1
|
Tian C, Qiu M, Lv H, Yue F, Zhou F. Quantitative Proteomic Analysis of Serum Reveals MST1 as a Potential Candidate Biomarker in Spontaneously Diabetic Cynomolgus Monkeys. ACS OMEGA 2022; 7:46702-46716. [PMID: 36570245 PMCID: PMC9774375 DOI: 10.1021/acsomega.2c05663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The prevalence of type 2 diabetes (T2DM) is increasing globally, creating essential demands for T2DM animal models for the study of disease pathogenesis, prevention, and therapy. A non-human primate model such as cynomolgus monkeys can develop T2DM spontaneously in an age-dependent way similar to humans. In this study, a data-independent acquisition-based quantitative proteomics strategy was employed to investigate the serum proteomic profiles of spontaneously diabetic cynomolgus monkeys compared with healthy controls. The results revealed significant differences in protein abundances. A total of 95 differentially expressed proteins (DEPs) were quantitatively identified in the current study, among which 31 and 64 proteins were significantly upregulated and downregulated, respectively. Bioinformatic analysis revealed that carbohydrate digestion and absorption was the top enriched pathway by the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Protein-protein interaction network analysis demonstrated that MST1 was identified as the most connected protein in the network and could be considered as the hub protein. MST1 was significantly and inversely associated with FSG and HbA1c. Furthermore, recent lines of evidence also indicate that MST1 acts as a crucial regulator in regulating hepatic gluconeogenesis to maintain metabolic homeostasis while simultaneously suppressing the inflammatory processes. In conclusion, our study provides novel insights into serum proteome changes in spontaneously diabetic cynomolgus monkeys and points out that the dysregulation of several DEPs may play an important role in the pathogenesis of T2DM.
Collapse
Affiliation(s)
- Chaoyang Tian
- Key
Laboratory of Biomedical Engineering of Hainan Province, School of
Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
- One
Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Mingyin Qiu
- Animal
Experiment Department, Hainan Jingang Biotech
Co., Ltd., Haikou, Hainan 571100, China
| | - Haizhou Lv
- Animal
Experiment Department, Hainan Jingang Biotech
Co., Ltd., Haikou, Hainan 571100, China
| | - Feng Yue
- Key
Laboratory of Biomedical Engineering of Hainan Province, School of
Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
- One
Health Institute, Hainan University, Haikou, Hainan 570228, China
| | - Feifan Zhou
- Key
Laboratory of Biomedical Engineering of Hainan Province, School of
Biomedical Engineering, Hainan University, Haikou, Hainan 570228, China
- One
Health Institute, Hainan University, Haikou, Hainan 570228, China
| |
Collapse
|
2
|
Nogueira VC, de Oliveira VDN, Guedes MIF, Smith BJ, da C Freire JE, Gonçalves NGG, de O M Moreira AC, de A Moreira R. UPLC-HDMS E to discover serum biomarkers in adults with type 1 diabetes. Int J Biol Macromol 2022; 221:1161-1170. [PMID: 36115450 DOI: 10.1016/j.ijbiomac.2022.09.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022]
Abstract
Type 1 diabetes (T1D) is a complex disease with metabolic and functional changes that can alter an individual's proteome. An LC-MS/MS analytical method, in an HDMSE system, was used to identify differentially expressed proteins in the high abundance protein-depleted serum of T1D patients and healthy controls. Samples were processed in Progenesis QI for Proteomics software. A functional enrichment of the proteins was performed with Gene Ontology and ToppGene, and the interactions were visualized by STRING 11.5. As a result, 139 proteins were identified, 14 of which were downregulated in the serum of patients with T1D compared to controls. Most of the differentially expressed proteins were shown to be involved with the immune system, inflammation, and growth hormone stimulus response, and were associated with the progression of T1D. Differential protein expression data showed for the first-time changes in CPN2 expression levels in the serum of patients with T1D. Our findings indicate that these proteins are targets of interest for future investigations and for validation of protein biomarkers in T1D.
Collapse
Affiliation(s)
- Valeria C Nogueira
- Department of Education, Federal Institute of Ceará (IFCE), Ubajara, Ceará, Brazil.
| | - Valzimeire do N de Oliveira
- Laboratory of Biotechnology and Molecular Biology, State University of Ceará (UECE), Fortaleza, Ceara, Brazil
| | - Maria I F Guedes
- Laboratory of Biotechnology and Molecular Biology, State University of Ceará (UECE), Fortaleza, Ceara, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José E da C Freire
- Department of Clinical Medicine, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | | | - Ana C de O M Moreira
- Experimental Biology Center, University of Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| | - Renato de A Moreira
- Experimental Biology Center, University of Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| |
Collapse
|