1
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Zhang Q, Wang J, Zhang J, Wang Y, Wang Y, Liu F. Cancer-associated fibroblasts-induced remodeling of tumor immune microenvironment via Jagged1 in glioma. Cell Signal 2024; 115:111016. [PMID: 38128708 DOI: 10.1016/j.cellsig.2023.111016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Tumor immunosuppression are prominent characteristics of brain glioma. Current standard modality including surgical resection and chemoradiotherapy do not significantly improve clinical outcomes. Cancer-associated fibroblasts (CAFs) that regard as important stromal cells in tumor microenvironment have been confirmed to play crucial roles in tumor development. However, the effects of CAFs on tumor immunosuppression in glioma are not well expounded. In this study, we report that CAFs contributes to the formation of glioma immunosuppressive microenvironment. Specifically, we found that glioma-derived Jagged1 enhanced the proliferation and PD-L1 expression of CAFs in vitro. Importantly, we discovered that Notch1, c-Myc and PD-L1 expression were significantly increased in high Jagged1-expressing gliomas, moreover, we further confirmed that Notch1 and PD-L1 expression located on the CAFs in glioma tissues. We also found that glioma-derived Jagged1 promotes the increase of tumor-infiltrating macrophages, M2 macrophages and Foxp3 Treg cells, as well as no significance of M1 macrophages and CD8+ T cells, indicating potential immunosuppression. This study opens up novel therapeutic strategies reversing CAF immunosuppression for gliomas.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China; Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, China
| | - Jialin Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, China; Beijing Laboratory of Biomedical Materials, Beijing 100070, China
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, China; Beijing Laboratory of Biomedical Materials, Beijing 100070, China
| | - Youwen Wang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, China; Beijing Laboratory of Biomedical Materials, Beijing 100070, China
| | - Yang Wang
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China.
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing 100070, China; Beijing Laboratory of Biomedical Materials, Beijing 100070, China.
| |
Collapse
|
3
|
Zhou W, Hu Y, Wang B, Yuan L, Ma J, Meng X. Aberrant expression of PELI1 caused by Jagged1 accelerates the malignant phenotype of pancreatic cancer. Cell Signal 2023; 111:110877. [PMID: 37657587 DOI: 10.1016/j.cellsig.2023.110877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/13/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Pancreatic cancer is one of the most aggressive cancers. PELI1 has been reported to promote cell survival and proliferation in multiple cancers. As of now, the role of PELI1 in pancreatic cancer is largely unknown. Here, we found that the PELI1 mRNA was higher expressed in pancreatic tumor tissues than in adjacent normal tissues, and the high PELI1 level in pancreatic cancer patients had a short survival time compared with the low level. Moreover, the results showed that PELI1 promoted cell proliferation, migration, and invasion, and inhibited apoptosis in vitro. Xenograft tumor experiments were used to determine the biological function of PELI1, and the results showed that PELI1 promoted tumor growth in vivo. Additionally, we found that Jagged1 activated PELI1 transcription in pancreatic cancer cells. To sum up, our results show that PELI1 affects the malignant phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Wenyang Zhou
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Yuying Hu
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Baosheng Wang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Lina Yuan
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jia Ma
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| | - Xiangpeng Meng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
Qi J, Meng M, Liu J, Song X, Chen Y, Liu Y, Li X, Zhou Z, Huang X, Wang X, Zhou Q, Zhao Z. Lycorine inhibits pancreatic cancer cell growth and neovascularization by inducing Notch1 degradation and downregulating key vasculogenic genes. Biochem Pharmacol 2023; 217:115833. [PMID: 37769714 DOI: 10.1016/j.bcp.2023.115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Pancreatic cancer is highly metastatic and lethal with an increasing incidence globally and a 5-year survival rate of only 8%. One of the factors contributing to the high mortality is the lack of effective drugs in the clinical setting. We speculated that effective compounds against pancreatic cancer exist in natural herbs and explored active small molecules among traditional Chinese medicinal herbs. The small molecule lycorine (MW: 323.77) derived from the herb Lycoris radiata inhibited pancreatic cancer cell growth with an IC50 value of 1 μM in a concentration-dependent manner. Lycorine markedly reduced pancreatic cancer cell viability, migration, invasion, neovascularization, and gemcitabine resistance. Additionally, lycorine effectively suppressed tumor growth in mouse xenograft models without obvious toxicity. Pharmacological studies revealed that the levels and half-life of Notch1 oncoprotein in the pancreatic cancer cells Panc-1 and Patu8988 were notably reduced. Moreover, the expression of the key vasculogenic genes Semaphorin 4D (Sema4D) and angiopoietin-2 (Ang-2) were also significantly inhibited by lycorine. Mechanistically, lycorine strongly triggered the degradation of Notch1 oncoprotein through the ubiquitin-proteasome system. In conclusion, lycorine effectively inhibits pancreatic cancer cell growth, migration, invasion, neovascularization, and gemcitabine resistance by inducing degradation of Notch1 oncoprotein and downregulating the key vasculogenic genes Sema4D and Ang-2. Our findings provide a new therapeutic candidate and treatment strategy against pancreatic cancer.
Collapse
Affiliation(s)
- Jindan Qi
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China; School of Nursing, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Juntao Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xiaoxiao Song
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Yu Chen
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Yuxi Liu
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xu Li
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Zhou Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xiang Huang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China
| | - Xiaohua Wang
- School of Nursing, Soochow University, Suzhou, Jiangsu 215006, PR China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China; State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Jiangsu 215123, PR China; National Clinical Research Center for Hematologic Diseases, The Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, PR China; Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu 215123, PR China; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China.
| | - Zhe Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Jiangsu 215123, PR China; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu 215123, PR China.
| |
Collapse
|
5
|
Chung WC, Xu K. Notch signaling pathway in pancreatic tumorigenesis. Adv Cancer Res 2023. [DOI: 10.1016/bs.acr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
6
|
Taheri F, Ebrahimi SO, Heidari R, Pour SN, Reiisi S. Mechanism and function of miR-140 in human cancers: A review and in silico study. Pathol Res Pract 2023; 241:154265. [PMID: 36509008 DOI: 10.1016/j.prp.2022.154265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
MicroRNA-140 (miR-140) acts as a tumor suppressor and plays a vital role in cell biological functions such as cell proliferation, apoptosis, and DNA repair. The expression of this miRNA has been shown to be considerably decreased in cancer tissues and cell lines compared with normal adjacent tissues. Consequently, aberrant expression of some miR-140 target genes can lead to the initiation and progression of various human cancers, such as breast cancer, gastrointestinal cancers, lung cancer, and prostate cancer. The dysregulation of the miR-140 network also affects cell proliferation, invasion, metastasis, and apoptosis of cancer cells by affecting various signaling pathways. Besides, up-regulation of miR-140 could enhance the efficacy of chemotherapeutic agents in different cancer. We aimed to cover most aspects of miR-140 function in cancer development and address its importance in different stages of cancer progression.
Collapse
Affiliation(s)
- Forough Taheri
- Department of Genetics, Sharekord Branch, Islamic Azad University, Sharekord, Iran
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Razieh Heidari
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Somaye Nezamabadi Pour
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
7
|
Anti-Jagged-1 immunotherapy in cancer. Adv Med Sci 2022; 67:196-202. [PMID: 35421813 DOI: 10.1016/j.advms.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/25/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
Abstract
Notch signaling is a highly conserved pathway and it plays an essential role in regulating cellular proliferation, differentiation, and apoptosis. The human Notch family includes four receptors, Notch 1-4, and five ligands, delta-like ligand 1 (DLL1), delta-like ligand 3 (DLL3), delta-like ligand 4 (DLL4), Jagged-1 (JAG1), and Jagged-2 (JAG2). It is widely known, that Notch signaling components are often mutated and have deregulated expression in many types of cancer and other diseases. Thus, various therapeutic approaches targeting receptors and ligands of the Notch pathway are being investigated. Human JAG1 is closely related to tumor biology among the Notch ligands, and recent studies have shown potential for monoclonal antibodies targeting JAG1 in cancer therapy. Therefore, this review focuses on current reports on the significance of JAG1 directed cancer treatment, emphasizing immunotherapy.
Collapse
|
8
|
Lee J, Lee J, Sim W, Kim JH. Soluble TGFBI aggravates the malignancy of cholangiocarcinoma through activation of the ITGB1 dependent PPARγ signalling pathway. Cell Oncol (Dordr) 2022; 45:275-291. [PMID: 35357655 DOI: 10.1007/s13402-022-00668-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma is a devastating cancer with a poor prognosis. Previous reports have presented conflicting results on the role of transforming growth factor-β-induced protein (TGFBI) in malignant cancers. Currently, our understanding of the role of TGFBI in cholangiocarcinoma is ambiguous. The aim of the present study was to investigate the role of TGFBI in human cholangiocarcinoma. METHODS Iterative patient partitioning (IPP) scoring and consecutive elimination methods were used to select prognostic biomarkers. mRNA and protein expression levels were determined using Gene Expression Omnibus (GEO), Western blot and ELISA analyses. Biological activities of selected biomarkers were examined using both in vitro and in vivo assays. Prognostic values were assessed using Kaplan-Meier and Liptak's z score analyses. RESULTS TGFBI was selected as a candidate cholangiocarcinoma biomarker. GEO database analysis revealed significantly higher TGFBI mRNA expression levels in cholangiocarcinoma tissues compared to matched normal tissues. TGFBI protein was specifically detected in a soluble form in vitro and in vivo. TGFBI silencing evoked significant anti-cancer effects in vitro. Soluble TGFBI treatment aggravated the malignancy of cholangiocarcinoma cells both in vitro and in vivo through activation of the integrin beta-1 (ITGB1) dependent PPARγ signalling pathway. High TGFBI expression was associated with a poor prognosis in patients with cholangiocarcinoma. CONCLUSIONS Our data suggest that TGFBI may serve as a promising prognostic biomarker and therapeutic target for cholangiocarcinoma.
Collapse
Affiliation(s)
- Jungwhoi Lee
- Department of Biotechnology, College of Applied Life Science, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do, 63243, Republic of Korea.
| | - Jungsul Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Woogwang Sim
- Department of Anatomy, University of California,, San Francisco, CA, 94143, USA
| | - Jae-Hoon Kim
- Department of Biotechnology, College of Applied Life Science, Jeju National University, 102 Jejudaehak-ro, Jeju-si, Jeju-do, 63243, Republic of Korea.
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju-si, Jeju-do, 690-756, Republic of Korea.
| |
Collapse
|
9
|
Meng J, Jiang YZ, Zhao S, Tao Y, Zhang T, Wang X, Zhang Y, Sun K, Yuan M, Chen J, Wei Y, Lan X, Chen M, David CJ, Chang Z, Guo X, Pan D, Chen M, Shao ZM, Kang Y, Zheng H. Tumor-derived Jagged1 promotes cancer progression through immune evasion. Cell Rep 2022; 38:110492. [PMID: 35263601 DOI: 10.1016/j.celrep.2022.110492] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/09/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) therapy is generating remarkable responses in individuals with cancer, but only a small portion of individuals with breast cancer respond well. Here we report that tumor-derived Jagged1 is a key regulator of the tumor immune microenvironment. Jagged1 promotes tumorigenesis in multiple spontaneous mammary tumor models. Through Jagged1-induced Notch activation, tumor cells increase expression and secretion of multiple cytokines to help recruit macrophages into the tumor microenvironment. Educated macrophages crosstalk with tumor-infiltrating T cells to inhibit T cell proliferation and tumoricidal activity. In individuals with triple-negative breast cancer, a high expression level of Jagged1 correlates with increased macrophage infiltration and decreased T cell activity. Co-administration of an ICI PD-1 antibody with a Notch inhibitor significantly inhibits tumor growth in breast cancer models. Our findings establish a distinct signaling cascade by which Jagged1 promotes adaptive immune evasion of tumor cells and provide several possible therapeutic targets.
Collapse
Affiliation(s)
- Jingjing Meng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shen Zhao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuwei Tao
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Tengjiang Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xuxiang Wang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuan Zhang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Keyong Sun
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Min Yuan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jin Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Xun Lan
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Mo Chen
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Charles J David
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhijie Chang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohuan Guo
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Deng Pan
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Meng Chen
- National Cancer Data Center, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Ludwig Institute for Cancer Research, Princeton Branch, Princeton, NJ 08544, USA.
| | - Hanqiu Zheng
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
10
|
Evaluating the effect of Luffa cylindrica stem sap on dermal fibroblasts; An invitro study. Biochem Biophys Res Commun 2021; 580:41-47. [PMID: 34619551 DOI: 10.1016/j.bbrc.2021.09.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023]
Abstract
Luffa cylindrica stem sap (LuCS) has been traditionally used as a facial cosmetic supplement to enhance the skin condition of Asians. However, LuCS has yet to be described and there is no solid scientific evidence regarding the use of LuCS as an anti-wrinkle agent. In the present study, we have evaluated the functional effect of LuCS and its underlying mechanisms based on scientific evidence. Treatment with LuCS stimulated the growth and migration of human skin fibroblasts. LuCS treatment activated EGFR signaling via the enhanced expression of EGFR and down-regulation of PPARγ in human skin fibroblasts. Exposure to LuCS induced the synthesis of cellular type I procollagen and elastin in consort with the down-regulation of various proteinases including MMP-1, -2 and -9 in human skin fibroblasts. LuCS treatment also reversed the skin damage induced by UV-A irradiation in human skin fibroblasts. 3-bromo-3-methylisoxazol-5-amine was identified as the functional component using UPLC-MS-MS analysis and increased production of cellular type I procollagen. Collectively, these results suggest the efficacy of LuCS supplementation in improving the skin condition via anti-wrinkle effect.
Collapse
|
11
|
Xue K, Zheng H, Qian X, Chen Z, Gu Y, Hu Z, Zhang L, Wan J. Identification of Key mRNAs as Prediction Models for Early Metastasis of Pancreatic Cancer Based on LASSO. Front Bioeng Biotechnol 2021; 9:701039. [PMID: 34485257 PMCID: PMC8415976 DOI: 10.3389/fbioe.2021.701039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer is a highly malignant and metastatic tumor of the digestive system. Even after surgical removal of the tumor, most patients are still at risk of metastasis. Therefore, screening for metastatic biomarkers can identify precise therapeutic intervention targets. In this study, we analyzed 96 pancreatic cancer samples from The Cancer Genome Atlas (TCGA) without metastasis or with metastasis after R0 resection. We also retrieved data from metastatic pancreatic cancer cell lines from Gene Expression Omnibus (GEO), as well as collected sequencing data from our own cell lines, BxPC-3 and BxPC-3-M8. Finally, we analyzed the expression of metastasis-related genes in different datasets by the Limma and edgeR packages in R software, and enrichment analysis of differential gene expression was used to gain insight into the mechanism of pancreatic cancer metastasis. Our analysis identified six genes as risk factors for predicting metastatic status by LASSO regression, including zinc finger BED-Type Containing 2 (ZBED2), S100 calcium-binding protein A2 (S100A2), Jagged canonical Notch ligand 1 (JAG1), laminin subunit gamma 2 (LAMC2), transglutaminase 2 (TGM2), and the transcription factor hepatic leukemia factor (HLF). We used these six EMT-related genes to construct a risk-scoring model. The receiver operating characteristic (ROC) curve showed that the risk score could better predict the risk of metastasis. Univariate and multivariate Cox regression analyses revealed that the risk score was also an important predictor of pancreatic cancer. In conclusion, 6-mRNA expression is a potentially valuable method for predicting pancreatic cancer metastasis, assessing clinical outcomes, and facilitating future personalized treatment for patients with ductal adenocarcinoma of the pancreas (PDAC).
Collapse
Affiliation(s)
- Ke Xue
- Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Huilin Zheng
- Department of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Xiaowen Qian
- Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Zheng Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Yangjun Gu
- Shulan Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, China
| | - Zhenhua Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health Key Laboratory of Organ Transplantation, Zhejiang University, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China.,Division of Hepatobiliary and Pancreatic Surgery, Yiwu Central Hospital, Yiwu, China
| | - Lei Zhang
- Department of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jian Wan
- Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
12
|
Antonova DV, Zinovyeva MV, Kondratyeva LG, Sass AV, Alekseenko IV, Pleshkan VV. Possibility for Transcriptional Targeting of Cancer-Associated Fibroblasts-Limitations and Opportunities. Int J Mol Sci 2021; 22:ijms22073298. [PMID: 33804861 PMCID: PMC8038081 DOI: 10.3390/ijms22073298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/27/2022] Open
Abstract
Cancer-associated fibroblasts (CAF) are attractive therapeutic targets in the tumor microenvironment. The possibility of using CAFs as a source of therapeutic molecules is a challenging approach in gene therapy. This requires transcriptional targeting of transgene expression by cis-regulatory elements (CRE). Little is known about which CREs can provide selective transgene expression in CAFs. We hypothesized that the promoters of FAP, CXCL12, IGFBP2, CTGF, JAG1, SNAI1, and SPARC genes, the expression of whose is increased in CAFs, could be used for transcriptional targeting. Analysis of the transcription of the corresponding genes revealed that unique transcription in model CAFs was characteristic for the CXCL12 and FAP genes. However, none of the promoters in luciferase reporter constructs show selective activity in these fibroblasts. The CTGF, IGFBP2, JAG1, and SPARC promoters can provide higher transgene expression in fibroblasts than in cancer cells, but the nonspecific viral promoters CMV, SV40, and the recently studied universal PCNA promoter have the same features. The patterns of changes in activity of various promoters relative to each other observed for human cell lines were similar to the patterns of activity for the same promoters both in vivo and in vitro in mouse models. Our results reveal restrictions and features for CAF transcriptional targeting.
Collapse
Affiliation(s)
- Dina V. Antonova
- Department of Genomics and Postgenomic Technologies, Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (D.V.A.); (M.V.Z.); (L.G.K.); (A.V.S.); (I.V.A.)
| | - Marina V. Zinovyeva
- Department of Genomics and Postgenomic Technologies, Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (D.V.A.); (M.V.Z.); (L.G.K.); (A.V.S.); (I.V.A.)
| | - Liya G. Kondratyeva
- Department of Genomics and Postgenomic Technologies, Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (D.V.A.); (M.V.Z.); (L.G.K.); (A.V.S.); (I.V.A.)
| | - Alexander V. Sass
- Department of Genomics and Postgenomic Technologies, Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (D.V.A.); (M.V.Z.); (L.G.K.); (A.V.S.); (I.V.A.)
| | - Irina V. Alekseenko
- Department of Genomics and Postgenomic Technologies, Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (D.V.A.); (M.V.Z.); (L.G.K.); (A.V.S.); (I.V.A.)
- Gene Oncotherapy Sector, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Institute of Oncogynecology and Mammology, National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Victor V. Pleshkan
- Department of Genomics and Postgenomic Technologies, Gene Immunooncotherapy Group, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (D.V.A.); (M.V.Z.); (L.G.K.); (A.V.S.); (I.V.A.)
- Gene Oncotherapy Sector, Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Correspondence:
| |
Collapse
|
13
|
Zhao Z, Shen X, Zhang D, Xiao H, Kong H, Yang B, Yang L. miR-153 enhances the therapeutic effect of radiotherapy by targeting JAG1 in pancreatic cancer cells. Oncol Lett 2021; 21:300. [PMID: 33732376 PMCID: PMC7905691 DOI: 10.3892/ol.2021.12561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer is one of the deadliest diseases, due to the lack of early symptoms and resistance to current therapies, including radiotherapy. However, the mechanisms of radioresistance in pancreatic cancer remain unknown. The present study explored the role of microRNA-153 (miR-153) in radioresistance of pancreatic cancer. It was observed that miR-153 was downregulated in pancreatic cancer and positively correlated with patient survival time. Using stably-infected pancreatic cancer cells that overexpressed miR-153 or miR-153 inhibitor, it was found that miR-153 overexpression sensitized pancreatic cancer cells to radiotherapy by inducing increased cell death and decreased colony formation, while cells transfected with the miR-153 inhibitor promoted radioresistance. Further investigation demonstrated that miR-153 promoted radiosensitivity by directly targeting jagged canonical Notch ligand 1 (JAG1). The addition of recombinant JAG1 protein in the cell cultures reversed the therapeutic effect of miR-153. The present study revealed a novel mechanism of radioresistance in pancreatic cancer and indicated that miR-153 may serve as a potential therapeutic target for radioresistance.
Collapse
Affiliation(s)
- Zhibin Zhao
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Xiaoxue Shen
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Dongli Zhang
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Hongmei Xiao
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Hongfang Kong
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Bin Yang
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Li Yang
- Department of Gastroenterology, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
14
|
Yang C, Hu JF, Zhan Q, Wang ZW, Li G, Pan JJ, Huang L, Liao CY, Huang Y, Tian YF, Shen BY, Chen JZ, Wang YD, Chen S. SHCBP1 interacting with EOGT enhances O-GlcNAcylation of NOTCH1 and promotes the development of pancreatic cancer. Genomics 2021; 113:827-842. [PMID: 33515675 DOI: 10.1016/j.ygeno.2021.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/12/2020] [Accepted: 01/21/2021] [Indexed: 01/07/2023]
Abstract
O-GlcNAcylation is important in the development and progression of pancreatic ductal adenocarcinoma (PDAC). The glycosyltransferase EGF domain-specific O-linked GlcNAc transferase (EOGT) acts as a key participant in glycosylating NOTCH1. High-throughput sequencing of specimens from 30 advanced PDAC patients identified SHCBP1 and EOGT as factors of poor prognosis. We hypothesized that they could mediate PDAC progression by influencing NOTCH1 O-GlcNAcylation. Thus, 186 PDAC tissue specimens were immunostained for EOGT and SHCBP1. Pancreatic cancer cell lines and nude mouse models were used for in vitro and in vivo experiments. Respectively, The protein expression of EOGT and SHCBP1 was significantly elevated and correlated with worse prognosis in PDAC patients. In vitro, SHCBP1 overexpression promoted pancreatic cancer cell proliferation, migration and invasion, while knocking down SHCBP1 and EOGT inhibited these malignant processes. In vivo data showed that SHCBP1 overexpression promoted xenograft growth and lung metastasis and shortened survival in mice, whereas knocking down either EOGT or SHCBP1 expression suppressed xenograft growth and metastasis and prolonged survival. We further clarified the molecular mechanisms by which EOGT and SHCBP1 enhance the O-GlcNAcylation of NOTCH1, Subsequently promoting the nuclear localization of the Notch intracellular domain (NICD) and inhibiting the transcription of E-cadherin and P21 in pancreatic cancer cells.
Collapse
Affiliation(s)
- Can Yang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China
| | - Jian-Fei Hu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China
| | - Qian Zhan
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Zu-Wei Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China
| | - Ge Li
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou 350001, PR China
| | - Jing-Jing Pan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China
| | - Long Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China; Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, PR China
| | - Cheng-Yu Liao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China
| | - Yi Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China; Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou 350001, PR China
| | - Yi-Feng Tian
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China; Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, PR China
| | - Bai-Yong Shen
- Department of General Surgery, Pancreatic Disease Center, Research Institute of Pancreatic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Jiang-Zhi Chen
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou 350001, PR China; Fujian Medical University Cancer Center, Fuzhou 350001, PR China; Department of Hepatobiliary Surgery, Fujian Institute of Hepatobiliary Surgery, 350001, PR China.
| | - Yao-Dong Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China; Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, PR China.
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China; Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, PR China.
| |
Collapse
|
15
|
Yu D, Hu M, Tian Q. KDM4C Promotes Proliferation and Migration of Multiple Myeloma Cells by Up-Regulating JAG1 Gene Expression. J HARD TISSUE BIOL 2021. [DOI: 10.2485/jhtb.30.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Dan Yu
- Department of Hematology, Wuhan No.1 Hospital
| | - Min Hu
- Department of Hematology, Wuhan No.1 Hospital
| | - Qiang Tian
- Department of Clinical Laboratory, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University
| |
Collapse
|