCK often demonstrates diffuse staining in both scenarios. However, these stains do not perform well in cases of UC with squamous differentiation. Thus, D2-40 can be used as an ancillary tool to rule out prostatic stromal invasion.
Collapse
Affiliation(s)
| | - Laurence M Briski
- Departments of Pathology and Laboratory Medicine
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | | | - Merce Jorda
- Departments of Pathology and Laboratory Medicine
- Urology
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Oleksandr N Kryvenko
- Departments of Pathology and Laboratory Medicine
- Urology
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
6
|
Molecular Classification of Bladder Urothelial Carcinoma Using NanoString-Based Gene Expression Analysis. Cancers (Basel) 2021; 13:cancers13215500. [PMID: 34771663 PMCID: PMC8583679 DOI: 10.3390/cancers13215500] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Our study aimed to apply a quantitative method based on mRNA counting as nCounter (NanoString Technologies, Inc). This method can obtain precise and accurate measures of RNA expression compared to RT-PCR, and which might represent an alternative to the NGS-genomic/transcriptomic profiling frequently used to generate molecular data in bladder cancer and provide clinically meaningful datasets for the molecular classification of bladder cancer. The current study generated a four-gene classifier, incorporating GATA3 and KRT20 (typically related to luminal molecular subtype) and KRT5 and KRT14 (typically related to basal molecular subtype). This methodology allowed us to explore differences in clinicopathologic parameters and potential sensitivities to ICI immunotherapy in a cohort series of 91 urothelial carcinomas of the bladder. Abstract Molecular classification of bladder carcinoma is a relevant topic in modern bladder cancer oncology due to its potential to improve oncological outcomes. The available molecular classifications are generally based on transcriptomic profiles, generating highly diverse categories with limited correlation. Implementation of molecular classification in practice is typically limited due to the high complexity of the required technology, the elevated costs, and the limited availability of this technology worldwide. We have conducted a gene expression analysis using a four-gene panel related to luminal and basal subtypes in a series of 91 bladder cancer cases. NanoString-based gene expression analysis using typically luminal (GATA3+/KRT20+) and basal markers (KRT14+/KRT5+/GATA3low/-/KRT20low/-) classified urothelial bladder carcinoma samples as luminal, basal, and a third category (KRT14-/KRT5-/GATA3-/KRT20-), null/double negative (non-luminal/non-basal). These three categories were meaningful in terms of overall cancer-specific survival (p < 0.0001) or when classified as conventional urothelial carcinoma and variant histology urothelial carcinoma (p < 0.0001), NMIBC vs. MIBC (p < 0.001), or by AJCC stage category Ta (p = 0.0012) and T1 (p < 0.0001) but did not reach significance in T2-T4 (p = 0.563). PD-L1 expression (low vs. high) was also different according to molecular subtype, with high PD-L1 expression mostly seen in basal and null subtypes and carcinomas with variant histology (p = 0.002). Additionally, the luminal subtype was enriched in NMIBC with favorable cancer-specific survival (p < 0.0001). In contrast, basal and null subtypes resulted in aggressive MIBC tumors with shorter cancer-specific survival (p < 0.0001), some of which presented variant histology. In conclusion, a comprehensive evaluation of a gene classifier related to molecular taxonomy using NanoString technology is feasible. Therefore, it might represent an accessible and affordable tool in this rapidly expanding area of precision genomics.
Collapse
|
7
|
Montoya-Cerrillo D, Briski LM, Jorda M, Kryvenko ON. Utility of GATA-3 and Cytokeratin 5/6 Immunostains in Separating Condyloma Acuminatum Arising in the Urinary Tract From Non-Invasive Papillary Urothelial Carcinoma. Int J Surg Pathol 2021; 30:260-264. [PMID: 34665053 DOI: 10.1177/10668969211052235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Condyloma acuminatum is a squamous epithelial lesion which uncommonly involves the urinary tract. In this location, non-invasive papillary urothelial carcinoma constitutes one of the main differential diagnoses with significant prognostic and therapeutic implications. To date, no ancillary immunohistochemical stain has been described to differentiate these two entities. We assess the utility of cytokeratin 5/6 (CK5/6) and GATA-3 immunohistochemistry in distinguishing condyloma acuminatum from non-invasive papillary urothelial carcinoma. Design We reviewed 9 condylomata acuminata involving the urinary tract, 12 low-grade and 8 high-grade non-invasive papillary urothelial carcinomas. CK5/6 immunostaining was performed in all cases. GATA-3 immunostaining and low-risk human papilloma virus (HPV) chromogenic in situ hybridization was performed in all condyloma cases and 2 urothelial carcinomas with squamous differentiation. Results 8/9 condylomata acuminata were positive for low-risk HPV. All condylomata acuminata exhibited strong full-thickness cytoplasmic staining for CK5/6. In 10 of 12 low-grade non-invasive papillary urothelial carcinomas, CK5/6 expression was continuous and limited to the basal cell layer, while it was patchy and limited to the basal cell layer in all 8 high-grade non-invasive papillary urothelial carcinomas. Two low-grade non-invasive papillary urothelial carcinomas showed focal full-thickness CK5/6 expression in the areas of squamous differentiation. These 2 cases were negative for low-risk HPV. GATA-3 immunostaining was positive in all condylomata acuminata. Conclusions CK5/6 immunostaining is a useful and simple tool that can help separate low-grade and high-grade non-invasive papillary urothelial carcinomas from condyloma acuminatum involving the urothelium-lined organs. GATA-3 has no discriminatory role between condyloma acuminatum and papillary urothelial carcinomas.
Collapse
Affiliation(s)
| | | | - Merce Jorda
- University of Miami Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
8
|
Lurje I, Werner W, Mohr R, Roderburg C, Tacke F, Hammerich L. In Situ Vaccination as a Strategy to Modulate the Immune Microenvironment of Hepatocellular Carcinoma. Front Immunol 2021; 12:650486. [PMID: 34025657 PMCID: PMC8137829 DOI: 10.3389/fimmu.2021.650486] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is a highly prevalent malignancy that develops in patients with chronic liver diseases and dysregulated systemic and hepatic immunity. The tumor microenvironment (TME) contains tumor-associated macrophages (TAM), cancer-associated fibroblasts (CAF), regulatory T cells (Treg) and myeloid-derived suppressor cells (MDSC) and is central to mediating immune evasion and resistance to therapy. The interplay between these cells types often leads to insufficient antigen presentation, preventing effective anti-tumor immune responses. In situ vaccines harness the tumor as the source of antigens and implement sequential immunomodulation to generate systemic and lasting antitumor immunity. Thus, in situ vaccines hold the promise to induce a switch from an immunosuppressive environment where HCC cells evade antigen presentation and suppress T cell responses towards an immunostimulatory environment enriched for activated cytotoxic cells. Pivotal steps of in situ vaccination include the induction of immunogenic cell death of tumor cells, a recruitment of antigen-presenting cells with a focus on dendritic cells, their loading and maturation and a subsequent cross-priming of CD8+ T cells to ensure cytotoxic activity against tumor cells. Several in situ vaccine approaches have been suggested, with vaccine regimens including oncolytic viruses, Flt3L, GM-CSF and TLR agonists. Moreover, combinations with checkpoint inhibitors have been suggested in HCC and other tumor entities. This review will give an overview of various in situ vaccine strategies for HCC, highlighting the potentials and pitfalls of in situ vaccines to treat liver cancer.
Collapse
Affiliation(s)
- Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Wiebke Werner
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
9
|
Lopez-Beltran A, Cimadamore A, Montironi R, Cheng L. Molecular pathology of urothelial carcinoma. Hum Pathol 2021; 113:67-83. [PMID: 33887300 DOI: 10.1016/j.humpath.2021.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/23/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022]
Abstract
The current personalized oncology era has witnessed significant efforts to integrate clinical, pathological, and molecular classifications. The growing need for molecular biomarkers to feed personalized oncology, together with the unprecedented wealth of knowledge on the molecular basis of bladder cancer, has led to a novel approach to this disease, incorporating molecularly generated data in clinical practice for locally advanced or metastatic disease. Translational research allows a better understanding of the early events in the development of urothelial carcinoma in the urinary bladder. Thus, mutations in the KMT2D and KDM6A chromatin-modifying genes confer competitive advantages that drive cells to colonize larger regions of the urothelium. Additional mutations in TP53, PIK3CA, FGFR3, or RB1 genes then trigger the process of malignant transformation in the urothelium. In the current review, we provide an overview of what could be the expected transition from the morphology-based classification to a combined, molecularly enriched reporting of clinically meaningful parameters aiming to promote personalized oncology of urothelial carcinoma.
Collapse
Affiliation(s)
- Antonio Lopez-Beltran
- Department of Morphological Sciences, Cordoba University Medical School, Cordoba, E-14004, Spain.
| | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, 60126, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, 60126, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Urology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
10
|
Garczyk S, Bischoff F, Schneider U, Golz R, von Rundstedt FC, Knüchel R, Degener S. Intratumoral heterogeneity of surrogate molecular subtypes in urothelial carcinoma in situ of the urinary bladder: implications for prognostic stratification of high-risk non-muscle-invasive bladder cancer. Virchows Arch 2021; 479:325-335. [PMID: 33650041 PMCID: PMC8364543 DOI: 10.1007/s00428-021-03054-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 12/24/2022]
Abstract
Reliable factors predicting the disease course of non-muscle-invasive bladder cancer (NMIBC) with carcinoma in situ (CIS) are unavailable. Molecular subtypes have potential for prognostic stratification of muscle-invasive bladder cancer, while their value for CIS patients is unknown. Here, the prognostic impact of both clinico-pathological parameters, including CIS focality, and immunohistochemistry-based surrogate subtypes was analyzed in a cohort of high-risk NMIBC patients with CIS. In 128 high-risk NMIBC patients with CIS, luminal (KRT20, GATA3, ERBB2) and basal (KRT5/6, KRT14) surrogate markers as well as p53 were analyzed in 213–231 biopsies. To study inter-lesional heterogeneity of CIS, marker expression in independent CIS biopsies from different bladder localizations was analyzed. Clinico-pathological parameters and surrogate subtypes were correlated with recurrence-free (RFS), progression-free (PFS), cancer-specific (CSS), and overall survival (OS). Forty-six and 30% of CIS patients exhibited a luminal-like (KRT20-positive, KRT5/6-negative) and a null phenotype (KRT20-negative, KRT5/6-negative), respectively. A basal-like subtype (KRT20-negative, KRT5/6-positive) was not observed. A significant degree of inter-lesional CIS heterogeneity was noted, reflected by 23% of patients showing a mixed subtype. Neither CIS surrogate subtype nor CIS focality was associated with patient outcome. Patient age and smoking status were the only potentially independent prognostic factors predicting RFS, PFS, OS, and PFS, respectively. In conclusion, further clarification of heterogeneity of surrogate subtypes in HR NMIBC and their prognostic value is of importance with regard to potential implementation of molecular subtyping into clinical routine. The potential prognostic usefulness of patient age and smoking status for high-risk NMIBC patients with CIS needs further validation.
Collapse
Affiliation(s)
- Stefan Garczyk
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Felix Bischoff
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Ursula Schneider
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Reinhard Golz
- Institute of Pathology, Helios University Hospital Wuppertal, Wuppertal, Germany
| | | | - Ruth Knüchel
- Institute of Pathology, University Hospital RWTH Aachen, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Stephan Degener
- Department of Urology, Helios University Hospital Wuppertal, Wuppertal, Germany
| |
Collapse
|
11
|
Lopez-Beltran A, Cheng L. Stage T1 bladder cancer: diagnostic criteria and pitfalls. Pathology 2020; 53:67-85. [PMID: 33153725 DOI: 10.1016/j.pathol.2020.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022]
Abstract
Accurate pathological staging is crucial for patient management. Patients with T1 bladder cancer are at risk of recurrence, progression, and death of cancer. Recognition of early invasion (stage T1 disease) in urothelial carcinoma remains one of the most challenging areas in urological surgical pathology practice. A logical roadmap to T1 diagnosis would include careful evaluation of histological grade, stromal epithelial interface, characteristics of the invading epithelium, and the stroma associated responses. Tangential sectioning, crush and cautery artifacts, and associated inflammatory infiltrate are commonly encountered problems and the source of pitfalls. In this review, we outline diagnostic criteria, common pitfalls, and different histological patterns of invasion into the lamina propria. Current recommendations on reporting of biopsy and transurethral resection specimens, molecular biomarkers, clinical implications of T1 cancer diagnosis and recent developments on the T1 substaging are also discussed. Most T1 bladder cancer patients will benefit from conservative management after restaging transurethral resection of bladder and bacillus Calmette-Guérin maintenance. Patients with high risk features, such as concurrent urothelial carcinoma in situ, increased depth of invasion, lymphovascular invasion, and variant histology among others, should be considered for early cystectomy.
Collapse
Affiliation(s)
- Antonio Lopez-Beltran
- Department of Morphological Sciences, Cordoba University Medical School, Cordoba, Spain
| | - Liang Cheng
- Department of Pathology, Indiana University School of Medicine, Indianapolis, USA; Department of Urology, Indiana University School of Medicine, Indianapolis, USA.
| |
Collapse
|
12
|
Jung M, Jang I, Kim K, Moon KC. Non-Muscle-Invasive Bladder Carcinoma with Respect to Basal Versus Luminal Keratin Expression. Int J Mol Sci 2020; 21:E7726. [PMID: 33086575 PMCID: PMC7589917 DOI: 10.3390/ijms21207726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 11/16/2022] Open
Abstract
Non-muscle-invasive bladder cancer (NMIBC) consists of transcriptional subtypes that are distinguishable from those of muscle-invasive cancer. We aimed to identify genetic signatures of NMIBC related to basal (K5/6) and luminal (K20) keratin expression. Based on immunohistochemical staining, papillary high-grade NMIBC was classified into K5/6-only (K5/6High-K20Low), K20-only (K5/6Low-K20High), double-high (K5/6High-K20High), and double-low (K5/6Low-K20Low) groups (n = 4 per group). Differentially expressed genes identified between each group using RNA sequencing were subjected to functional enrichment analyses. A public dataset was used for validation. Machine learning algorithms were implemented to predict our samples against UROMOL subtypes. Transcriptional investigation demonstrated that the K20-only group was enriched in the cell cycle, proliferation, and progression gene sets, and this result was also observed in the public dataset. The K5/6-only group was closely regulated by basal-type gene sets and showed activated invasive or adhesive functions. The double-high group was enriched in cell cycle arrest, macromolecule biosynthesis, and FGFR3 signaling. The double-low group moderately expressed genes related to cell cycle and macromolecule biosynthesis. All K20-only group tumors were classified as UROMOL "class 2" by the machine learning algorithms. K5/6 and K20 expression levels indicate the transcriptional subtypes of NMIBC. The K5/6Low-K20High expression is a marker of high-risk NMIBC.
Collapse
Affiliation(s)
- Minsun Jung
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Insoon Jang
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea;
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul 03080, Korea;
| | - Kyung Chul Moon
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Kidney Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|