1
|
Liu R, Zhou J, Chen X, Zhang J, Chen Q, Liu X, Yao K. Diagnostic and Therapeutic Advances of RNAs in Precision Medicine of Gastrointestinal Tumors. Biomedicines 2024; 13:47. [PMID: 39857631 PMCID: PMC11762367 DOI: 10.3390/biomedicines13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/01/2024] [Accepted: 12/10/2024] [Indexed: 01/27/2025] Open
Abstract
Gastrointestinal tumors present a significant challenge for precision medicine due to their complexity, necessitating the development of more specific diagnostic tools and therapeutic agents. Recent advances have positioned coding and non-coding RNAs as emerging biomarkers for these malignancies, detectable by liquid biopsies, and as innovative therapeutic agents. Many RNA-based therapeutics, such as small interfering RNA (siRNA) and antisense oligonucleotides (ASO), have entered clinical trials or are available on the market. This review provides a narrative examination of the diagnostic and therapeutic potential of RNA in gastrointestinal cancers, with an emphasis on its application in precision medicine. This review discusses the current challenges, such as drug resistance and tumor metastasis, and highlights how RNA molecules can be leveraged for targeted detection and treatment. Additionally, this review categorizes specific diagnostic biomarkers and RNA therapeutic targets based on tissue type, offering a comprehensive analysis of their role in advancing precision medicine for gastrointestinal tumors.
Collapse
Affiliation(s)
- Runhan Liu
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, China
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jiaxin Zhou
- School of Life Sciences, Henan University, Kaifeng 475004, China
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Xiaochen Chen
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jie Zhang
- School of Life Sciences, Henan University, Kaifeng 475004, China
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Qunzhi Chen
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaoming Liu
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, China
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| | - Kunhou Yao
- Department of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng 475000, China
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Ishaq Y, Rauff B, Alzahrani B, Ikram A, Javed H, Abdullah I, Mujtaba G. Bioinformatics and Experimental Insights Into miR-182, hsa_circ_0070269, and circ-102,166 as Therapeutic Targets for HCV-Associated HCC. Cancer Rep (Hoboken) 2024; 7:e70049. [PMID: 39617640 PMCID: PMC11608829 DOI: 10.1002/cnr2.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 01/05/2025] Open
Abstract
AIMS Hepatocellular carcinoma (HCC) is a type of malignant tumor and the sixth leading cause of death worldwide. It is caused by HBV, HCV infection, and alcohol consumption. MicroRNAs are typically small, non-coding RNAs that are involved in the regulation of mRNA expression. Recent studies revealed miRNAs' regulatory roles in liver cancer, linked to risk factors like HCV, HBV infection, alcoholism, drug use, and auto-immune hepatic disorders. Circular RNAs also belong to the class of non-coding RNAs; they act as ceRNAs to regulate miRNA expression and regulate different oncogenic pathways in HCC progression. This study aimed to check the hsa_circ_0070269, circ-102,166 (hsa_circ_0004913), and miR-182 expression in HCV induced HCC patients. METHODS Data analysis was used to find out studies related to the role of hsa_circ_0070269, circ-102,166, and miR-182 in HCC; miR-182 targeted genes, their role in different diseases; and miR-182 interactions with hsa_circ_0070269 and circ-102,166 in the HCC. It was revealed that the hsa_circ_0070269, circ-102,166, and miR-182 correlations in HCV induced HCC have not been explored yet. Therefore, to validate data from literature mining, expression analysis of dysregulated hsa_circ_0070269, circ-102,166, and miR-182 was performed in HCV induced HCC patients using RT-PCR. RESULTS It was found that miR-182 was significantly upregulated and acts as an oncomiRNA in HCV induced HCC, and hsa_circ_0070269 and circ-102,166 were downregulated in HCV induced HCC. We have identified that miR-182 relative expression level was significantly high (p < 0.0029), while has_circ_0070269 (p < 0.002) and circ-102,166 (p < 0.002) were significantly downregulated in HCV-HCC patients as compared to expression in healthy individuals. CONCLUSION Our data revealed that miR-182 acts as an oncomiRNA in HCC development. Hsa_circ_0070269 and circ-102,166 are highly expressed in healthy controls compared to HCV induced HCC patients, can sponge miR-182 expression by acting as tumor suppressors, and can be used as biomarkers and targets for HCC treatment.
Collapse
Affiliation(s)
- Yasmeen Ishaq
- Institute of Molecular Biology and Biotechnology (IMBB)University of Lahore (UOL)LahorePakistan
| | - Bisma Rauff
- Department of Biomedical EngineeringUET LahoreNarowalPakistan
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB)University of Lahore (UOL)LahorePakistan
| | - Hasnain Javed
- Provincial Public Health reference lab LahorePunjab AIDS Control ProgramLahorePakistan
| | - Imran Abdullah
- Institute of Nuclear Medicine & Oncology (INMOL) Cancer HospitalLahorePakistan
| | - Ghulam Mujtaba
- Institute of Nuclear Medicine & Oncology (INMOL) Cancer HospitalLahorePakistan
| |
Collapse
|
3
|
Żychowska J, Ćmil M, Skórka P, Olejnik-Wojciechowska J, Plewa P, Bakinowska E, Kiełbowski K, Pawlik A. The Role of Epigenetic Mechanisms in the Pathogenesis of Hepatitis C Infection. Biomolecules 2024; 14:986. [PMID: 39199374 PMCID: PMC11352264 DOI: 10.3390/biom14080986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Hepatitis C virus (HCV) is a hepatotropic virus that can be transmitted through unsafe medical procedures, such as injections, transfusions, and dental treatment. The infection may be self-limiting or manifest as a chronic form that induces liver fibrosis, cirrhosis, or progression into hepatocellular carcinoma (HCC). Epigenetic mechanisms are major regulators of gene expression. These mechanisms involve DNA methylation, histone modifications, and the activity of non-coding RNAs, which can enhance or suppress gene expression. Abnormal activity or the dysregulated expression of epigenetic molecules plays an important role in the pathogenesis of various pathological disorders, including inflammatory diseases and malignancies. In this review, we summarise the current evidence on epigenetic mechanisms involved in HCV infection and progression to HCC.
Collapse
Affiliation(s)
- Justyna Żychowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Maciej Ćmil
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Patryk Skórka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | | | - Paulina Plewa
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland;
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (J.Ż.); (M.Ć.); (P.S.); (E.B.); (K.K.)
| |
Collapse
|
4
|
Yan X, Hu Z, Li X, Liang J, Zheng J, Gong J, Hu K, Sui X, Li R. Systemic analysis of the prognostic significance and interaction network of miR-26b-3p in cholangiocarcinoma. Appl Biochem Biotechnol 2024; 196:4166-4187. [PMID: 37914963 DOI: 10.1007/s12010-023-04753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
MicroRNAs (miRNAs) reportedly play significant roles in the progression of various cancers and hold huge potential as both diagnostic tools and therapeutic targets. Given the ongoing uncertainty surrounding the precise functions of several miRNAs in cholangiocarcinoma (CCA), this research undertakes a comprehensive analysis of CCA data sourced from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. The present study identified a novel miRNA, specifically miR-26b-3p, which exhibited prognostic value for individuals with CCA. Notably, miR-26b-3p was upregulated within CCA samples, with an inverse correlation established with patient prognosis (Hazard Ratio = 8.19, p = 0.018). Through a combination of functional enrichment analysis, analysis of the LncRNA-miR-26b-3p-mRNA interaction network, and validation by qRT PCR and western blotting, this study uncovered the potential of miR-26b-3p in potentiating the malignant progression of CCA via regulation of essential genes (including PSMD14, XAB2, SLC4A4) implicated in processes such as endoplasmic reticulum (ER) stress and responses to misfolded proteins. Our findings introduce novel and valuable insights that position miR-26b-3p-associated genes as promising biomarkers for the diagnosis and treatment of CCA.
Collapse
Affiliation(s)
- Xijing Yan
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
- Department of Breast and Thyroid Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhongying Hu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jinliang Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Jiao Gong
- Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Kunpeng Hu
- Department of Breast and Thyroid Surgery, Lingnan Hospital, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Xin Sui
- Surgical ICU, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
5
|
Li R, Yan X, Zhong W, Zheng J, Li X, Liang J, Hu Z, Liu H, Chen G, Yang Y, Zhang J, Qu E, Liu W. Stratifin promotes the malignant progression of HCC via binding and hyperactivating AKT signaling. Cancer Lett 2024; 592:216761. [PMID: 38490326 DOI: 10.1016/j.canlet.2024.216761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor with limited treatment options and poor prognosis. In this study, we reveal the pivotal role of Stratifin (SFN), also recognized as 14-3-3σ, in driving HCC progression. Our investigation underscores a substantial upregulation of SFN within HCC tissues, manifesting a significant association with worse prognostic outcomes among HCC patients. In vitro and in vivo experiments reveal that SFN overexpression significantly amplifies proliferation, mitigates sorafenib-induced effects on HCC cells, and enhances tumorigenesis. While SFN silencing exerts converse effects on HCC progression. Additionally, we unveil a critical interaction between SFN and AKT, where SFN boosts AKT kinase activity by disrupting the binding of PHLPP2 and AKT, thereby intensifying the malignant progression of HCC cells. In conclusion, this study identifies the oncogenic role of SFN and elucidates the regulatory mechanism of the SFN/AKT axis in HCC, which may provide valuable insights into the mechanisms of HCC progression and potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rong Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China; Guangdong Province Engineering Laboratory for Transplantation Medicine, Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China
| | - Xijing Yan
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wenhui Zhong
- Department of Pancreatic and Gastric Surgery, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun Zheng
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xuejiao Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Jinliang Liang
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Zhongying Hu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Huanyi Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Guihua Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China; Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yang Yang
- Guangdong Province Engineering Laboratory for Transplantation Medicine, Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China; Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Jianwei Zhang
- Department of Pancreatic and Gastric Surgery, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Enze Qu
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Wei Liu
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China; Guangdong Province Engineering Laboratory for Transplantation Medicine, Organ Transplantation Research Center of Guangdong Province, Guangzhou, 510630, China.
| |
Collapse
|
6
|
Moore LL, Qu D, Sureban S, Mitchell S, Pitts K, Cooper N, Fazili J, Harty R, Oseini A, Ding K, Bronze M, Houchen CW. From Inflammation to Oncogenesis: Tracing Serum DCLK1 and miRNA Signatures in Chronic Liver Diseases. Int J Mol Sci 2024; 25:6481. [PMID: 38928187 PMCID: PMC11203803 DOI: 10.3390/ijms25126481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic liver diseases, fibrosis, cirrhosis, and HCC are often a consequence of persistent inflammation. However, the transition mechanisms from a normal liver to fibrosis, then cirrhosis, and further to HCC are not well understood. This study focused on the role of the tumor stem cell protein doublecortin-like kinase 1 (DCLK1) in the modulation of molecular factors in fibrosis, cirrhosis, or HCC. Serum samples from patients with hepatic fibrosis, cirrhosis, and HCC were analyzed via ELISA or NextGen sequencing and were compared with control samples. Differentially expressed (DE) microRNAs (miRNA) identified from these patient sera were correlated with DCLK1 expression. We observed elevated serum DCLK1 levels in fibrosis, cirrhosis, and HCC patients; however, TGF-β levels were only elevated in fibrosis and cirrhosis. While DE miRNAs were identified for all three disease states, miR-12136 was elevated in fibrosis but was significantly increased further in cirrhosis. Additionally, miR-1246 and miR-184 were upregulated when DCLK1 was high, while miR-206 was downregulated. This work distinguishes DCLK1 and miRNAs' potential role in different axes promoting inflammation to tumor progression and may serve to identify biomarkers for tracking the progression from pre-neoplastic states to HCC in chronic liver disease patients as well as provide targets for treatment.
Collapse
Affiliation(s)
- Landon L. Moore
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Dongfeng Qu
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Sripathi Sureban
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Stephanie Mitchell
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Kamille Pitts
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| | - Nasya Cooper
- Department of Natural Sciences, Langston University, Langston, OK 73050, USA;
| | - Javid Fazili
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Richard Harty
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Abdul Oseini
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Kai Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Michael Bronze
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
| | - Courtney W. Houchen
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (L.L.M.); (D.Q.); (S.S.); (S.M.); (K.P.); (J.F.); (R.H.); (A.O.); (M.B.)
- Department of Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
7
|
Hashemi M, Daneii P, Asadalizadeh M, Tabari K, Matinahmadi A, Bidoki SS, Motlagh YSM, Jafari AM, Ghorbani A, Dehghanpour A, Nabavi N, Tan SC, Rashidi M, Taheriazam A, Entezari M, Goharrizi MASB. Epigenetic regulation of hepatocellular carcinoma progression: MicroRNAs as therapeutic, diagnostic and prognostic factors. Int J Biochem Cell Biol 2024; 170:106566. [PMID: 38513802 DOI: 10.1016/j.biocel.2024.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/28/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Hepatocellular carcinoma (HCC), a significant challenge for public healthcare systems in developed Western countries including the USA, Canada, and the UK, is influenced by different risk factors including hepatitis virus infections, alcoholism, and smoking. The disruption in the balance of microRNAs (miRNAs) plays a vital function in tumorigenesis, given their function as regulators in numerous signaling networks. These miRNAs, which are mature and active in the cytoplasm, work by reducing the expression of target genes through their impact on mRNAs. MiRNAs are particularly significant in HCC as they regulate key aspects of the tumor, like proliferation and invasion. Additionally, during treatment phases such as chemotherapy and radiotherapy, the levels of miRNAs are key determinants. Pre-clinical experiments have demonstrated that altered miRNA expression contributes to HCC development, metastasis, drug resistance, and radio-resistance, highlighting related molecular pathways and processes like MMPs, EMT, apoptosis, and autophagy. Furthermore, the regulatory role of miRNAs in HCC extends beyond their immediate function, as they are also influenced by other epigenetic factors like lncRNAs and circular RNAs (circRNAs), as discussed in recent reviews. Applying these discoveries in predicting the prognosis of HCC could mark a significant advancement in the therapy of this disease.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahya Asadalizadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiana Tabari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Seyed Shahabadin Bidoki
- Faculty of medicine, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Ali Moghadas Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amin Ghorbani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
8
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Lucarini V, Nardozi D, Angiolini V, Benvenuto M, Focaccetti C, Carrano R, Besharat ZM, Bei R, Masuelli L. Tumor Microenvironment Remodeling in Gastrointestinal Cancer: Role of miRNAs as Biomarkers of Tumor Invasion. Biomedicines 2023; 11:1761. [PMID: 37371856 DOI: 10.3390/biomedicines11061761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Gastrointestinal (GI) cancers are the most frequent neoplasm, responsible for half of all cancer-related deaths. Metastasis is the leading cause of death from GI cancer; thus, studying the processes that regulate cancer cell migration is of paramount importance for the development of new therapeutic strategies. In this review, we summarize the mechanisms adopted by cancer cells to promote cell migration and the subsequent metastasis formation by highlighting the key role that tumor microenvironment components play in deregulating cellular pathways involved in these processes. We, therefore, provide an overview of the role of different microRNAs in promoting tumor metastasis and their role as potential biomarkers for the prognosis, monitoring, and diagnosis of GI cancer patients. Finally, we relate the possible use of nutraceuticals as a new strategy for targeting numerous microRNAs and different pathways involved in GI tumor invasiveness.
Collapse
Affiliation(s)
- Valeria Lucarini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Daniela Nardozi
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Valentina Angiolini
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
- Departmental Faculty of Medicine and Surgery, Saint Camillus International University of Health and Medical Sciences, via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Zein Mersini Besharat
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome "Sapienza", Viale Regina Elena 324, 00161 Rome, Italy
| |
Collapse
|
10
|
Compagnoni C, Capelli R, Zelli V, Corrente A, Vecchiotti D, Flati I, Di Vito Nolfi M, Angelucci A, Alesse E, Zazzeroni F, Tessitore A. MiR-182-5p Is Upregulated in Hepatic Tissues from a Diet-Induced NAFLD/NASH/HCC C57BL/6J Mouse Model and Modulates Cyld and Foxo1 Expression. Int J Mol Sci 2023; 24:ijms24119239. [PMID: 37298191 DOI: 10.3390/ijms24119239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered a relevant liver chronic disease. Variable percentages of NAFLD cases progress from steatosis to steatohepatitis (NASH), cirrhosis and, eventually, hepatocellular carcinoma (HCC). In this study, we aimed to deepen our understanding of expression levels and functional relationships between miR-182-5p and Cyld-Foxo1 in hepatic tissues from C57BL/6J mouse models of diet-induced NAFL/NASH/HCC progression. A miR-182-5p increase was detected early in livers as NAFLD damage progressed, and in tumors compared to peritumor normal tissues. An in vitro assay on HepG2 cells confirmed Cyld and Foxo1, both tumor-suppressor, as miR-182-5p target genes. According to miR-182-5p expression, decreased protein levels were observed in tumors compared to peritumor tissues. Analysis of miR-182-5p, Cyld and Foxo1 expression levels, based on datasets from human HCC samples, showed results consistent with those from our mouse models, and also highlighted the ability of miR-182-5p to distinguish between normal and tumor tissues (AUC 0.83). Overall, this study shows, for the first time, miR-182-5p overexpression and Cyld-Foxo1 downregulation in hepatic tissues and tumors from a diet-induced NAFLD/HCC mouse model. These data were confirmed by the analysis of datasets from human HCC samples, highlighting miR-182-5p diagnostic accuracy and demonstrating the need for further studies to assess its potential role as a biomarker or therapeutic target.
Collapse
Affiliation(s)
- Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L'Aquila, Via Petrini, 67100 L'Aquila, Italy
| | - Alessandra Corrente
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L'Aquila, Via Petrini, 67100 L'Aquila, Italy
| |
Collapse
|
11
|
Circular RNAs: Emerging regulators of glucose metabolism in cancer. Cancer Lett 2023; 552:215978. [PMID: 36283584 DOI: 10.1016/j.canlet.2022.215978] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/16/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022]
Abstract
Aberrant glucose metabolism is one of the most striking characteristics of metabolic reprogramming in cancer. Thus, clarifying the regulatory mechanism of glucose metabolism is crucial to understanding tumor progression and developing novel therapeutic strategies for cancer patients. Recent developments in circular RNAs have explained the regulatory mechanism of glucose metabolism from a new dimension. In this review, we briefly summarize the recent advances in circRNA research on cancer glucose metabolism and emphasize the different regulatory mechanisms, including acting as miRNA sponges, interacting with proteins and being translated into proteins. Additionally, we discuss the future research directions of circular RNAs in the field of glucose metabolism.
Collapse
|
12
|
Mesenchymal stem cell-derived exosomes and non-coding RNAs: Regulatory and therapeutic role in liver diseases. Biomed Pharmacother 2023; 157:114040. [PMID: 36423545 DOI: 10.1016/j.biopha.2022.114040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/22/2022] Open
Abstract
Liver disease has become a major health problem worldwide due to its high morbidity and mortality. In recent years, a large body of literature has shown that mesenchymal stem cell-derived exosomes (MSC-Exo) are able to play similar physiological roles as mesenchymal stem cells (MSCs). More importantly, there is no immune rejection caused by transplanted cells and the risk of tumor formation, which has become a new strategy for the treatment of various liver diseases. Moreover, accumulating evidence suggests that non-coding RNAs (ncRNAs) are the main effectors by which they exert hepatoprotective effects. Therefore, by searching the databases of Web of Science, PubMed, ScienceDirect, Google Scholar and CNKI, this review comprehensively reviewed the therapeutic effects of MSC-Exo and ncRNAs in liver diseases, including liver injury, liver fibrosis, and hepatocellular carcinoma. According to the data, the therapeutic effects of MSC-Exo and ncRNAs on liver diseases are closely related to a variety of molecular mechanisms, including inhibition of inflammatory response, alleviation of liver oxidative stress, inhibition of apoptosis of hepatocytes and endothelial cells, promotion of angiogenesis, blocking the cell cycle of hepatocellular carcinoma, and inhibition of activation and proliferation of hepatic stellate cells. These important findings will provide a direction and basis for us to explore the potential of MSC-Exo and ncRNAs in the clinical treatment of liver diseases in the future.
Collapse
|
13
|
Ishaq Y, Ikram A, Alzahrani B, Khurshid S. The Role of miRNAs, circRNAs and Their Interactions in Development and Progression of Hepatocellular Carcinoma: An Insilico Approach. Genes (Basel) 2022; 14:genes14010013. [PMID: 36672755 PMCID: PMC9858589 DOI: 10.3390/genes14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a type of malignant tumor. miRNAs are noncoding RNAs and their differential expression patterns are observed in HCC-induced by alcoholism, HBV and HCV infections. By acting as a competing endogenous RNA (ceRNA), circRNA regulates the miRNA function, indirectly controlling the gene expression and leading to HCC progression. In the present study, data mining was performed to screen out all miRNAs and circRNA involved in alcohol, HBV or HCV-induced HCC with statistically significant (≤0.05%) expression levels reported in various studies. Further, the interaction of miRNAs and circRNA was also investigated to explore their role in HCC due to various causative agents. Together, these study data provide a deeper understanding of the circRNA-miRNA regulatory mechanisms in HCC. These screened circRNA, miRNA and their interactions can be used as prognostic biomarkers or therapeutic targets for the treatment of HCC.
Collapse
Affiliation(s)
- Yasmeen Ishaq
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
| | - Aqsa Ikram
- Institute of Molecular Biology and Biotechnology (IMBB), University of Lahore (UOL), Lahore 54000, Pakistan
- Correspondence:
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, Jouf University, Sakaka 42421, Saudi Arabia
| | - Sana Khurshid
- Department of Molecular Biology, Virtual University of Pakistan, 1-Davis Road, Lahore 54000, Pakistan
| |
Collapse
|
14
|
Ye R, Lu X, Liu J, Duan Q, Xiao J, Duan X, Yue Z, Liu F. CircSOD2 Contributes to Tumor Progression, Immune Evasion and Anti-PD-1 Resistance in Hepatocellular Carcinoma by Targeting miR-497-5p/ANXA11 Axis. Biochem Genet 2022; 61:597-614. [PMID: 36008700 DOI: 10.1007/s10528-022-10273-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/22/2022] [Indexed: 11/25/2022]
Abstract
Circular RNAs (circRNAs) can function as functional molecules in hepatocellular carcinoma (HCC). Herein, circRNA superoxide dismutase 2 (circSOD2) was researched in HCC progression and immune system. The real-time polymerase chain reaction (qRT-PCR) was used for quantification of circSOD2, microRNA-497-5p (miR-497-5p) and Annexin A11 (ANXA11). Cell assays were performed by 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT) and colony formation assays for proliferation, flow cytometry for apoptosis and cell cycle, wound healing assay for migration and transwell assay for migration/invasion. ANXA11 and metastatic protein levels were measured by western blot. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were performed to analyze target binding. CD8+ T cell immunity was assessed by Immunohistochemistry (IHC) assay, and the effect of circSOD2 on programmed cell death 1 (PD-1) immune checkpoint inhibitors (anti-PD-1) therapy was evaluated by mice xenograft assay. CircSOD2 was upregulated in HCC tissues and cells. Knockdown of circSOD2 resulted in HCC cell growth inhibition, apoptosis promotion, cell cycle arrest and metastasis suppression. Mechanically, circSOD2 promoted HCC development by acting as a miR-497-5p sponge and miR-497-5p played a tumor-inhibitory role in HCC cells by targeting ANXA11. Moreover, circSOD2 induced upregulation of ANXA11 expression by interacting with miR-497-5p. Also, the promoting effects of circSOD2 on immune evasion and anti-PD-1 resistance were related to miR-497-5p/ANXA11 axis. This study elucidated the pivotal function of circSOD2 in HCC progression and immunosuppression by mediating miR-497-6p/ANXA11 axis. CircSOD2/miR-497-5p/ANXA11 axis was a novel view of circRNA research in HCC.
Collapse
Affiliation(s)
- Rong Ye
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Xingyu Lu
- Outpatient department, Ganzhou City Third People's Hospital, Ganzhou, 341001, China
| | - Jianping Liu
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Qing Duan
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Junqi Xiao
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Xunhong Duan
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China
| | - Zhibiao Yue
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China.
| | - Fengen Liu
- Department of General Surgery 3, The First Affiliated Hospital of Gannan Medical University, No. 128 Jinling Road, Jingkai District, Ganzhou, 341000, China.
| |
Collapse
|
15
|
Lin G, Li J, Chen K, Wang A, Guo C. Circ_0000854 regulates the progression of hepatocellular carcinoma through miR-1294 /IRGQ axis. Clin Immunol 2022; 238:109007. [PMID: 35417749 DOI: 10.1016/j.clim.2022.109007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a common cancer disease with the second highest mortality. Circular RNAs (circRNAs) have been shown to play key roles in many tumors, including HCC. However, the function of circ_0000854 in the progression of HCC has not been clarified. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression levels of circ_0000854, microRNA-1294 (miR-1294) and immunity related GTPase Q (IRGQ) in HCC cells and tissues. Western blot was used for protein expression analysis. Cell processes were detected by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium Bromide (MTT) assay, thymidine analog 5-ethynyl-2'-deoxyuridine (EdU) assay, transwell assay, flow cytometry, and wound healing assay. Mechanically, the interaction of miR-1294 with circ_0000854 or IRGQ was notarized by dual-luciferase reporter assay and RNA pull-down assay. The xenotransplantation model was established to study the role of circ_0000854 in vivo. RESULTS Circ_0000854 and IRGQ were highly expressed in HCC tissues and cells, while miR-1294 was downregulated. Silencing circ_0000854 suppressed HCC cell malignant behaviors, including proliferation, cell cycle progression, migration and invasion. Circ_0000854 exhibited sponge effect on miR-1294 and miR-1294 inhibition reversed function of circ_0000854 knockdown. In addition, miR-1294 targeted IRGQ and circ_0000854 sponged miR-1294 to upregulate IRGQ. Overexpression of IRGQ restored miR-1294-induced anti-tumor regulation in HCC cells. Animal experiments confirmed that silencing circ_0000854 inhibited tumor growth and metastasis of HCC via mediating miR-1294 and IRGQ levels in vivo. CONCLUSION Circ_0000854 accelerated HCC progression via the miR-1294/IRGQ axis, providing a novel regulatory mechanism for HCC pathogenesis.
Collapse
Affiliation(s)
- Guanbin Lin
- Tongji University School of Medicine, Shanghai 200092, China; Department of Gastroenterology, Beilun People's Hospital in Ningbo, Ningbo 315800, Zhejiang, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Aiping Wang
- Department of Health Management Center, Beilun People's Hospital in Ningbo, Ningbo 315800, Zhejiang, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
16
|
Lin Z, Tang X, Wang L, Ling L. Prognostic and clinicopathological value of circPVT1 in human cancers: A meta-analysis. Cancer Rep (Hoboken) 2021; 4:e1385. [PMID: 33793089 PMCID: PMC8551984 DOI: 10.1002/cnr2.1385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Circular RNA PVT1 (circPVT1) is significantly upregulated in various human cancers and is related to poor clinical outcome of cancer patients. However, the prognostic and clinicopathological value of circPVT1 in diverse human cancers remains controversial and inconclusive. AIM The objective of our study is to evaluate the prognostic and clinicopathological role of circPVT1 for cancer patients. METHODS AND RESULTS PubMed, Embase, Web of Science, and Cochrane Library were searched for eligible studies by October 1, 2020. The correlation between circPVT1 expression, and overall survival (OS) and clinical parameters was assessed by pooled hazard ratios (HRs) and odds ratios (ORs) with 95% confidence intervals (CIs). Subgroup analyses, heterogeneity, and publication bias were conducted to further enhance reliability. Twelve studies (1282 patients) were selected for this meta-analysis, including 11 on prognosis and 10 on clinicopathological parameters. Elevated expression of circPVT1 was associated with a worse OS in cancer patients (HR, 2.009; 95% CI, 1.667-2.408, 1.892; P < .001). For clinicopathological value, upregulation of circPVT1 was closely related to poor clinical parameters lymph node metastasis (OR = 2.019; 95% CI, 1.026-3.976; P = .042; I2 = 77.5%; PH = 0.000), late clinical stage (OR = 3.594; 95% CI, 1.828-7.065; P < .001; I2 = 71.7%; PH = 0.001), distant metastasis (OR = 4.598; 95% CI, 1.411-14.988; P = .011; I2 = 78.1%; PH = 0.001), and chemoresistant (OR = 6.400; 95% CI, 2.107-19.441; P = .001; I2 = 49.6%; PH = 0.159). CONCLUSION High expression of circPVT1 is correlated with unfavorable prognosis of cancer patients, indicating that circPVT1 can function as a potential prognostic biomarker in human cancer.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of OrthopedicsThe Second Xiangya Hospital Central South UniversityChangshaChina
- Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Xianzhe Tang
- Department of OrthopedicsChenzhou No.1 people's HospitalChenzhouChina
| | - Lu Wang
- Department of OrthopedicsThe Second Xiangya Hospital Central South UniversityChangshaChina
| | - Lin Ling
- Department of OrthopedicsThe Second Xiangya Hospital Central South UniversityChangshaChina
| |
Collapse
|
17
|
Huang Z, Xia H, Liu S, Zhao X, He R, Wang Z, Shi W, Chen W, Kang P, Su Z, Cui Y, Yam JWP, Xu Y. The Mechanism and Clinical Significance of Circular RNAs in Hepatocellular Carcinoma. Front Oncol 2021; 11:714665. [PMID: 34540684 PMCID: PMC8445159 DOI: 10.3389/fonc.2021.714665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/09/2021] [Indexed: 01/04/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors worldwide. In view of the lack of early obvious clinical symptoms and related early diagnostic biomarkers with high specificity and sensitivity, most HCC patients are already at the advanced stages at the time of diagnosis, and most of them are accompanied by distant metastasis. Furthermore, the unsatisfactory effect of the follow-up palliative care contributes to the poor overall survival of HCC patients. Therefore, it is urgent to identify effective early diagnosis and prognostic biomarkers and to explore novel therapeutic approaches to improve the prognosis of HCC patients. Circular RNA (CircRNA), a class of plentiful, stable, and highly conserved ncRNA subgroup with the covalent closed loop, is dysregulated in HCC. Increasingly, emerging evidence have confirmed that dysregulated circRNAs can regulate gene expression at the transcriptional or post-transcriptional level, mediating various malignant biological behaviors of HCC cells, including proliferation, invasion, metastasis, immune escape, stemness, and drug resistance, etc.; meanwhile, they are regarded as potential biomarkers for early diagnosis and prognostic evaluation of HCC. This article reviews the research progress of circRNAs in HCC, expounding the potential molecular mechanisms of dysregulated circRNAs in the carcinogenesis and development of HCC, and discusses those application prospects in the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuqiang Liu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xudong Zhao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongrui Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenguang Shi
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wangming Chen
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhilei Su
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| |
Collapse
|
18
|
Liao R, Liu L, Zhou J, Wei X, Huang P. Current Molecular Biology and Therapeutic Strategy Status and Prospects for circRNAs in HBV-Associated Hepatocellular Carcinoma. Front Oncol 2021; 11:697747. [PMID: 34277444 PMCID: PMC8284075 DOI: 10.3389/fonc.2021.697747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are newly classified noncoding RNA (ncRNA) members with a covalently closed continuous loop structure that are involved in immune responses against hepatitis B virus (HBV) infections and play important biological roles in the occurrence and pathogenesis of HCC progression. The roles of circRNAs in HBV-associated HCC (HBV-HCC) have gained increasing attention. Substantial evidence has revealed that both tissue and circulating circRNAs may serve as potential biomarkers for diagnostic, prognostic and therapeutic purposes. So far, at least four circRNA/miRNA regulatory axes such as circRNA_101764/miR-181, circRNA_100338/miR-141-3p, circ-ARL3/miR-1305, circ-ATP5H/miR-138-5p, and several circulating circRNAs were reported to be associated with HBV-HCC development. Notably, TGF/SMAD, JAK/STAT, Notch and Wnt/β-catenin signaling pathways may play pivotal roles in this HBV-driven HCC via several circRNAs. Moreover, in non-HBV HCC patients or HCC patients partially infected by HBV, numerous circRNAs have been identified to be important regulators impacting the malignant biological behavior of HCC. Furthermore, the role of circRNAs in HCC drug resistance has become a focus of research with the aim of reversing chemoresistance and immune resistance. Herein, we review the molecular biology of circRNAs in HBV-HCC and their potential in therapeutic strategies.
Collapse
Affiliation(s)
- Rui Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Zhou
- Department of Hepatobiliary Surgery, The People's Rongchang Hospital, Chongqing, China
| | - Xufu Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Wang M, Wu M, Xie T, Chen J. Circular RNAs Sparkle in the Diagnosis and Theranostics of Hepatocellular Carcinoma. Front Genet 2021; 11:628655. [PMID: 33679871 PMCID: PMC7930616 DOI: 10.3389/fgene.2020.628655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
Exonic circular RNAs (circRNAs) are a novel subgroup of non-coding RNAs, which are generated by a back-splicing mechanism of the exons or introns. Unlike the linear RNA, circRNA forms a covalently closed loop, and it normally appears more abundant than the linear products of its host gene. Due to the relatively high specificity and stability of circular RNAs in tissues and body fluid, circular RNAs have attracted widely scientific interest for its potential application in cancer diagnosis and as a guide for preclinical therapy, especially for hard-to-treat cancers with high heterogeneity, such as hepatocellular carcinoma (HCC). Thus, we summarize the updated knowledge of circular RNAs, including the mechanism of the generation of endogenous circular RNAs and their regulatory, diagnostic, and therapeutic roles in HCC.
Collapse
Affiliation(s)
- Menglan Wang
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Minjie Wu
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Tian Xie
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jianxiang Chen
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, The Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China.,Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|