1
|
Alpen K, Maclnnis RJ, Vajdic CM, Lai J, Dowty JG, Koh ES, Hovey E, Harrup R, Nguyen TL, Li S, Joseph D, Benke G, Dugué PA, Southey MC, Giles GG, Nowak AK, Drummond KJ, Schmidt DF, Hopper JL, Kapuscinski MK, Makalic E. Region-Based Analyses of Existing Genome-Wide Association Studies Identifies Novel Potential Genetic Susceptibility Regions for Glioma. CANCER RESEARCH COMMUNICATIONS 2024; 4:2933-2946. [PMID: 39387520 PMCID: PMC11555644 DOI: 10.1158/2767-9764.crc-24-0385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/05/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
SIGNIFICANCE Further investigation of the potential susceptibility regions identified in our study may lead to a better understanding of glioma genetic risk and the underlying biological etiology of glioma. Our study suggests sex may play a role in genetic susceptibility and highlights the importance of sex-specific analysis in future glioma research.
Collapse
Affiliation(s)
- Karen Alpen
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Robert J. Maclnnis
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| | | | - John Lai
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Australian Genome Research Facility, St Lucia, Australia
| | - James G. Dowty
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Eng-Siew Koh
- South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, Australia
- Liverpool and Macarthur Cancer Therapy Centres, Liverpool Hospital, Liverpool, Australia
- Ingham Institute for Applied Medical Research, Liverpool, Australia
| | - Elizabeth Hovey
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, Australia
- Faculty of Medicine, Prince of Wales Clinical School UNSW Sydney, Sydney, Australia
| | - Rosemary Harrup
- Royal Hobart Hospital, Hobart, Australia
- University of Tasmania, Hobart, Australia
| | - Tuong L. Nguyen
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Shuai Li
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, United Kingdom
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Australia
| | - David Joseph
- Department of Medicine and Surgery, The University of Western Australia, Perth, Australia
| | - Geza Benke
- School of Public Health and Preventative Medicine, Monash University, Clayton, Australia
| | - Pierre-Antoine Dugué
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Melissa C. Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia
| | - Graham G. Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Australia
| | - Anna K. Nowak
- Medical School, University of Western Australia, Crawley, Australia
| | - Katharine J. Drummond
- Department of Neurosurgery, Royal Melbourne Hospital, Parkville, Australia
- Department of Surgery, University of Melbourne, Parkville, Australia
| | - Daniel F. Schmidt
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Faculty of Information Technology, Monash University, Clayton, Australia
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Miroslaw K. Kapuscinski
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Faculty of Information Technology, Monash University, Clayton, Australia
| |
Collapse
|
2
|
Mai Z, Han Y, Liang D, Mai F, Zheng H, Li P, Li Y, Ma C, Chen Y, Li W, Zhang S, Feng Y, Chen X, Wang Y. Gut-derived metabolite 3-methylxanthine enhances cisplatin-induced apoptosis via dopamine receptor D1 in a mouse model of ovarian cancer. mSystems 2024; 9:e0130123. [PMID: 38899930 PMCID: PMC11264688 DOI: 10.1128/msystems.01301-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/30/2024] [Indexed: 06/21/2024] Open
Abstract
Platinum-based chemotherapy failure represents a significant challenge in the management of ovarian cancer (OC) and contributes to disease recurrence and poor prognosis. Recent studies have shed light on the involvement of the gut microbiota in modulating anticancer treatments. However, the precise underlying mechanisms, by which gut microbiota regulates the response to platinum-based therapy, remain unclear. Here, we investigated the role of gut microbiota on the anticancer response of cisplatin and its underlying mechanisms. Our results demonstrate a substantial improvement in the anticancer efficacy of cisplatin following antibiotic-induced perturbation of the gut microbiota in OC-bearing mice. 16S rRNA sequencing showed a pronounced alteration in the composition of the gut microbiome in the cecum contents following exposure to cisplatin. Through metabolomic analysis, we identified distinct metabolic profiles in the antibiotic-treated group, with a notable enrichment of the gut-derived metabolite 3-methylxanthine in antibiotic-treated mice. Next, we employed a strategy combining transcriptome analysis and chemical-protein interaction network databases. We identified metabolites that shared structural similarity with 3-methylxanthine, which interacted with genes enriched in cancer-related pathways. It is identified that 3-methylxanthinesignificantly enhances the effectiveness of cisplatin by promoting apoptosis both in vivo and in vitro. Importantly, through integrative multiomics analyses, we elucidated the mechanistic basis of this enhanced apoptosis, revealing a dopamine receptor D1-dependent pathway mediated by 3-methylxanthine. This study elucidated the mechanism by which gut-derived metabolite 3-methylxanthine mediated cisplatin-induced apoptosis. Our findings highlight the potential translational significance of 3-methylxanthine as a promising adjuvant in conjunction with cisplatin, aiming to improve treatment outcomes for OC patients.IMPORTANCEThe precise correlation between the gut microbiota and the anticancer effect of cisplatin in OC remains inadequately understood. Our investigation has revealed that manipulation of the gut microbiota via the administration of antibiotics amplifies the efficacy of cisplatin through the facilitation of apoptosis in OC-bearing mice. Metabolomic analysis has demonstrated that the cecum content from antibiotic-treated mice exhibits an increase in the levels of 3-methylxanthine, which has been shown to potentially enhance the therapeutic effectiveness of cisplatin by an integrated multiomic analysis. This enhancement appears to be attributable to the promotion of cisplatin-induced apoptosis, with 3-methylxanthine potentially exerting its influence via the dopamine receptor D1-dependent pathway. These findings significantly contribute to our comprehension of the impact of the gut microbiota on the anticancer therapy in OC. Notably, the involvement of 3-methylxanthine suggests its prospective utility as a supplementary component for augmenting treatment outcomes in patients afflicted with ovarian cancer.
Collapse
Affiliation(s)
- Zhensheng Mai
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Yubin Han
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Dong Liang
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Feihong Mai
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Huimin Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Pan Li
- Microbiome Research Centre, St. George and Sutherland Clinical School, UNSW, Sydney, New South Wales, Australia
| | - Yuan Li
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Cong Ma
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Yunqing Chen
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Weifeng Li
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Siyou Zhang
- Department of Obstetrics & Gynecology, First people’s hospital of Foshan, Foshan, China
| | - Yinglin Feng
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Xia Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Yifeng Wang
- Obstetrics and Gynecology Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Grant CE, Flis AL, Toulabi L, Zingone A, Rossi E, Aploks K, Sheppard H, Ryan BM. DRD1 suppresses cell proliferation and reduces EGFR activation and PD-L1 expression in NSCLC. Mol Oncol 2024; 18:1631-1648. [PMID: 38572507 PMCID: PMC11161724 DOI: 10.1002/1878-0261.13608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2023] [Accepted: 02/06/2024] [Indexed: 04/05/2024] Open
Abstract
Dopamine (DA) acts in various key neurological and physiological processes as both a neurotransmitter and circulating hormone. Over the past several decades, the DA signaling network has been shown to regulate the progression of several types of solid tumors, and considerable evidence has shown it is a druggable pathway in the cancer cell context. However, the specific activity and effect of these pathway components appears to be tissue-type and cell-context-dependent. In the present study, expression and methylation of dopamine receptor D1 (DRD1) were measured using RNA sequencing (RNAseq) and reverse transcription polymerase chain reaction (RT-PCR) in non-small cell lung cancer (NSCLC) samples, and validated using publicly available datasets, including The Cancer Genome Atlas (TCGA). In vitro and in vivo functional experiments were performed for cell proliferation and tumor growth, respectively. Mechanistic analyses of the transcriptome and kinome in DRD1-modulated cells informed further experiments, which characterized the effects on the epidermal growth factor receptor (EGFR) pathway and programmed cell death 1 ligand 1 (PD-L1) proteins. Through these experiments, we identified the DRD1 gene as a negative regulator of disease progression in NSCLC. We show that DRD1, as well as other DA pathway components, are expressed in normal human lung tissue, and that loss of DRD1 expression through promoter hypermethylation is a common feature in NSCLC patients and is associated with worse survival. At the cellular level, DRD1 affects proliferation by inhibiting the activation of EGFR and mitogen-activated protein kinase 1/2 (ERK1/2). Interestingly, we also found that DRD1 regulates the expression of PD-L1 in lung cancer cells. Taken together, these results suggest that DRD1 methylation may constitute a biomarker of poor prognosis in NSCLC patients while other components of this pathway could be targeted to improve response to EGFR- and PD-L1-targeted therapies.
Collapse
Affiliation(s)
- Christopher E. Grant
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Amy L. Flis
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Leila Toulabi
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Adriana Zingone
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Emily Rossi
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Krist Aploks
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| | - Heather Sheppard
- Veterinary Pathology CoreSt. Jude Children's Research HospitalMemphisTNUSA
| | - Bríd M. Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer ResearchNational Cancer InstituteBethesdaMDUSA
| |
Collapse
|
4
|
Zhang H, Luan L, Li X, Sun X, Yang K. DNA damage-regulated autophagy modulator 1 prevents glioblastoma cells proliferation by regulating lysosomal function and autophagic flux stability. Exp Cell Res 2024; 437:114016. [PMID: 38537746 DOI: 10.1016/j.yexcr.2024.114016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/19/2024]
Abstract
Glioblastoma (GBM) is the most aggressive and life-threatening brain tumor, characterized by its highly malignant and recurrent nature. DNA damage-regulated autophagy modulator 1 (DRAM-1) is a p53 target gene encoding a lysosomal protein that induces macro-autophagy and damage-induced programmed cell death in tumor growth. However, the precise mechanisms underlying how DRAM-1 affects tumor cell proliferation through regulation of lysosomal function and autophagic flux stability remain incompletely understood. We found that DRAM-1 expressions were evidently down-regulated in high-grade glioma and recurrent GBM tissues. The upregulation of DRAM-1 could increase mortality of primary cultured GBM cells. TEM analysis revealed an augmented accumulation of aberrant lysosomes in DRAM-1-overexpressing GBM cells. The assay for lysosomal pH and stability also demonstrated decreasing lysosomal membrane permeabilization (LMP) and impaired lysosomal acidity. Further research revealed the detrimental impact of lysosomal dysfunction, which impaired the autophagic flux stability and ultimately led to GBM cell death. Moreover, downregulation of mTOR phosphorylation was observed in GBM cells following upregulation of DRAM-1. In vivo and in vitro experiments additionally illustrated that the mTOR inhibitor rapamycin increased GBM cell mortality and exhibited an enhanced antitumor effect.
Collapse
Affiliation(s)
- Hongqiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Lan Luan
- The Second Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Xinyu Li
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Xu Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Kang Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, PR China.
| |
Collapse
|
5
|
Orda MA, Fowler PMPT, Tayo LL. Modular Hub Genes in DNA Microarray Suggest Potential Signaling Pathway Interconnectivity in Various Glioma Grades. BIOLOGY 2024; 13:206. [PMID: 38666818 PMCID: PMC11048586 DOI: 10.3390/biology13040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Gliomas have displayed significant challenges in oncology due to their high degree of invasiveness, recurrence, and resistance to treatment strategies. In this work, the key hub genes mainly associated with different grades of glioma, which were represented by pilocytic astrocytoma (PA), oligodendroglioma (OG), anaplastic astrocytoma (AA), and glioblastoma multiforme (GBM), were identified through weighted gene co-expression network analysis (WGCNA) of microarray datasets retrieved from the Gene Expression Omnibus (GEO) database. Through this, four highly correlated modules were observed to be present across the PA (GSE50161), OG (GSE4290), AA (GSE43378), and GBM (GSE36245) datasets. The functional annotation and pathway enrichment analysis done through the Database for Annotation, Visualization, and Integrated Discovery (DAVID) showed that the modules and hub genes identified were mainly involved in signal transduction, transcription regulation, and protein binding, which collectively deregulate several signaling pathways, mainly PI3K/Akt and metabolic pathways. The involvement of several hub genes primarily linked to other signaling pathways, including the cAMP, MAPK/ERK, Wnt/β-catenin, and calcium signaling pathways, indicates potential interconnectivity and influence on the PI3K/Akt pathway and, subsequently, glioma severity. The Drug Repurposing Encyclopedia (DRE) was used to screen for potential drugs based on the up- and downregulated hub genes, wherein the synthetic progestin hormones norgestimate and ethisterone were the top drug candidates. This shows the potential neuroprotective effect of progesterone against glioma due to its influence on EGFR expression and other signaling pathways. Aside from these, several experimental and approved drug candidates were also identified, which include an adrenergic receptor antagonist, a PPAR-γ receptor agonist, a CDK inhibitor, a sodium channel blocker, a bradykinin receptor antagonist, and a dopamine receptor agonist, which further highlights the gene network as a potential therapeutic avenue for glioma.
Collapse
Affiliation(s)
- Marco A. Orda
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (M.A.O.); (P.M.P.T.F.)
- School of Graduate Studies, Mapúa University, Manila City 1002, Philippines
| | - Peter Matthew Paul T. Fowler
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (M.A.O.); (P.M.P.T.F.)
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| | - Lemmuel L. Tayo
- School of Chemical, Biological, and Materials Engineering and Sciences, Mapúa University, Manila City 1002, Philippines; (M.A.O.); (P.M.P.T.F.)
- Department of Biology, School of Health Sciences, Mapúa University, Makati City 1203, Philippines
| |
Collapse
|
6
|
Xu H, Wang J, Al‐Nusaif M, Ma H, Le W. CCL2 promotes metastasis and epithelial-mesenchymal transition of non-small cell lung cancer via PI3K/Akt/mTOR and autophagy pathways. Cell Prolif 2024; 57:e13560. [PMID: 37850256 PMCID: PMC10905333 DOI: 10.1111/cpr.13560] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/02/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023] Open
Abstract
In non-small cell lung cancer (NSCLC), metastasis is the most common phenotype, and autophagy plays a vital role in its regulation. However, there are limited data on how autophagy-related genes and metastasis-related genes affect NSCLC progression. Our goal was to identify the genes that regulate autophagy and metastasis in NSCLC, and to assess the underlying mechanisms in this current study. RNA sequencing data from public databases were used to screen differentially expressed autophagy- and metastasis-associated genes. Enrichment analyses and immune correlations were conducted to identify hub genes and potential regulating pathways in NSCLC. In this study, we found that CCL2 expression was highly expressed in NSCLC tissues and high CCL2 level was correlated with strong infiltration in lung tissues from NSCLC patients. Overexpression of CCL2 can enhance the metastasis of NSCLC cells in nude mice. Furthermore, CCL2 activated the PI3K/Akt/mTOR signalling pathway axis, promoted epithelial-mesenchymal transition (EMT), and blocked the autophagic flux in NSCLC cells. Therefore, our results indicate that CCL2 promotes metastasis and EMT of NSCLC via PI3K/Akt/mTOR axis and autophagy signalling pathways. We believe that CCL2 could be a probable target for the diagnosis and therapeutics of NSCLC, and this study may expand our understanding of lung cancer.
Collapse
Affiliation(s)
- Hui Xu
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jin Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Murad Al‐Nusaif
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Huipeng Ma
- College of Medical LaboratoryDalian Medical UniversityDalianChina
| | - Weidong Le
- Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological DiseasesThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Institute of Neurology, Sichuan Academy of Medical Science‐Sichuan Provincial HospitalMedical School of UESTCChengduChina
| |
Collapse
|
7
|
Xue Z, Zhang Y, Zhao R, Liu X, Grützmann K, Klink B, Zhang X, Wang S, Zhao W, Sun Y, Han M, Wang X, Hu Y, Liu X, Yang N, Qiu C, Li W, Huang B, Li X, Bjerkvig R, Wang J, Zhou W. The dopamine receptor D1 inhibitor, SKF83566, suppresses GBM stemness and invasion through the DRD1-c-Myc-UHRF1 interactions. J Exp Clin Cancer Res 2024; 43:25. [PMID: 38246990 PMCID: PMC10801958 DOI: 10.1186/s13046-024-02947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Extensive local invasion of glioblastoma (GBM) cells within the central nervous system (CNS) is one factor that severely limits current treatments. The aim of this study was to uncover genes involved in the invasion process, which could also serve as therapeutic targets. For the isolation of invasive GBM cells from non-invasive cells, we used a three-dimensional organotypic co-culture system where glioma stem cell (GSC) spheres were confronted with brain organoids (BOs). Using ultra-low input RNA sequencing (ui-RNA Seq), an invasive gene signature was obtained that was exploited in a therapeutic context. METHODS GFP-labeled tumor cells were sorted from invasive and non-invasive regions within co-cultures. Ui-RNA sequencing analysis was performed to find a gene cluster up-regulated in the invasive compartment. This gene cluster was further analyzed using the Connectivity MAP (CMap) database. This led to the identification of SKF83566, an antagonist of the D1 dopamine receptor (DRD1), as a candidate therapeutic molecule. Knockdown and overexpression experiments were performed to find molecular pathways responsible for the therapeutic effects of SKF83566. Finally, the effects of SKF83566 were validated in orthotopic xenograft models in vivo. RESULTS Ui-RNA seq analysis of three GSC cell models (P3, BG5 and BG7) yielded a set of 27 differentially expressed genes between invasive and non-invasive cells. Using CMap analysis, SKF83566 was identified as a selective inhibitor targeting both DRD1 and DRD5. In vitro studies demonstrated that SKF83566 inhibited tumor cell proliferation, GSC sphere formation, and invasion. RNA sequencing analysis of SKF83566-treated P3, BG5, BG7, and control cell populations yielded a total of 32 differentially expressed genes, that were predicted to be regulated by c-Myc. Of these, the UHRF1 gene emerged as the most downregulated gene following treatment, and ChIP experiments revealed that c-Myc binds to its promoter region. Finally, SKF83566, or stable DRD1 knockdown, inhibited the growth of orthotopic GSC (BG5) derived xenografts in nude mice. CONCLUSIONS DRD1 contributes to GBM invasion and progression by regulating c-Myc entry into the nucleus that affects the transcription of the UHRF1 gene. SKF83566 inhibits the transmembrane protein DRD1, and as such represents a candidate small therapeutic molecule for GBMs.
Collapse
Affiliation(s)
- Zhiyi Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yan Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ruiqi Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xiaofei Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Konrad Grützmann
- Core Unit for Molecular Tumour Diagnostics (CMTD), National Center for Tumour Diseases (NCT) Dresden, Dresden, Germany
- Institute for Medical Informatics and Biometry, Medical Faculty, TU Dresden, Dresden, Germany
| | - Barbara Klink
- Department of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Xun Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Shuai Wang
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Wenbo Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Yanfei Sun
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yaotian Hu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xuemeng Liu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Chen Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenjie Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Rolf Bjerkvig
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, 5009, Norway
| | - Jian Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China.
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China.
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, Bergen, 5009, Norway.
| | - Wenjing Zhou
- Department of Blood Transfusion, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
8
|
Salarinejad A, Esmaeilpour K, Shabani M, Jafarinejad-Farsangi S, Pardakhty A, Asadi-Shekaari M, Ahmadi-Zeidabadi M. Effect of l-Dopa in acute temozolomide-induced cognitive impairment in male mice: a possible antineuroinflammatory role. Behav Pharmacol 2023:00008877-990000000-00047. [PMID: 37401406 DOI: 10.1097/fbp.0000000000000733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Temozolomide is used commonly in the treatment of some types of cancers, but it may also result in cognitive impairments such as memory deficits. l-Dopa, a well known medicine for the central nervous system, has been shown to have positive effects on some cognitive disorders. Here we sought to investigate the effect of l-Dopa on temozolomide-induced cognitive impairments. BALB/c mice were subjected to 3-days temozolomide and 6-days concomitant l-Dopa/benserazide administration in six groups (control, l-Dopa 25 mg/kg, l-Dopa 75 mg/kg, temozolomide, temozolomide + l-Dopa 25 mg/kg, and temozolomide + l-Dopa 75 mg/kg). Open field test, object location recognition, novel object recognition test, and shuttle-box test were carried out to determine the locomotor, anxiety-like behavior, and memory function of subjects. TNF-α and brain-derived neurotrophic factor (BDNF) gene expression in the hippocampus was measured by real-time PCR. Mice treated with temozolomide showed recognition memory impairment, along with hippocampal TNF-α and BDNF mRNA expression level raise, and detection of histological insults in hematoxylin and eosin hippocampal slides. Mice that received temozolomide + l-Dopa showed normal behavioral function and lower TNF-α and BDNF hippocampal mRNA expression levels, and histologically normal hippocampal CA1 region in comparison with mice in the temozolomide group. Our results provide evidence that l-Dopa prevents temozolomide-induced recognition memory deficit in mice at the acute phase probably via l-Dopa antineuroinflammatory effects.
Collapse
Affiliation(s)
| | | | | | | | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | | | | |
Collapse
|
9
|
Prognosis-correlated Systems Involving Characteristic Diagnostic Gene Sets for Survival Analysis on Glioma. J Mol Neurosci 2023; 73:47-59. [PMID: 36562881 DOI: 10.1007/s12031-022-02098-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
As the most prevalent brain tumor, glioma is malignant with poor prognostic outcomes. As a result, it is of great importance to detect biomarkers for glioma diagnosis and prognosis. In this study, we determined grade-based characteristic gene clusters with gradual expression following grade change, including 1479 down- and 526 up-regulated genes. Combined interaction among proteins originating from these genes was analyzed, and hub genes were exhibited after GSEA enrichment, containing 12 and 11 genes which were correlated with prognostic outcomes, named as unfavorable and favorable gene sets, respectively. The GSVA score of each gene set was calculated and divided into high/low groups; we observed that cases in the low score group had better outcomes than the high score group based on the GSVA of the unfavorable set, while with favorable GSVA score, the low group had poorer outcomes than the high group. Eventually, we compared a variety of infiltrating immune cells between low/high GSVA subgroup, showing various immune cell types (B cell naive, activated mast cells, resting CD4 memory T cell, and so on) with opposite proportion. And interestingly, these cell types also accounted for a contrary percentage between unfavorable and favorable conditions. In conclusion, these two hub gene sets are of good importance as an evaluation system for clinical grade classification and prognosis prediction.
Collapse
|
10
|
Laskowska AK, Kleczkowska P. Anticancer efficacy of endo- and exogenous potent ligands acting at dopaminergic receptor-expressing cancer cells. Eur J Pharmacol 2022; 932:175230. [PMID: 36027983 DOI: 10.1016/j.ejphar.2022.175230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
Abstract
Cancer is one of the most common and dreaded diseases affecting the vastness of society. Unfortunately, still some people die especially when cancer is not diagnosed and thus caught early enough. On the other hand, using available chemo- or radiotherapy may result in serious side effects. Therefore, cancer-specific medications seem to be the most desired and safe therapy. Knowing that some cancers are characterized by overexpression of specific receptors on the cell surface, target-mediated drugs could serve as a unique and effective form of therapy. In line with this, recently dopaminergic receptors were presented important in cancer therapy as several dopaminergic ligands revealed their efficacy in tumor growth reduction as well as in apoptosis mediation. Unfortunately, the indication of whether DA receptor agonists or antagonists are the best choices in cancer treatment is quite difficult, since both of them may exert either pro- or anticancer effects. In this review, we analyze the therapeutic efficacy of compounds, both of exogenous and endogenous origin, targeting dopaminergic receptor-expressing cancers.
Collapse
Affiliation(s)
- Anna K Laskowska
- Centre for Preclinical Research and Technology (CePT), Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Patrycja Kleczkowska
- Maria Sklodowska-Curie Medical Academy in Warsaw, Solidarnosci 12 Str., 03-411, Warsaw, Poland; Military Institute of Hygiene and Epidemiology, Kozielska 4 Str., 01-163, Warsaw, Poland.
| |
Collapse
|
11
|
Reyes-González J, Barajas-Olmos F, García-Ortiz H, Magraner-Pardo L, Pons T, Moreno S, Aguirre-Cruz L, Reyes-Abrahantes A, Martínez-Hernández A, Contreras-Cubas C, Barrios-Payan J, Ruiz-Garcia H, Hernandez-Pando R, Quiñones-Hinojosa A, Orozco L, Abrahantes-Pérez MDC. Brain radiotoxicity-related 15CAcBRT gene expression signature predicts survival prognosis of glioblastoma patients. Neuro Oncol 2022; 25:303-314. [PMID: 35802478 PMCID: PMC9925695 DOI: 10.1093/neuonc/noac171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Glioblastoma is the most common and devastating primary brain cancer. Radiotherapy is standard of care; however, it is associated with brain radiation toxicity (BRT). This study used a multi-omics approach to determine whether BRT-related genes (RGs) harbor survival prognostic value and whether their encoded proteins represent novel therapeutic targets for glioblastoma. METHODS RGs were identified through analysis of single-nucleotide variants associated with BRT (R-SNVs). Functional relationships between RGs were established using Protein-Protein Interaction networks. The influence of RGs and their functional groups on glioblastoma prognosis was evaluated using clinical samples from the Glioblastoma Bio-Discovery Portal database and validated using the Chinese Glioma Genome Atlas dataset. The identification of clusters of radiotoxic and putative pathogenic variants in proteins encoded by RGs was achieved by computational 3D structural analysis. RESULTS We identified the BRT-related 15CAcBRT molecular signature with prognostic value in glioblastoma, by analysis of the COMT and APOE protein functional groups. Its external validation confirmed clinical relevance independent of age, MGMT promoter methylation status, and IDH mutation status. Interestingly, the genes IL6, APOE, and MAOB documented significant gene expression levels alteration, useful for drug repositioning. Biological networks associated with 15CAcBRT signature involved pathways relevant to cancer and neurodegenerative diseases. Analysis of 3D clusters of radiotoxic and putative pathogenic variants in proteins coded by RGs unveiled potential novel therapeutic targets in neuro-oncology. CONCLUSIONS 15CAcBRT is a BRT-related molecular signature with prognostic significance for glioblastoma patients and represents a hub for drug repositioning and development of novel therapies.
Collapse
Affiliation(s)
| | | | - Humberto García-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | | | - Tirso Pons
- Department of Immunology and Oncology, National Center for Biotechnology, Spanish National Research Council (CNB-CSIC), Madrid, Spain
| | - Sergio Moreno
- Radioneurosurgery Unit, National Institute of Neurology and Neurosurgery;Mexico City, Mexico
| | - Lucinda Aguirre-Cruz
- Neuroendocrinology Laboratory, National Institute of Neurology and Neurosurgery; Mexico City, Mexico
| | - Andy Reyes-Abrahantes
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Angélica Martínez-Hernández
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Cecilia Contreras-Cubas
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - Jorge Barrios-Payan
- Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Henry Ruiz-Garcia
- Department of Neurosurgery and Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, Florida,USA
| | - Rogelio Hernandez-Pando
- Department of Pathology, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City, Mexico
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery and Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, Florida,USA
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine, Mexico City, Mexico
| | - María del Carmen Abrahantes-Pérez
- Corresponding Author: María del Carmen Abrahantes-Pérez, PhD, Precision Translational Oncology Laboratory, National Institute of Genomic Medicine, Periférico Sur 4809, Tlalpan, Mexico City C.P. 14610, Mexico ()
| |
Collapse
|
12
|
Vo VTA, Kim S, Hua TNM, Oh J, Jeong Y. Iron commensalism of mesenchymal glioblastoma promotes ferroptosis susceptibility upon dopamine treatment. Commun Biol 2022; 5:593. [PMID: 35710828 PMCID: PMC9203457 DOI: 10.1038/s42003-022-03538-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
The heterogeneity of glioblastoma multiforme (GBM) leads to poor patient prognosis. Here, we aim to investigate the mechanism through which GBM heterogeneity is coordinated to promote tumor progression. We find that proneural (PN)-GBM stem cells (GSCs) secreted dopamine (DA) and transferrin (TF), inducing the proliferation of mesenchymal (MES)-GSCs and enhancing their susceptibility toward ferroptosis. PN-GSC-derived TF stimulates MES-GSC proliferation in an iron-dependent manner. DA acts in an autocrine on PN-GSC growth in a DA receptor D1-dependent manner, while in a paracrine it induces TF receptor 1 expression in MES-GSCs to assist iron uptake and thus enhance ferroptotic vulnerability. Analysis of public datasets reveals worse prognosis of patients with heterogeneous GBM with high iron uptake than those with other GBM subtypes. Collectively, the findings here provide evidence of commensalism symbiosis that causes MES-GSCs to become iron-addicted, which in turn provides a rationale for targeting ferroptosis to treat resistant MES GBM. Glioblastoma stem-cell derived mesenchymal cells become reliant on iron but vulnerable to ferroptosis and within patients of heterogeneous glioblastoma multiforme prognosis for those with high iron uptake is poorer than other subtypes.
Collapse
Affiliation(s)
- Vu T A Vo
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea.,Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea.,Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Sohyun Kim
- Department of Physiology, Yonsei University College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Tuyen N M Hua
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea.,Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea
| | - Jiwoong Oh
- Department of Neurosurgery, Severance Hospital, Yonsei University, Seoul, Republic of Korea
| | - Yangsik Jeong
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea. .,Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea. .,Mitohormesis Research Center, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea. .,Institute of Lifestyle Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea. .,Institute of Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, Gangwon-do, Republic of Korea.
| |
Collapse
|
13
|
Zhang W, Li L, Li J, Yu H, Zheng F, Yan B, Cai W, Chen Y, Yin L, Tang D, Xu Y, Dai Y. Systematic Analysis of Neurotransmitter Receptors in Human Breast Cancer Reveals a Strong Association With Outcome and Uncovers HTR6 as a Survival-Associated Gene Potentially Regulating the Immune Microenvironment. Front Immunol 2022; 13:756928. [PMID: 35359970 PMCID: PMC8960964 DOI: 10.3389/fimmu.2022.756928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Many epidemiological reports have indicated an increase in the incidence of breast cancer among psychotic patients, suggesting that the targets of antipsychotics, neurotransmitter receptors, may have a role in tumorigenesis. However, the functions of neurotransmitter receptors in cancer are barely known. Here, we analyzed 44 neurotransmitter receptors in breast cancer and revealed that the expression of 34 receptors was positively correlated with relapse-free survival rates (RFS) of patients using the public database (n = 3951). Among all these receptors, we revealed decreased expression of HTR6 in human advanced breast cancer versus tumors in situ using our original data (n = 44). After a pan-cancer analysis including 22 cancers (n = 11262), we disclosed that HTR6 was expressed in 12 tumors and uncovered its influence on survival in seven tumors. Using multi-omics datasets from Linkedomics, we revealed a potential regulatory role of HTR6 in MAPK, JUN, and leukocyte-differentiation pathways through enriching 294 co-expressed phosphorylated proteins of HTR6. Furthermore, we proclaimed a close association of HTR6 expression with the immune microenvironment. Finally, we uncovered two possible reasons for HTR6 down-regulation in breast cancer, including deep deletion in the genome and the up-regulation of FOXA1 in breast cancer, which was a potential negatively regulatory transcription factor of HTR6. Taken together, we revealed a new function of neurotransmitter receptors in breast cancer and identified HTR6 as a survival-related gene potentially regulating the immune microenvironment. The findings in our study would improve our understanding of the pathogenesis of breast cancer and provided a theoretical basis for personalized medication in psychotic patients.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China.,HaploX Biotechnology, Shenzhen, China
| | - Lintai Li
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jianxuan Li
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Haiyan Yu
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.,South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| | - Fengping Zheng
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Bin Yan
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Wanxia Cai
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Yumei Chen
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Lianghong Yin
- Department of Nephrology, Institute of Nephrology and Blood Purifification, The First Affifiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Donge Tang
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Yong Xu
- Shenzhen Second People's Hospital, The First Affifiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yong Dai
- Department of Clinical Medical Research Center, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| |
Collapse
|
14
|
He T, Han C, Liu C, Chen J, Yang H, Zheng L, Waddington JL, Zhen X. Dopamine D1 receptors mediate methamphetamine-induced dopaminergic damage: involvement of autophagy regulation via the AMPK/FOXO3A pathway. Psychopharmacology (Berl) 2022; 239:951-964. [PMID: 35190859 DOI: 10.1007/s00213-022-06097-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 01/17/2023]
Abstract
RATIONALE Clinical studies have revealed that methamphetamine abuse increases risk for developing Parkinson's diseases. It is thus important to elucidate the mechanisms by which methamphetamine damages dopaminergic neurons. OBJECTIVES The present study was designed to elucidate the role of the dopamine D1 receptor in methamphetamine-mediated dopaminergic neuronal damage and its underlying mechanisms. METHODS Mice were treated for 4 days with vehicle, methamphetamine, or the D1 agonist SKF38393 and then assessed for locomotion and performance in the pole and rotarod tests. Cellular indices of autophagy, LC3, P62, and Beclin-1, tyrosine hydroxylase, and the AMPK/FOXO3A pathway were analyzed in striatal tissue from treated mice, in PC12 cells, and in D1 receptor mutant mice. RESULTS Repeated treatment with a relatively high dose of methamphetamine for 4 days induced both loss of dopaminergic neurons and activation of autophagy in the striatum as evidenced by increased expression of LC3 and P62. However, such treatment did not induce either loss of dopaminergic neurons or activation of autophagy in D1 receptor knockout mice. D1 receptor-mediated activation of autophagy was also confirmed in vitro using dopaminergic neuronal PC12 cells. Further studies demonstrated that the AMPK/FOXO3A signaling pathway is responsible for D1 receptor-mediated activation of autophagy. CONCLUSIONS The present data indicate a novel mechanism for methamphetamine-induced dopaminergic neuronal damage and reveal an important role for D1 receptors in the neurotoxicity of this drug.
Collapse
Affiliation(s)
- Tao He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chaojun Han
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, Shaanxi, China
| | - Chun Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jiaojiao Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Huicui Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Longtai Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - John L Waddington
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
15
|
ERK inhibition in glioblastoma is associated with autophagy activation and tumorigenesis suppression. J Neurooncol 2021; 156:123-137. [PMID: 34797524 DOI: 10.1007/s11060-021-03896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Autophagy-dependent tumorigenic growth is one of the most commonly reported molecular mechanisms in glioblastoma (GBM) progression. However, the mechanistic correlation between autophagy and GBM is still largely unexplored, especially the roles of autophagy-related genes involved in GBM oncogenesis. In this study, we aimed to explore the genetic alterations that interact with both autophagic activity and GBM tumorigenesis, and to investigate the molecular mechanisms of autophagy involved in GBM cell death and survival. METHOD For this purpose, we systematically explored the alterations of autophagic molecules at the genome level in human GBM samples through deep RNA sequencing. The effect of genetic and pharmacologic inhibition of ERK on GBM growth in vitro and in vivo was researched. An image-based tracking analysis of LC3 using mCherry-eGFP-LC3 plasmid, and transmission electron microscopy were utilized to monitor autophagic flux. Immunoblot analysis was used to measure the related proteins. RESULTS MAPK ERK expression was identified as one of the most probable autophagy-related transcriptional responses during GBM growth. The genetic and pharmacologic inhibition of ERK in vivo and in vitro led to cell death, demonstrating its critical role for GBM proliferation and survival. To our surprise, autophagic activities were excessively activated and resulted in cytodestructive effects on GBM cells upon ERK inhibitor treatment. Furthermore, based on the observation of downregulation of mTOR signaling, we speculated the ERK inhibitor-induced GBM cells death might depend on mTOR-mediated pathway, leading to autophagy dysregulation. Accordingly, the in vivo and in vitro experiments revealed that the mTOR inhibitor rapamycin further increased cell mortality and exhibited enhanced antitumor effect on GBM cells when co-treated with the ERK inhibitor. CONCLUSION Our data creatively demonstrated that the autophagy-related regulator ERK maintains autophagic activity during GBM tumorigenesis via mTOR signaling pathway. The pharmacologic inhibition of both mTOR and ERK signaling exhibited synergistic therapeutic effect on GBM growth in vivo and in vitro, which has certain novelty and may provide a potential therapeutic approach for GBM treatment in the future.
Collapse
|
16
|
Wang Z, Wen P, Hu B, Cao S, Shi X, Guo W, Zhang S. Dopamine and dopamine receptor D1 as a novel favourable biomarker for hepatocellular carcinoma. Cancer Cell Int 2021; 21:586. [PMID: 34717619 PMCID: PMC8557590 DOI: 10.1186/s12935-021-02298-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) remains one of the most common malignant tumours worldwide. Therefore, the identification and development of sensitivity- genes as novel diagnostic markers and effective therapeutic targets is urgently needed. Dopamine and dopamine receptor D1 (DRD1) are reported to be involved in the progression of various cancers. However, the crucial role of DRD1 in HCC malignant activities remains unclear. Methods We enrolled 371 patients with liver hepatocellular carcinoma (LIHC) from The Cancer Genome Atlas (TCGA) to detect the expression and functions of DRD1. The Tumour Immune Estimation Resource (TIMER), UALCAN database, Kaplan–Meier plotter, cBioPortal database, and LinkedOmics database were utilized for the systematic investigation of DRD1 expression and related clinical features, coexpressed genes, functional pathways, mutations, and immune infiltrates in HCC. Results In this study, we determined that DRD1 expression was decreased in HCC tumour tissues versus normal tissues and that low DRD1 expression indicated a poor prognosis. The significance of DRD1 expression varied among different tumour samples. The somatic mutation frequency of DRD1 in the LIHC cohort was 0.3%. The biological functions of DRD1 were detected and validated, and DRD1 was shown to be involved in various functional activities, including metabolism, oxidation, mitochondrial matrix-related processes and other related signaling pathways. In addition, out study indicated that DRD1 had significant correlations with the infiltration of macrophages, B cells and CD+ T cells in HCC. Conclusions These findings demonstrated the rationality of the potential application of DRD1 function as a novel biomarker for HCC diagnosis and a therapeutic target for HCC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02298-9.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China. .,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China. .,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China. .,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Peihao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Bowen Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shengli Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China. .,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China. .,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China. .,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
17
|
Effects of platinum-coexisting dopamine with X-ray irradiation upon human glioblastoma cell proliferation. Hum Cell 2021; 34:1653-1661. [PMID: 34374034 DOI: 10.1007/s13577-021-00591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
In brain tumors, neurotransmitters and platinum drugs may have some interaction, but their role in radiation therapy remains unclear. We investigated the effects of dopamine in combination with platinum on human glioblastoma U-251MG cells upon X-ray irradiation, comparing with L-DOPA, 2-phenylethylamine and temozolomide. Cell proliferation of U-251MG cells was prominently decreased by dopamine in combination with 10 μM platinum upon 4 Gy of X-ray irradiation, accompanied with intracellular reactive oxygen species generation and mitotic catastrophe. Platinum alone did not increase intracellular reactive oxygen species. On the other hand, L-DOPA in combination with platinum did not decrease cell proliferation regardless of X-ray irradiation. It was clearly shown that 2-phenylethylamine did not suppress cell proliferation as compared to dopamine. Temozolomide decreased cell proliferation in a dose-dependent manner upon X-ray irradiation. However, the combined administration of temozolomide and platinum did not further decrease cell proliferation. The platinum nanoparticles were gradually taken up by cells after administration as determined by ICP analysis. Our results suggest that platinum-coexisting dopamine led cells to mitotic catastrophe due to increased production of intracellular reactive oxygen species which was boosted by X-ray and platinum-catalyzed auto-oxidation of dopamine, and thereby cell proliferation was suppressed. In addition, normal human fibroblast OUMS-36T-1 cells were subjected to experiments. Regarding the effect of the combined administration of dopamine and platinum on each cell which was exposed to X-ray, cell proliferation was decreased in U-251MG cells by the combined administration of platinum, whereas that was not decreased in OUMS-36T-1 cells. This provides one basic insight into the effects of dopamine in combined with platinum on radiation therapy for glioblastoma.
Collapse
|
18
|
Limanaqi F, Busceti CL, Celli R, Biagioni F, Fornai F. Autophagy as a gateway for the effects of methamphetamine: From neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders. Prog Neurobiol 2021; 204:102112. [PMID: 34171442 DOI: 10.1016/j.pneurobio.2021.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
As a major eukaryotic cell clearing machinery, autophagy grants cell proteostasis, which is key for neurotransmitter release, synaptic plasticity, and neuronal survival. In line with this, besides neuropathological events, autophagy dysfunctions are bound to synaptic alterations that occur in mental disorders, and early on, in neurodegenerative diseases. This is also the case of methamphetamine (METH) abuse, which leads to psychiatric disturbances and neurotoxicity. While consistently altering the autophagy machinery, METH produces behavioral and neurotoxic effects through molecular and biochemical events that can be recapitulated by autophagy blockade. These consist of altered physiological dopamine (DA) release, abnormal stimulation of DA and glutamate receptors, as well as oxidative, excitotoxic, and neuroinflammatory events. Recent molecular insights suggest that METH early impairs the autophagy machinery, though its functional significance remains to be investigated. Here we discuss evidence suggesting that alterations of DA transmission and autophagy are intermingled within a chain of events underlying behavioral alterations and neurodegenerative phenomena produced by METH. Understanding how METH alters the autophagy machinery is expected to provide novel insights into the neurobiology of METH addiction sharing some features with psychiatric disorders and parkinsonism.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy
| | | | - Roberta Celli
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
19
|
Mechanical tibial loading remotely suppresses brain tumors by dopamine-mediated downregulation of CCN4. Bone Res 2021; 9:26. [PMID: 34031366 PMCID: PMC8144433 DOI: 10.1038/s41413-021-00144-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/09/2020] [Accepted: 12/20/2020] [Indexed: 11/08/2022] Open
Abstract
Mechanical loading to the bone is known to be beneficial for bone homeostasis and for suppressing tumor-induced osteolysis in the loaded bone. However, whether loading to a weight-bearing hind limb can inhibit distant tumor growth in the brain is unknown. We examined the possibility of bone-to-brain mechanotransduction using a mouse model of a brain tumor by focusing on the response to Lrp5-mediated Wnt signaling and dopamine in tumor cells. The results revealed that loading the tibia with elevated levels of tyrosine hydroxylase, a rate-limiting enzyme in dopamine synthesis, markedly reduced the progression of the brain tumors. The simultaneous application of fluphenazine (FP), an antipsychotic dopamine modulator, enhanced tumor suppression. Dopamine and FP exerted antitumor effects through the dopamine receptors DRD1 and DRD2, respectively. Notably, dopamine downregulated Lrp5 via DRD1 in tumor cells. A cytokine array analysis revealed that the reduction in CCN4 was critical for loading-driven, dopamine-mediated tumor suppression. The silencing of Lrp5 reduced CCN4, and the administration of CCN4 elevated oncogenic genes such as MMP9, Runx2, and Snail. In summary, this study demonstrates that mechanical loading regulates dopaminergic signaling and remotely suppresses brain tumors by inhibiting the Lrp5-CCN4 axis via DRD1, indicating the possibility of developing an adjuvant bone-mediated loading therapy.
Collapse
|
20
|
Autophagy status as a gateway for stress-induced catecholamine interplay in neurodegeneration. Neurosci Biobehav Rev 2021; 123:238-256. [PMID: 33497785 DOI: 10.1016/j.neubiorev.2021.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
The catecholamine-containing brainstem nuclei locus coeruleus (LC) and ventral tegmental area (VTA) are critically involved in stress responses. Alterations of catecholamine systems during chronic stress may contribute to neurodegeneration, including cognitive decline. Stress-related catecholamine alterations, while contributing to anxiety and depression, might accelerate neuronal degeneration by increasing the formation of toxic dopamine and norepinephrine by-products. These, in turn, may impair proteostasis within a variety of cortical and subcortical areas. In particular, the molecular events governing neurotransmission, neuroplasticity, and proteostasis within LC and VTA affect a variety of brain areas. Therefore, we focus on alterations of autophagy machinery in these nuclei as a relevant trigger in this chain of events. In fact, these catecholamine-containing areas are mostly prone to autophagy-dependent neurodegeneration. Thus, we propose a dynamic hypothesis according to which stress-induced autophagy alterations within the LC-VTA network foster a cascade towards early neurodegeneration within these nuclei.
Collapse
|
21
|
Sobczuk P, Łomiak M, Cudnoch-Jędrzejewska A. Dopamine D1 Receptor in Cancer. Cancers (Basel) 2020; 12:cancers12113232. [PMID: 33147760 PMCID: PMC7693420 DOI: 10.3390/cancers12113232] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/18/2020] [Accepted: 10/29/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Circulating hormones and their specific receptors play a significant role in the development and progression of various cancers. This review aimed to summarize current knowledge about the dopamine D1 receptor’s biological role in different cancers, including breast cancer, central nervous system tumors, lymphoproliferative disorders, and other neoplasms. Treatment with dopamine D1 receptor agonists was proven to exert a major anti-cancer effect in many preclinical models. We highlight this receptor’s potential as a target for the adjunct therapy of tumors and discuss possibilities and necessities for further research in this area. Abstract Dopamine is a biologically active compound belonging to catecholamines. It plays its roles in the human body, acting both as a circulating hormone and neurotransmitter. It acts through G-protein-coupled receptors divided into two subgroups: D1-like receptors (D1R and D5R) and D2-like receptors (D2R, D3R, D4R). Physiologically, dopamine receptors are involved in central nervous system functions: motivation or cognition, and peripheral actions such as blood pressure and immune response modulation. Increasing evidence indicates that the dopamine D1 receptor may play a significant role in developing different human neoplasms. This receptor’s value was presented in the context of regulating various signaling pathways important in tumor development, including neoplastic cell proliferation, apoptosis, autophagy, migration, invasiveness, or the enrichment of cancer stem cells population. Recent studies proved that its activation by selective or non-selective agonists is associated with significant tumor growth suppression, metastases prevention, and tumor microvasculature maturation. It may also exert a synergistic anti-cancer effect when combined with tyrosine kinase inhibitors or temozolomide. This review provides a comprehensive insight into the heterogeneity of dopamine D1 receptor molecular roles and signaling pathways in human neoplasm development and discusses possible perspectives of its therapeutic targeting as an adjunct anti-cancer strategy of treatment. We highlight the priorities for further directions in this research area.
Collapse
Affiliation(s)
- Paweł Sobczuk
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.Ł.); (A.C.-J.)
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-221166113
| | - Michał Łomiak
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.Ł.); (A.C.-J.)
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland; (M.Ł.); (A.C.-J.)
| |
Collapse
|