1
|
Truong VA, Chang YH, Dang TQ, Tu Y, Tu J, Chang CW, Chang YH, Liu GS, Hu YC. Programmable editing of primary MicroRNA switches stem cell differentiation and improves tissue regeneration. Nat Commun 2024; 15:8358. [PMID: 39333549 PMCID: PMC11436717 DOI: 10.1038/s41467-024-52707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Programmable RNA editing is harnessed for modifying mRNA. Besides mRNA, miRNA also regulates numerous biological activities, but current RNA editors have yet to be exploited for miRNA manipulation. To engineer primary miRNA (pri-miRNA), the miRNA precursor, we present a customizable editor REPRESS (RNA Editing of Pri-miRNA for Efficient Suppression of miRNA) and characterize critical parameters. The optimized REPRESS is distinct from other mRNA editing tools in design rationale, hence enabling editing of pri-miRNAs that are not editable by other RNA editing systems. We edit various pri-miRNAs in different cells including adipose-derived stem cells (ASCs), hence attenuating mature miRNA levels without disturbing host gene expression. We further develop an improved REPRESS (iREPRESS) that enhances and prolongs pri-miR-21 editing for at least 10 days, with minimal perturbation of transcriptome and miRNAome. iREPRESS reprograms ASCs differentiation, promotes in vitro cartilage formation and augments calvarial bone regeneration in rats, thus implicating its potentials for engineering miRNA and applications such as stem cell reprogramming and tissue regeneration.
Collapse
Affiliation(s)
- Vu Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Han Chang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Thuc Quyen Dang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi Tu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jui Tu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Han J, Zhu Y, Zhang J, Kapilevich L, Zhang XA. Noncoding RNAs: the crucial role of programmed cell death in osteoporosis. Front Cell Dev Biol 2024; 12:1409662. [PMID: 38799506 PMCID: PMC11116712 DOI: 10.3389/fcell.2024.1409662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Osteoporosis is the most common skeletal disease characterized by an imbalance between bone resorption and bone remodeling. Osteoporosis can lead to bone loss and bone microstructural deterioration. This increases the risk of bone fragility and fracture, severely reducing patients' mobility and quality of life. However, the specific molecular mechanisms involved in the development of osteoporosis remain unclear. Increasing evidence suggests that multiple noncoding RNAs show differential expression in the osteoporosis state. Meanwhile, noncoding RNAs have been associated with an increased risk of osteoporosis and fracture. Noncoding RNAs are an important class of factors at the level of gene regulation and are mainly involved in cell proliferation, cell differentiation, and cell death. Programmed cell death is a genetically-regulated form of cell death involved in regulating the homeostasis of the internal environment. Noncoding RNA plays an important role in the programmed cell death process. The exploration of the noncoding RNA-programmed cell death axis has become an interesting area of research and has been shown to play a role in many diseases such as osteoporosis. In this review, we summarize the latest findings on the mechanism of noncoding RNA-mediated programmed cell death on bone homeostasis imbalance leading to osteoporosis. And we provide a deeper understanding of the role played by the noncoding RNA-programmed cell death axis at the gene regulatory level of osteoporosis. We hope to provide a unique opportunity to develop novel diagnostic and therapeutic approaches for osteoporosis.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk Stаte University, Tomsk, Russia
| | - Xin-an Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| |
Collapse
|
3
|
Zhu K, Zhang Y, Li D, Xie M, Jiang H, Zhang K, Lei Y, Chen G. MiR-29a-3p mediates phosphatase and tensin homolog and inhibits osteoarthritis progression. Funct Integr Genomics 2024; 24:54. [PMID: 38467932 DOI: 10.1007/s10142-024-01327-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Despite substantial progress in clinical trials of osteoarthritis (OA) gene therapy, the prevalence of OA is still on the rise. MiRNAs have a potential biomarker and therapeutic target for OA. OA cartilage and chondrosarcoma cells were studied to determine the role of miR-29a-3p and PTEN. OA cartilage and human chondrosarcoma cells (SW1353) were obtained. miR-29a-3p and PTEN signature expression was determined by RT-qPCR. The binding relationship between miR-29a-3p and PTEN was investigated by dual-luciferase reporter gene and western blot assay. TUNEL, immunohistochemistry, CCK-8, and flow cytometry were utilized to determine the proliferation and apoptosis of SW1353 cells. This study indicated downregulation of miR-29a-3p expression and upregulation of PTEN expression in human OA primary chondrocytes or OA tissue samples, compared with the normal cartilage cells or tissues. PTEN expression was negatively correlated with miR-29a-3p expression, and miR-29a-3p targeted PTEN mechanistically. miR-29a-3p reduced SW1353 cell activity and proliferation and promoted cell apoptosis. However, the aforementioned effects could be reversed by downregulating PTEN. miR-29a-3p can stimulate chondrocyte proliferation and inhibit apoptosis by inhibiting PTEN expression.
Collapse
Affiliation(s)
- Kai Zhu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - Yan Zhang
- Department of Orthopedics, Chinese Medicine Hospital of Anyue County, Ziyang City, 642350, Sichuan Province, China
| | - DongDong Li
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - MingZhong Xie
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - HuaCai Jiang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - KaiQuan Zhang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - Yang Lei
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China
| | - GuangYou Chen
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No. 182, Chunhui Road, Longmatan District, Luzhou City, 646000, Sichuan Province, China.
| |
Collapse
|
4
|
Huang C, Li Y, Li B, Liu X, Luo D, Liu Y, Wei M, Yang Z, Xu Y. Identifying potential ferroptosis key genes for diagnosis and treatment of postmenopausal osteoporosis through competitive endogenous RNA network analysis. Heliyon 2024; 10:e23672. [PMID: 38226266 PMCID: PMC10788451 DOI: 10.1016/j.heliyon.2023.e23672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/24/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024] Open
Abstract
Objective Postmenopausal osteoporosis (PMOP) is a common systemic metabolic bone disorder that is owing to the reduced estrogen secretion and imbalance of bone absorption and bone formation in postmenopausal women. Ferroptosis has been identified as a novel modulatory mechanism of osteoporosis. Nevertheless, the particular modulatory mechanism between ferroptosis and PMOP is still unclear. The objective of the current investigation was to detect potential biomarkers connected to ferroptosis in PMOP and discover its probable mechanism through bioinformatics. Methods We downloaded PMOP-related microarray datasets from the database of Gene Expression Omnibus (GEO) and obtained the differentially expressed genes (DEGs). Utilizing bioinformatics analysis, the DEGs were intersected with the ferroptosis dataset to obtain ferroptosis-connected mRNAs. Enrichment analysis employing KOBAS 3.0 was conducted to comprehend the biological functions and enrichment pathways of the DEGs. The generation of the protein-protein interaction (PPI) network was conducted with the aim of identifying central genes. Lastly, the coexpression and competitive endogenous RNA (ceRNA) networks were built using Cytoscape. With the help of external datasets GSE56815 to verify the reliability of the hub genes by plotting ROC curves. Results We identified 178 DE microRNAs (miRNAs), 138 DE circular RNAs (circRNAs), and 86 ferroptosis-related mRNAs. Enrichment analysis exhibited that mRNAs were primarily connected with the signaling pathways of PI3K/Akt, metabolism, mTOR, FoxO, HIF-1, AMPK, MAPK, ferroptosis, VEGF, and NOD-like receptors. Generation of the PPI network detected eight hub genes. The circRNA/miR-23b-3p/PTEN axis may relieve PMOP by inhibiting ferroptosis through targeting the pathway of PI3K/Akt signaling, which is a vital modulatory pathway for PMOP progression. Moreover, the ROC curves ultimately indicates that the four hub genes have greater diagnostic importance in PMOP samples in contrast to the normal group samples, which may be possible markers for PMOP diagnosis. Conclusions Bioinformatics analysis identified four hub genes, namely, PTEN, SIRT1, VEGFA, and KRAS, as potential biomarkers for PMOP diagnosis and management. Moreover, the circRNA/miR-23b-3p/PTEN axis may relieve PMOP by suppressing ferroptosis through targeting the pathway of PI3K/Akt signaling, providing a new avenue to explore the pathogenesis of PMOP.
Collapse
Affiliation(s)
- Chengcheng Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Yang Li
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Bo Li
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Xiujuan Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Dan Luo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Yuan Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Mengjuan Wei
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - ZhenGuo Yang
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Yunsheng Xu
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| |
Collapse
|
5
|
Philippe S, Delay M, Macian N, Morel V, Pickering ME. Common miRNAs of Osteoporosis and Fibromyalgia: A Review. Int J Mol Sci 2023; 24:13513. [PMID: 37686318 PMCID: PMC10488272 DOI: 10.3390/ijms241713513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
A significant clinical association between osteoporosis (OP) and fibromyalgia (FM) has been shown in the literature. Given the need for specific biomarkers to improve OP and FM management, common miRNAs might provide promising tracks for future prevention and treatment. The aim of this review is to identify miRNAs described in OP and FM, and dysregulated in the same direction in both pathologies. The PubMed database was searched until June 2023, with a clear mention of OP, FM, and miRNA expression. Clinical trials, case-control, and cross-sectional studies were included. Gray literature was not searched. Out of the 184 miRNAs found in our research, 23 are shared by OP and FM: 7 common miRNAs are dysregulated in the same direction for both pathologies (3 up-, 4 downregulated). The majority of these common miRNAs are involved in the Wnt pathway and the cholinergic system and a possible link has been highlighted. Further studies are needed to explore this relationship. Moreover, the harmonization of technical methods is necessary to confirm miRNAs shared between OP and FM.
Collapse
Affiliation(s)
- Soline Philippe
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Marine Delay
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
- Inserm 1107, Neuro-Dol, University Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Nicolas Macian
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Véronique Morel
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Marie-Eva Pickering
- Rheumatology Department, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
6
|
Cai Z, Liu F, Li Y, Bai L, Feng M, Li S, Ma W, Shi S. Functional micro-RNA drugs acting as a fate manipulator in the regulation of osteoblastic death. NANOSCALE 2023; 15:12840-12852. [PMID: 37482769 DOI: 10.1039/d3nr02318d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Bone loss is prevalent in clinical pathological phenomena such as osteoporosis, which is characterized by decreased osteoblast function and number, increased osteoclast activity, and imbalanced bone homeostasis. However, current treatment strategies for bone diseases are limited. Regulated cell death (RCD) is a programmed cell death pattern activated by the expression of specific genes in response to environmental changes. Various studies have shown that RCD is closely associated with bone diseases, and manipulating the death fate of osteoblasts could contribute to effective bone treatment. Recently, microRNA-targeting therapy drugs have emerged as a potential solution because of their precise targeting, powerful curative effect, and limited side effects. Nevertheless, their clinical application is limited by their inherent instability, easy enzymatic degradation, and poor membrane penetrability. To address this challenge, a self-assembling tetrahedral DNA nanostructure (TDN)-based microRNA (Tmi) delivery system has been proposed. TDN features excellent biocompatibility, cell membrane penetrability, serum stability, and modification versatility, making it an ideal nucleic acid carrier for miRNA protection and intracellular transport. Once inside cells, Tmi can dissociate and release miRNAs to manipulate key molecules in the RCD signaling pathway, thereby regulating bone homeostasis and curing diseases caused by abnormal RCD activation. In this paper, we discuss the impact of the miRNA network on the initiation and termination of four critical RCD programs in bone tissues: apoptosis, autophagy, pyroptosis, and ferroptosis. Furthermore, we present the Tmi delivery system as a miRNA drug vector. This provides insight into the clinical translation of miRNA nucleic acid drugs and the application of miRNA drugs in bone diseases.
Collapse
Affiliation(s)
- Zhengwen Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Fengshuo Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yong Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Long Bai
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Maogeng Feng
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Wang S, Tang C, Chen J, Tang H, Zhang L, Tang G. Bone marrow fatty acids affect osteoblastic differentiation through miR-92b-3p in the early stages of postmenopausal osteoporosis. Heliyon 2023; 9:e16513. [PMID: 37274695 PMCID: PMC10238740 DOI: 10.1016/j.heliyon.2023.e16513] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Osteoporosis is partially caused by dysfunctions in the commitment, differentiation or survival of osteoblasts. Bone marrow fatty acids affect bone resorption and formation. In this study, we aimed to explore the role of fatty acids in the early stages of postmenopausal osteoporosis and determine whether they influence osteogenic differentiation through microRNAs. A quantitative analysis of bone marrow fatty acids early after ovariectomy or sham surgery in a rat osteoporotic model was performed using gas chromatography/mass spectrometry. The results showed that palmitoleate was significantly decreased on postoperative day 3 while both pentadecanoate and palmitoleate were significantly decreased on postoperative day 5 in rats in the ovariectomized group compared with those in the sham group. Palmitoleate promotes osteogenic differentiation, whereas pentadecanoate inhibits this process. Palmitoleate levels were higher than those of pentadecanoate; therefore, the early overall effect of significant bone marrow fatty acid changes was a decrease in osteogenic differentiation. We also found that miR-92b-3p inhibited osteoblastogenesis via the miR-92b-3p/phosphatase and tensin homolog regulatory axis. Palmitoleate, pentadecanoate, and palmitate influenced the osteoblastogenesis of MC3T3-E1 cells through miR-92b-3p. Taken together, we propose that miR-92b-3p mediates the effect of bone marrow fatty acids on osteoblast differentiation in the early stages of osteoporosis. These findings may provide molecular insights for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Sizhu Wang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Cuisong Tang
- Department of Radiology, Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai, 200072, China
| | - Jieying Chen
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Huan Tang
- Department of Radiology, Huadong Hospital of Fudan University, Shanghai, 200040, China
| | - Lin Zhang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Department of Radiology, Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University, Shanghai, 200072, China
| |
Collapse
|
8
|
Li X, Wang ZY, Ren N, Wei ZY, Hu WW, Gu JM, Zhang ZL, Yu XT, Wang C. Identifying therapeutic biomarkers of zoledronic acid by metabolomics. Front Pharmacol 2023; 14:1084453. [PMID: 37180703 PMCID: PMC10166846 DOI: 10.3389/fphar.2023.1084453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Zoledronic acid (ZOL) is a potent antiresorptive agent that increases bone mineral density (BMD) and reduces fracture risk in postmenopausal osteoporosis (PMOP). The anti-osteoporotic effect of ZOL is determined by annual BMD measurement. In most cases, bone turnover markers function as early indicators of therapeutic response, but they fail to reflect long-term effects. We used untargeted metabolomics to characterize time-dependent metabolic shifts in response to ZOL and to screen potential therapeutic markers. In addition, bone marrow RNA-seq was performed to support plasma metabolic profiling. Sixty rats were assigned to sham-operated group (SHAM, n = 21) and ovariectomy group (OVX, n = 39) and received sham operation or bilateral ovariectomy, respectively. After modeling and verification, rats in the OVX group were further divided into normal saline group (NS, n = 15) and ZOL group (ZA, n = 18). Three doses of 100 μg/kg ZOL were administrated to the ZA group every 2 weeks to simulate 3-year ZOL therapy in PMOP. An equal volume of saline was administered to the SHAM and NS groups. Plasma samples were collected at five time points for metabolic profiling. At the end of the study, selected rats were euthanatized for bone marrow RNA-seq. A total number of 163 compound were identified as differential metabolites between the ZA and NS groups, including mevalonate, a critical molecule in target pathway of ZOL. In addition, prolyl hydroxyproline (PHP), leucyl hydroxyproline (LHP), 4-vinylphenol sulfate (4-VPS) were identified as differential metabolites throughout the study. Moreover, 4-VPS negatively correlated with increased vertebral BMD after ZOL administration as time-series analysis revealed. Bone marrow RNA-seq showed that the PI3K-AKT signaling pathway was significantly associated with ZOL-mediated changes in expression (adjusted-p = 0.018). In conclusion, mevalonate, PHP, LHP, and 4-VPS are candidate therapeutic markers of ZOL. The pharmacological effect of ZOL likely occurs through inhibition of the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Xiang Li
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zi-Yuan Wang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Ren
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhan-Ying Wei
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei-Wei Hu
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Mei Gu
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen-Lin Zhang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang-Tian Yu
- Clinical Research Center, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chun Wang
- Department of Osteoporosis and Bone Diseases, Shanghai Clinical Research Center of Bone Disease, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
miR-140-5p and miR-140-3p: Key Actors in Aging-Related Diseases? Int J Mol Sci 2022; 23:ijms231911439. [PMID: 36232738 PMCID: PMC9570089 DOI: 10.3390/ijms231911439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
microRNAs (miRNAs) are small single strand non-coding RNAs and powerful gene expression regulators. They mainly bind to the 3′UTR sequence of targeted mRNA, leading to their degradation or translation inhibition. miR-140 gene encodes the pre-miR-140 that generates the two mature miRNAs miR-140-5p and miR-140-3p. miR-140-5p/-3p have been associated with the development and progression of cancers, but also non-neoplastic diseases. In aging-related diseases, miR-140-5p and miR-140-3p expressions are modulated. The seric levels of these two miRNAs are used as circulating biomarkers and may represent predictive tools. They are also considered key actors in the pathophysiology of aging-related diseases. miR-140-5p/-3p repress targets regulating cell proliferation, apoptosis, senescence, and inflammation. This work focuses on the roles of miR-140-3p and miR-140-5p in aging-related diseases, details their regulation (i.e., by long non-coding RNA), and reviews the molecular targets of theses miRNAs involved in aging pathophysiology.
Collapse
|
10
|
Chen T, Huo K, Kong D, Su S, Yang T, Zhang W, Shao J. Comprehensive analysis of lncRNA expression profiles in postmenopausal osteoporosis. Genomics 2022; 114:110452. [PMID: 35988655 DOI: 10.1016/j.ygeno.2022.110452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/24/2022] [Accepted: 08/16/2022] [Indexed: 11/04/2022]
Abstract
To explore the key lncRNAs affecting postmenopausal osteoporosis (PMOP) progression, the transcriptome sequencing of peripheral blood mononuclear cells from fifteen early postmenopausal women, according to bone mineral density, were divided into groups of osteoporosis, osteopenia and normality, in each of which the expression profiles of lncRNAs was investigated. From the results we observed nine candidates of lncRNAs, which were to be compared with miRBase, and found that MIR22HG as one candidate of lncRNA was most likely to be directly used as miRNA precursor. Based on the KEGG annotation and lncRNA-miRNA-mRNA-KEGG network, we analyzed the potential role of candidate lncRNAs. The results showed that the expression profiles of lncRNAs could help identify the novel ones involved in the progression of PMOP, and that MIR22HG could serve as a miRNA precursor to regulate FoxO signaling pathway in bone metabolism. Our findings can be of great help in predicting and diagnosing early PMOP.
Collapse
Affiliation(s)
- Tianning Chen
- Graduate School of Ningxia Medical University, Yinchuan, Ningxia Hui-Autonomous Region, 750004, China
| | - Kailun Huo
- Graduate School of Ningxia Medical University, Yinchuan, Ningxia Hui-Autonomous Region, 750004, China
| | - Dece Kong
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai 200135, China; Research Laboratory of Sports and Health, Institute of Medical Engineering, Shanghai University, Shanghai 200135, China
| | - Shan Su
- Graduate School of Ningxia Medical University, Yinchuan, Ningxia Hui-Autonomous Region, 750004, China
| | - Tieyi Yang
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai 200135, China; Research Laboratory of Sports and Health, Institute of Medical Engineering, Shanghai University, Shanghai 200135, China
| | - Weiwei Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jin Shao
- Department of Orthopedics, Pudong New Area Gongli Hospital, School of Clinical Medicine, Shanghai University, Shanghai 200135, China; Research Laboratory of Sports and Health, Institute of Medical Engineering, Shanghai University, Shanghai 200135, China.
| |
Collapse
|
11
|
Matuszyk J. MALAT1-miRNAs network regulate thymidylate synthase and affect 5FU-based chemotherapy. Mol Med 2022; 28:89. [PMID: 35922756 PMCID: PMC9351108 DOI: 10.1186/s10020-022-00516-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background The active metabolite of 5-Fluorouracil (5FU), used in the treatment of several types of cancer, acts by inhibiting the thymidylate synthase encoded by the TYMS gene, which catalyzes the rate-limiting step in DNA replication. The major failure of 5FU-based cancer therapy is the development of drug resistance. High levels of TYMS-encoded protein in cancerous tissues are predictive of poor response to 5FU treatment. Expression of TYMS is regulated by various mechanisms, including involving non-coding RNAs, both miRNAs and long non-coding RNAs (lncRNAs). Aim To delineate the miRNAs and lncRNAs network regulating the level of TYMS-encoded protein. Main body Several miRNAs targeting TYMS mRNA have been identified in colon cancers, the levels of which can be regulated to varying degrees by lncRNAs. Due to their regulation by the MALAT1 lncRNA, these miRNAs can be divided into three groups: (1) miR-197-3p, miR-203a-3p, miR-375-3p which are downregulated by MALAT1 as confirmed experimentally and the levels of these miRNAs are actually reduced in colon and gastric cancers; (2) miR-140-3p, miR-330-3p that could potentially interact with MALAT1, but not yet supported by experimental results; (3) miR-192-5p, miR-215-5p whose seed sequences do not recognize complementary response elements within MALAT1. Considering the putative MALAT1-miRNAs interaction network, attention is drawn to the potential positive feedback loop causing increased expression of MALAT1 in colon cancer and hepatocellular carcinoma, where YAP1 acts as a transcriptional co-factor which, by binding to the TCF4 transcription factor/ β-catenin complex, may increase the activation of the MALAT1 gene whereas the MALAT1 lncRNA can inhibit miR-375-3p which in turn targets YAP1 mRNA. Conclusion The network of non-coding RNAs may reduce the sensitivity of cancer cells to 5FU treatment by upregulating the level of thymidylate synthase.
Collapse
Affiliation(s)
- Janusz Matuszyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 R. Weigla Street, 53-114, Wroclaw, Poland.
| |
Collapse
|
12
|
Xiao J, Li W, Li G, Tan J, Dong N. STK11 overexpression prevents glucocorticoid-induced osteoporosis via activating the AMPK/SIRT1/PGC1α axis. Hum Cell 2022; 35:1045-1059. [PMID: 35543972 DOI: 10.1007/s13577-022-00704-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/16/2022] [Indexed: 11/04/2022]
Abstract
Osteoporosis (OP) is a frequent orthopedic disease characterized by pain, fractures and deformities. Glucocorticoids are the most common cause of secondary osteoporosis. Here, we aim to explore the function and mechanism of STK11 in glucocorticoid (GC)-induced OP. Human mesenchymal stromal cells (hMSCs) were differentiated under osteogenic or adipogenic culture medium. An in-vitro OP model was induced by dexamethasone (DEX). The viability, differentiation, apoptosis, and ROS level were evaluated for investigating the functions of SKT11 on hMSCs. The SIRT1 inhibitor EX-527, PGC1α inhibitor SR-18292, and AMPK activator metformin were administered into hMSCs for confirming the mechanism of SKT11. Our results showed that STK11 was down-regulated in OP tissues, as well as DEX-treated hMSCs. Overexpressing STK11 attenuated DEX-mediated inhibition of osteogenic differentiation and heightened the activation of the AMPK/SIRT1/PGC1α pathway, whereas STK11 knockdown exerted opposite effects. Inhibiting SIRT1 or PGC1α repressed the promotive effect of STK11 on osteogenic differentiation of hMSCs, while activation of AMPK abated the inhibitory effect of STK11 knockdown on osteogenic differentiation of hMSCs. In conclusion, this study revealed that overexpressing STK11 dampened GC-induced OP by activating the AMPK/SIRT1/PGC1α axis.
Collapse
Affiliation(s)
- Jiao Xiao
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Wenjin Li
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Guojuan Li
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Jiankai Tan
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China
| | - Na Dong
- Department of Endocrinology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, No.336 Dongfeng South Road, Zhuhui District, Hengyang, 421001, Hunan, China.
| |
Collapse
|
13
|
Ling S, Luo X, Lv B, Wang H, Xie M, Huang K, Sun J. Effect of miR-144-3p-Targeted Regulation of PTEN on Proliferation, Apoptosis, and Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells under Stretch. Emerg Med Int 2022; 2022:5707504. [PMID: 35592654 PMCID: PMC9113913 DOI: 10.1155/2022/5707504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
Objective To investigate the effects of miR-144-3p-targeted regulation of phosphatase and tensin homolog deleted on chromosome ten (PTEN) gene on proliferation, apoptosis, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) under retraction force. Methods The BMSCs of rats were randomly divided into the tension MSC group with detrusor stimulation and the MSC group without detrusor stimulation, after which osteogenic differentiation of BMSCs was induced in both groups. Alkaline phosphatase (ALP) staining and alizarin red staining were used to detect the osteogenic differentiation ability of the two groups of cells. Real-time quantitative reverse transcription PCR (qRT-PCR) was used to detect the expression of miR-144-3p and PTEN in the two groups of cells after osteogenic differentiation. Bioinformatics website and dual luciferase reporter were used to detect the relationship between miR-144-3p and PTEN. The tension MSC group was used as a control group, and miR-144-3p mimics (miR-144-3p mimic group), mimic controls (mimic-NC group), PTEN interferers (si-PTEN group), and interference controls (si-NC group) were transfected into BMSCs. The BMSCs were then continuously stimulated for 24 h using a Flexercell in vitro cellular mechanics loading device, applying a draft force at a frequency of 1 Hz and a deformation rate of 18%. The cell proliferation was detected by Cell Counting Kit-8 (CCK-8) colorimetric assay; the expression levels of cyclin, cyclin-dependent kinases (CDK), BCL2-associated X (BAX), B-cell lymphoma-2 (BCL-2), and other cell cycle and apoptosis related proteins were detected by western blot (WB); and the osteogenic differentiation ability of MSC cells was detected by ALP staining and alizarin red staining. Results Compared with the MSC group, the level of miR-144-3p was significantly lower and the level of PTEN was significantly higher in the tension MSC group. ALP staining showed normal activity in the MSC group and decreased ALP activity in the tension MSC group compared to the MSC group. Alizarin red staining in the MSC group showed scattered calcium nodule formation, and alizarin red staining showed red nodules with a more uniform color distribution. Compared to the MSC group, the tension MSC group showed fewer, smaller, and lighter staining mineralized nodules. Compared with the tension group and mimic-NC group (si-NC group), the proliferation rate of cells in the miR-144-3p mimic group (si-PTEN group) was significantly higher; the expression levels of PTEN and BAX were significantly lower; and the expression levels of cyclin, CDK, and BCL-2 protein were significantly higher. ALP staining results revealed that the miR-144-3p mimic group (si-PTEN group) showed significantly higher osteogenic differentiation ability and ALP activity of MSC than the tension group and mimic-NC group (si-NC group). Conclusion miR-144-3p may inhibit apoptosis and promote proliferation and osteogenic differentiation of BMSCs under tension by targeting and regulating PTEN.
Collapse
Affiliation(s)
- Shiyong Ling
- Department of Orthopedics, Zhabei Central Hospital, Jing'an District, Shanghai 200070, China
| | - Xi Luo
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Bo Lv
- Department of Orthopedics, Zhabei Central Hospital, Jing'an District, Shanghai 200070, China
| | - Hua Wang
- Department of Orthopedics, Zhabei Central Hospital, Jing'an District, Shanghai 200070, China
| | - Mengzhi Xie
- Department of Radiology, Zhabei Central Hospital, Jing'an District, Shanghai 200070, China
| | - Kai Huang
- Department of Orthopedics, Zhabei Central Hospital, Jing'an District, Shanghai 200070, China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Spine Center, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
14
|
Liu X, Fan K, Lin Q, Tang M, Wang Q, Huang E, Zhang W, Chen T, Ou Q. Serum-Derived Exosomal miR-140-5p as a Promising Biomarker for Differential Diagnosis of Anti-NMDAR Encephalitis With Viral Encephalitis. Front Immunol 2022; 13:840003. [PMID: 35273615 PMCID: PMC8902043 DOI: 10.3389/fimmu.2022.840003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is the most common type of autoimmune encephalitis. Early recognition and treatment, especially distinguishing from viral encephalitis (VE) in the early stages, are crucial for the outcomes of patients with anti-NMDAR encephalitis. Compared with plasma microRNAs (miRNAs), exosomal miRNAs are more abundant and not easy to degrade. Moreover, exosomes can pass through the blood–brain barrier. This study aimed to explore the clinical value of serum exosomal miRNAs in the differential diagnosis of anti-NMDAR encephalitis with VE. Method Serum samples from a total of 30 patients with anti-NMDAR encephalitis, 30 patients with VE, and 30 cases of control patients hospitalized in the same period were collected. Firstly, the serum exosomes were isolated and identified by transmission electron microscope (TEM), nanoparticle-tracking analyzer (NTA), and Western blot (WB). The expression levels of let-7b and miR-140-5p from serum exosomes were detected by real-time quantitative PCR (qPCR). At the same time, we also detected complement 3 (C3), complement 4 (C4), and high sensitivity CRP (hs-CRP) expression levels in three groups. Finally, we analyzed the difference and diagnostic value of the test results. Results Isolated particles showed identical characteristics to the exosomes through TEM, NTA, and WB analyses. Compared with the VE group and control group, the expression of miR-140-5p was significantly upregulated in serum exosomes of the NMDAR group. In contrast, the serum C3 in the NMDAR group was significantly lower than the other two groups. ROC curve analysis showed the area under the curve (AUC) of serum exosomal miR-140-5p and serum C3 was 0.748 (76.67% sensitivity and 73.33% specificity) and 0.724 (76.67% sensitivity and 60% specificity) to distinguish anti-NMDAR encephalitis from VE, respectively. The AUC of serum exosomal miR-140-5p combined with serum C3 was 0.811, the sensitivity was 70.00%, and the specificity was 86.67%. Conclusion Serum exosomal miR-140-5p combined with serum C3 would be a promising marker in the differential diagnosis of anti-NMDAR encephalitis with VE.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Gene Diagnosis Research Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Kengna Fan
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qingwen Lin
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Minjie Tang
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qi Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Er Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Weiqing Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Tianbin Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Gene Diagnosis Research Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Gene Diagnosis Research Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
15
|
Analysis of Effects of PTEN-Mediated TGF-β/Smad2 Pathway on Osteogenic Differentiation in Osteoporotic Tibial Fracture Rats and Bone Marrow Mesenchymal Stem Cell under Tension. Cell Microbiol 2022. [DOI: 10.1155/2022/1004203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose. To discuss effects of phosphatase and tensin homolog protein (PTEN)-mediated transforming growth factor-β (TGF-β)/Smad homologue 2 (Smad2) pathway on osteogenic differentiation in osteoporotic (OP) tibial fracture rats and bone marrow mesenchymal stem cell (BMSC) under tension. Methods. A tibial fracture model was established. The rats were divided into sham-operated group and model group, and tibia tissue was collected. Purchase well-grown cultured rat BMSC, and use the Flexercell in vitro cell mechanics loading device to apply tension. The expression of PTEN was detected by qRT-PCR. After the BMSCs were transfected with si-PTEN and oe-PTEN, the force was applied to detect cell differentiation. The expression of TGF-β/Smad2 protein was detected by Western blot. The formation of calcium nodules in BMSC was detected by alkaline phosphatase (ALP) staining and alizarin red (AR) staining. Results. The expression of PTEN was higher in the model group and tension MSC group, and the expression of TGF-β and Smad2 protein was lower. The expression of TGF-β and Smad2 protein in oe-PTEN group was lower than the oe-NC group and control group. The expression of TGF-β and Smad2 protein in si-PTEN group was higher than the si-NC group and control group. The results of ALP staining and AR staining also confirmed the above results. Conclusion. PTEN-mediated TGF-β/Smad2 pathway may play a key role in the osteogenic differentiation of OP tibial fracture rats. Downregulation of PTEN and upregulation of TGF-β/Smad2 signal can promote the osteogenic differentiation of BMSC under tension.
Collapse
|
16
|
Teng JW, Bian SS, Kong P, Chen YG. Icariin triggers osteogenic differentiation of bone marrow stem cells by up-regulating miR-335–5p. Exp Cell Res 2022; 414:113085. [DOI: 10.1016/j.yexcr.2022.113085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/15/2022]
|
17
|
Fang B, Zhang K, Zhang J, Chen Z, Xuan Y, Huang H. Mechanical strain regulates osteoclastogenesis via modulating the PTEN/PI3K/Akt signal pathway through miR-21. Cytotechnology 2022; 74:65-75. [PMID: 35185286 PMCID: PMC8816981 DOI: 10.1007/s10616-021-00507-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023] Open
Abstract
Mechanical strain regulated osteoclastic differentiation and angiogenesis are crucial for bone modeling and remodeling, and previous data indicate that high-magnitude strain within physiological load regulates osteoclastic differentiation. However, the underlying mechanisms are still not fully understood. In the present study, the RAW264.7 mouse monocyte/macrophage was used as an osteoclast precursor, and the bone marrow-derived macrophages (BMMs) were isolated and cultured in vitro. The above cells were subjected to macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-kB ligand (RANKL) for the induction of osteoclast differentiation. Subsequently, the above cells were stretched by differential strain magnitudes to simulate the mechanical stimuli in the physiological conditions, and we found that low-magnitude strain (100 με) increased the expression levels of Acp5, Clcn7, MMP9 and Ctsk to promote osteoclastogenesis, while high-magnitude strain (3000 με) had opposite effects. In addition, we noticed that high-magnitude strain upregulated PTEN to inactivate the PI3K/Akt signaling pathway, and silencing of PTEN abrogated the suppressing effects of high-magnitude strain on osteoclastic differentiation. Next, we screened out that high-magnitude strain downregulated miR-21 to promote PTEN expressions in a competing endogenous RNA (ceRNA)-dependent manner. Finally, upregulation of miR-21 recovered osteoclastic differentiation in RAW264.7 and BMMs cells stimulated with high-magnitude strain. Collectively, our findings suggested that high-magnitude mechanical strain affected osteoclastic differentiation through modulating the miR-21/PTEN/PI3K/Akt signaling cascade, which provided potential strategies for the treatment of bone-related diseases. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10616-021-00507-x.
Collapse
Affiliation(s)
- Bin Fang
- Department of Spine Surgery, The Central Hospital Affiliated to Shaoxing University, No. 1 Huayu Road, Keqiao District, Shaoxing City, 312030 Zhejiang Province China
| | - Kailong Zhang
- Beijing Zhongwei Research Center of biological and translational medicine, Beijing, China
| | - Jie Zhang
- Beijing Zhongwei Research Center of biological and translational medicine, Beijing, China
| | - Zhenda Chen
- Beijing Zhongwei Research Center of biological and translational medicine, Beijing, China
| | - Yunxin Xuan
- Beijing Zhongwei Research Center of biological and translational medicine, Beijing, China
| | - Hongbin Huang
- Department of Orthopedics, Yiwu Central Hospital, No. 519 Nan Men Street, Yiwu City, 322000 Zhejiang Province China
| |
Collapse
|
18
|
Li Y, He Y, Chen G, Huang Z, Yi C, Zhang X, Deng F, Yu D. Selenomethionine protects oxidative-stress-damaged bone-marrow-derived mesenchymal stem cells via an antioxidant effect and the PTEN/PI3K/AKT pathway. Exp Cell Res 2021; 408:112864. [PMID: 34626586 DOI: 10.1016/j.yexcr.2021.112864] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 11/24/2022]
Abstract
Dental implant surgery is currently a routine therapy for the repair of missing dentition or dentition defects. Both clinical and basic research have elucidated that oxidative stress caused by the accumulation of reactive oxygen species (ROS) for various reasons impairs the process of osteointegration after dental implantation. Therefore, the osteogenic micro-environment must be ameliorated to decrease the damage caused by oxidative stress. Selenomethionine (SEMET) has been reported to play an important role in alleviating oxidative stress and accelerating cell viability and growth. However, it remains unclear whether it exerts protective effects on bone-marrow-derived mesenchymal stem cells (BMSCs) under oxidative stress. In this study, we explored the influence of selenomethionine on the viability and osteogenic differentiation of BMSCs under oxidative stress and the underlying mechanisms. Results showed that 1 μM selenomethionine was the optimum concentration for BMSCs under H2O2 stimulation. H2O2-induced oxidative stress suppressed the viability and osteogenic differentiation of BMSCs, manifested by the increases in ROS production and cell apoptosis rates, and by the decrease of osteogenic differentiation-related markers. Notably, the aforementioned oxidative damage and osteogenic dysfunction induced by H2O2 were rescued by selenomethionine. Furthermore, we found that the PTEN expression level was suppressed and its downstream PI3K/AKT pathway was activated by selenomethionine. However, when PTEN was stimulated, the PI3K/AKT pathway was down-regulated, and the protective effects of selenomethionine on BMSC osteogenic differentiation diminished, while the inhibition of PTEN up-regulated the protective effects of selenomethionine. Together, these results revealed that selenomethionine could attenuate H2O2-induced BMSC dysfunction through an antioxidant effect, modulated via the PTEN/PI3K/AKT pathway, suggesting that selenomethionine is a promising antioxidant candidate for reducing oxidative stress during the process of dental implant osteointegration.
Collapse
Affiliation(s)
- Yiming Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Yi He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Guanhui Chen
- Department of Stomatology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Ziqing Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Chen Yi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Xiliu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China
| | - Feilong Deng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China.
| | - Dongsheng Yu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, PR China.
| |
Collapse
|
19
|
Yang T, Xu C, Ding N, Luo S, Luo L, Jin S, Chen Y. MiR-140 suppresses airway inflammation and inhibits bronchial epithelial cell apoptosis in asthma by targeting GSK3β. Exp Mol Pathol 2021:104717. [PMID: 34742738 DOI: 10.1016/j.yexmp.2021.104717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
AIM OF THE STUDY Asthma is a common and complex chronic inflammatory disease induced by genetic and environmental factors that affects the airways of the lungs. MicroRNAs (miRNAs) are key regulators of various cellular processes and have been shown to be critically involved in asthma progression. The objective of our study was to clarify the function and molecular mechanism of miR-140 in the progression of asthma. MATERIALS AND METHODS MiR-140 expression was evaluated using RT-qPCR. Pathological changes in the lung tissue were confirmed using HE and PAS staining. The levels of IL-5, TGF-β1, and IL-13 in the serum or bronchioalveolar lavage fluid were detected with an ELISA. Cellular apoptosis was measured using a TUNEL assay. The levels of Bax, Bcl-2, Cleaved caspase-3, and glycogen synthase kinase-3β (GSK-3β) were verified with a western blot. GSK3β expression was also confirmed by immunohistochemistry. The binding ability between miR-140 and GSK3β was confirmed using a luciferase reporter assay, RNA immunoprecipitation (RIP) assay and Pull-down assay. RESULTS MiR-140 was markedly downregulated in asthmatic mice. Additionally, miR-140 weakened airway inflammation and bronchial epithelial cell apoptosis in asthmatic mice. Further experiments revealed that miR-140 negatively regulated GSK3β expression and could bind to GSK3β in asthma. Finally, rescue assays demonstrated that GSK3β overexpression rescued the effects of miR-140 on asthma progression. CONCLUSION MiR-140 targeted GSK3β to suppress airway inflammation and inhibit bronchial epithelial cell apoptosis in asthma.
Collapse
Affiliation(s)
- Ting Yang
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha city, Hunan 410000, China
| | - Chang Xu
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha city, Hunan 410000, China
| | - Niu Ding
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha city, Hunan 410000, China
| | - Shujuan Luo
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha city, Hunan 410000, China
| | - Liyan Luo
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha city, Hunan 410000, China
| | - Shijie Jin
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha city, Hunan 410000, China
| | - Yanping Chen
- Department of Respiratory Medicine, Hunan Children's Hospital, Changsha city, Hunan 410000, China.
| |
Collapse
|
20
|
Liang T, Chen J, Xu G, Zhang Z, Xue J, Zeng H, Jiang J, Chen T, Qin Z, Li H, Ye Z, Nie Y, Liu C, Zhan X. Ferroptosis-related gene SOCS1, a marker for tuberculosis diagnosis and treatment, involves in macrophage polarization and facilitates bone destruction in tuberculosis. Tuberculosis (Edinb) 2021; 132:102140. [PMID: 34856472 DOI: 10.1016/j.tube.2021.102140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022]
Abstract
This study was aimed to reveal the role of ferroptosis in tuberculosis infection. To elucidate the ferroptosis-related DEGs, GEO datasets associated with tuberculosis infection were downloaded. The two external validation GEO datasets were exploited for subsequent verification of the ferroptosis-related DEGs. We further evaluated the correlation among the ferroptosis-related DEGs, therapeutic effects, and drug resistance. Finally, we tried to reveal the engagement of the ferroptosis-related DEGs in bone destruction during TB infection. The present study identified SOCS1 as the only ferroptosis-related DEGs. Compared to the non-TB patients, up-regulation of SOCS1 was evident in the TB patients. After receiving standard anti-TB treatment, significant down-regulation of SOCS1 confirmed its acceptance as the marker for therapeutic efficacy. The involvement of SOCS1 has also been suggested in the regulation of the micro immune environment in TB. Furthermore, SOCS1 might play an important role in causing bone destruction during TB infection. FRGs-SOCS1 may be the key gene involved in the pathogenesis and progression of TB infection.
Collapse
Affiliation(s)
- Tuo Liang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, PR China
| | - Jiarui Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, PR China
| | - GuoYong Xu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, PR China
| | - Zide Zhang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, PR China
| | - Jiang Xue
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, PR China
| | - Haopeng Zeng
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, PR China
| | - Jie Jiang
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, PR China
| | - Tianyou Chen
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, PR China
| | - Zhaojie Qin
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, PR China
| | - Hao Li
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, PR China
| | - Zhen Ye
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, PR China
| | - Yunfeng Nie
- Guangxi Medical University, No.22 Shuangyong Road, Nanning, Guangxi, PR China
| | - Chong Liu
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, PR China
| | - Xinli Zhan
- Department of Spine and Osteopathy Ward, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, Guangxi, PR China.
| |
Collapse
|
21
|
Zhao Y, Li A. miR-19b-3p relieves intervertebral disc degeneration through modulating PTEN/PI3K/Akt/mTOR signaling pathway. Aging (Albany NY) 2021; 13:22459-22473. [PMID: 34554926 PMCID: PMC8507280 DOI: 10.18632/aging.203553] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 09/03/2021] [Indexed: 12/13/2022]
Abstract
Emerging studies have revealed that non-coding RNAs contribute to regulating intervertebral disc degeneration (IVDD). Here, we intended to probe into the function of miR-19b-3p in IVDD evolvement. The miR-19b-3p level in the intervertebral disc (IVD) tissues of IVDD patients and IL-1β/TNF-α/hydrogen peroxide-treated human nucleus pulposus cells (HNPCs) was determined by quantitative real-time polymerase chain reaction (qRT-PCR). Also, qRT-PCR was conducted to examine the profiles of MMP-3, MMP-9, MMP-13, ADAMTS-4 and ADAMTS-5. The PTEN/PI3K/Akt/mTOR pathway was examined by Western blot (WB). The miR-19b-3p overexpression assay was carried out, and HNPC proliferation and apoptosis were compared by the cell counting kit-8 (CCK-8) assay and flow cytometry (FCM). In addition, the mechanism of action of miR-19b-3p was clarified using the PTEN inhibitor (VO-Ohpic triphosphate) or the mTOR inhibitor (Rapamycin) on the basis of IL-1β intervention and miR-19b-3p mimics transfection. Our results testified that miR-19b-3p expression was curbed in IVD tissues of the IVDD patients (vs. normal IVD tissues) and IL-1β-, TNF-α, or hydrogen peroxide-treated HNPCs. Up-regulating miR-19b-3p enhanced HNPC proliferation and hampered its apoptosis. Moreover, miR-19b-3p dampened the PTEN profile and activated the PI3K/Akt/mTOR pathway. Interestingly, attenuating PTEN reduced IL-1β-, TNF-α-, or hydrogen peroxide-mediated HNPC apoptosis and up-regulated PI3K/Akt/mTOR, while inhibiting the mTOR pathway offset the protective function of miR-19b-3p. Further mechanism studies illustrated that miR-19b-3p targeted the 3'untranslated region (UTR) of PTEN and abated the PTEN level. This research confirmed that miR-19b-3p suppressed HNPC apoptosis in the in-vitro model of IVDD by regulating PTEN/PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yulin Zhao
- Department of Spine Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, ShanDong University, Qingdao 266035, ShanDong, China
| | - Aimin Li
- Department of Spine Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, ShanDong University, Qingdao 266035, ShanDong, China
| |
Collapse
|
22
|
miR-129 Attenuates Myocardial Ischemia Reperfusion Injury by Regulating the Expression of PTEN in Rats. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5535788. [PMID: 34435045 PMCID: PMC8382530 DOI: 10.1155/2021/5535788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/13/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
PTEN/AKT signaling plays pivotal role in myocardial ischemia reperfusion injury (MIRI), and miRNAs are involved in the regulation of AKT signaling. This study was designed to investigate the interaction between miR-129 and PTEN in MIRI. A MIRI rat model and a hypoxia reoxygenation (H/R) H9C2 cell model were constructed to simulate myocardial infarction clinically. TTC staining, creatine kinase (CK) activity, TUNEL/Hoechst double staining, Hoechst staining and flow cytometer were used for evaluating myocardial infarction or cell apoptosis. miR-129 mimic transfection experiment and luciferase reporter gene assay were conducted for investigating the function of miR-129 and the interaction between miR-129 and PTEN, respectively. Real-time PCR and western blotting were performed to analyze the gene expression. Compared to the control, MIRI rats presented obvious myocardial infarction, higher CK activity, increased expression of caspase-3 and PTEN, decreased expression of miR-129, and insufficient AKT phosphorylation. Consistently, H/R significantly increased the apoptosis of H9C2 cells, concomitant with the downregulation of miR-129, upregulation of PTEN and caspase-3, and insufficient phosphorylation of AKT, while miR-129 mimic obviously inhibited the expression of PTEN and caspase-3, increased the AKT phosphorylation, and decreased the cell apoptosis. Additionally, miR-129 mimic obviously decreased the relative luciferase activity in H9C2 cells. To our best knowledge, this study firstly found that the low expression of miR-129 accelerates the myocardial cell apoptosis by directly targeting 3'UTR of PTEN. miR-129 is an important biomarker for MIRI, as well as a potential therapy target.
Collapse
|
23
|
Razmara E, Bitaraf A, Karimi B, Babashah S. Functions of the SNAI family in chondrocyte-to-osteocyte development. Ann N Y Acad Sci 2021; 1503:5-22. [PMID: 34403146 DOI: 10.1111/nyas.14668] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Different cellular mechanisms contribute to osteocyte development. And while critical roles for members of the zinc finger protein SNAI family (SNAIs) have been discussed in cancer-related models, there are few reviews summarizing their importance for chondrocyte-to-osteocyte development. To help fill this gap, we review the roles of SNAIs in the development of mature osteocytes from chondrocytes, including the regulation of chondro- and osteogenesis through different signaling pathways and in programmed cell death. We also discuss how epigenetic factors-including DNA methylation, histone methylation and acetylation, and noncoding RNAs-contribute differently to both chondrocyte and osteocyte development. To better grasp the important roles of SNAIs in bone development, we also review genotype-phenotype correlations in different animal models. We end with comments about the possible importance of the SNAI family in cartilage/bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnaz Karimi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
Ming Y, Liu ZP. Overexpression of lncRNA-NEF regulates the miR-155/PTEN axis to inhibit adipogenesis and promote osteogenesis. Kaohsiung J Med Sci 2021; 37:930-939. [PMID: 34382731 DOI: 10.1002/kjm2.12423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
Osteoporosis is characterized by osteopenia and bone tissue microstructure degradation. Adipose-derived stem cells (ADSCs) are multipotent adult stem cells that have the ability to yield mesenchymal stem cells and have the potential to undergo osteogenesis and bone regeneration. Therefore, ADSCs have the potential to treat osteoporosis, but the molecular mechanism of these cells in the process of osteogenesis and osteoclasts is still not clear. In the present study, we collected serum samples from 10 clinical osteoporosis patients to detect long noncoding RNA-neighboring enhancer of FOXA2 (lncRNA-NEF) and miR-155 expression levels. Half of these patients were senile and half were postmenopausal women, and nine of them have used steroids for a long time, in which ADSCs were cultured and induced to adipogenic and osteogenic differentiations. Quantitative real-time polymerase chain reaction was used to detect the expression of genes in ADSCs. Overexpression of lncRNA-NEF in ADSCs were undertaken to verify its regulatory function on cell osteogenic and adipogenic differentiations. A luciferase activity experiment was performed to determine the relationship between miR-155 and phosphatase and tensin homologue deleted on chromosome 10 (PTEN). The level of lncRNA-NEF was downregulated, and miR-155 was upregulated, in serum samples from patients with clinical osteoporosis. LncRNA-NEF showed different expression levels in the induction of osteogenic or adipogenic differentiation, which increased during osteogenic induction and decreased during adipogenic induction. Overexpression of lncRNA-NEF or downregulation of miR-155 in ADSCs promoted osteogenic differentiation and inhibited adipogenesis progression. PTEN was the direct target of miR-155 and was involved in the regulation of osteogenic differentiation. Overexpression of lncRNA-NEF regulated the miR-155/PTEN axis to inhibit adipogenesis and promote osteogenesis in ADSCs.
Collapse
Affiliation(s)
- Ying Ming
- Department of Clinical Laboratory, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, China
| | - Zheng-Peng Liu
- Department of Spinal Surgery Ward, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, China
| |
Collapse
|
25
|
Zhao X, Patil S, Xu F, Lin X, Qian A. Role of Biomolecules in Osteoclasts and Their Therapeutic Potential for Osteoporosis. Biomolecules 2021; 11:747. [PMID: 34067783 PMCID: PMC8156890 DOI: 10.3390/biom11050747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoclasts (OCs) are important cells that are involved in the regulation of bone metabolism and are mainly responsible for coordinating bone resorption with bone formation to regulate bone remodeling. The imbalance between bone resorption and formation significantly affects bone metabolism. When the activity of osteoclasts exceeds the osteoblasts, it results in a condition called osteoporosis, which is characterized by reduced bone microarchitecture, decreased bone mass, and increased occurrences of fracture. Molecules, including transcription factors, proteins, hormones, nucleic acids, such as non-coding RNAs, play an important role in osteoclast proliferation, differentiation, and function. In this review, we have highlighted the role of these molecules in osteoclasts regulation and osteoporosis. The developed therapeutics targeting these molecules for the treatment of osteoporosis in recent years have also been discussed with challenges faced in clinical application.
Collapse
Affiliation(s)
- Xin Zhao
- School of Pharmacy, Shaanxi Institute of International Trade & Commerce, Xi’an 712046, China;
| | - Suryaji Patil
- Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (S.P.); (F.X.); (X.L.)
| | - Fang Xu
- Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (S.P.); (F.X.); (X.L.)
| | - Xiao Lin
- Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (S.P.); (F.X.); (X.L.)
| | - Airong Qian
- Xi’an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (S.P.); (F.X.); (X.L.)
| |
Collapse
|
26
|
Wu YZ, Huang HT, Cheng TL, Lu YM, Lin SY, Ho CJ, Lee TC, Hsu CH, Huang PJ, Huang HH, Li JY, Su YD, Chen SC, Kang L, Chen CH. Application of microRNA in Human Osteoporosis and Fragility Fracture: A Systemic Review of Literatures. Int J Mol Sci 2021; 22:ijms22105232. [PMID: 34063380 PMCID: PMC8156577 DOI: 10.3390/ijms22105232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) could serve as ideal entry points to the deregulated pathways in osteoporosis due to their relatively simple upstream and downstream relationships with other molecules in the signaling cascades. Our study aimed to give a comprehensive review of the already identified miRNAs in osteoporosis from human blood samples and provide useful information for their clinical application. A systematic literature search for relevant studies was conducted in the Pubmed database from inception to December 2020. We set two essential inclusion criteria: human blood sampling and design of controlled studies. We sorted the results of analysis on human blood samples according to the study settings and compiled the most promising miRNAs with analyzed diagnostic values. Furthermore, in vitro and in vivo evidence for the mechanisms of the identified miRNAs was also illustrated. Based on both diagnostic value and evidence of mechanism from in vitro and in vivo experiments, miR-23b-3p, miR-140-3p, miR-300, miR-155-5p, miR-208a-3p, and miR-637 were preferred candidates in diagnostic panels and as therapeutic agents. Further studies are needed to build sound foundations for the clinical usage of miRNAs in osteoporosis.
Collapse
Affiliation(s)
- Yen-Zung Wu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Yen-Mou Lu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Cheng-Jung Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Tien-Ching Lee
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Chia-Hao Hsu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Peng-Ju Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Han Hsiang Huang
- Department of Veterinary Medicine, National Chiayi University, Chiayi 60004, Taiwan;
| | - Jhong-You Li
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Yu-De Su
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan
| | - Shih-Chieh Chen
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
- Department of Medical Records, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (L.K.); (C.-H.C.); Tel.: +886-7-3209-209 (C.-H.C.)
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (Y.-Z.W.); (H.-T.H.); (T.-L.C.); (Y.-M.L.); (S.-Y.L.); (C.-J.H.); (T.-C.L.); (C.-H.H.); (P.-J.H.); (J.-Y.L.); (Y.-D.S.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80420, Taiwan
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Correspondence: (L.K.); (C.-H.C.); Tel.: +886-7-3209-209 (C.-H.C.)
| |
Collapse
|
27
|
Ghafouri-Fard S, Abak A, Shoorei H, Mohaqiq M, Majidpoor J, Sayad A, Taheri M. Regulatory role of microRNAs on PTEN signaling. Biomed Pharmacother 2020; 133:110986. [PMID: 33166764 DOI: 10.1016/j.biopha.2020.110986] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Phosphatase and tensin homolog (PTEN) gene encodes a tumor suppressor protein which is altered in several malignancies. This protein is a negative regulator of the PI3K/AKT signaling. Several transcription factors regulate the expression of PTEN in positive or negative directions. Moreover, numerous microRNAs (miRNAs) have functional interactions with PTEN and inhibit its expression. Suppression of PTEN can attenuate the response of cancer cells to chemotherapeutic agents. Based on the critical role of this tumor suppressor gene, the identification of negative regulators of its expression has practical significance particularly in the prevention and management of cancer. Meanwhile, the interaction between miRNAs and PTEN has functional consequences in non-malignant disorders including myocardial infarction, osteoporosis, cerebral ischemic stroke, and recurrent abortion. In the present review, we describe the role of miRNAs in the regulation of expression and activity of PTEN.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohaqiq
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, USA
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Chen Z, Zhao F, Liang C, Hu L, Li D, Zhang Y, Yin C, Chen L, Wang L, Lin X, Su P, Ma J, Yang C, Tian Y, Zhang W, Li Y, Peng S, Chen W, Zhang G, Qian A. Silencing of miR-138-5p sensitizes bone anabolic action to mechanical stimuli. Theranostics 2020; 10:12263-12278. [PMID: 33204341 PMCID: PMC7667683 DOI: 10.7150/thno.53009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence is revealing that microRNAs (miRNAs) play essential roles in mechanosensing for regulating osteogenesis. However, no mechanoresponsive miRNAs have been identified in human bone specimens. Methods: Bedridden and aged patients, hindlimb unloaded and aged mice, and Random Positioning Machine and primary aged osteoblasts were adopted to simulate mechanical unloading conditions at the human, animal and cellular levels, respectively. Treadmill exercise and Flexcell cyclic mechanical stretching were used to simulate mechanical loading in vivo and in vitro, respectively. Results: Here, we found increased miR-138-5p levels with a lower degree of bone formation in bone specimens from bedridden and aged patients. Loss- and gain-of-function studies showed that miR-138-5p directly targeted microtubule actin crosslinking factor 1 (MACF1) to inhibit osteoblast differentiation under different mechanical conditions. Regarding translational medicine, bone-targeted inhibition of miR-138-5p attenuated the decrease in the mechanical bone anabolic response in hindlimb unloaded mice. Moreover, bone-targeted inhibition of miR-138-5p sensitized the bone anabolic response to mechanical loading in both miR-138-5p transgenic mice and aged mice to promote bone formation. Conclusion: These data suggest that miR-138-5p as a mechanoresponsive miRNA accounts for the mechanosensitivity of the bone anabolic response and that inhibition of miR-138-5p in osteoblasts may be a novel bone anabolic sensitization strategy for ameliorating disuse or senile osteoporosis.
Collapse
|
29
|
Ortho-silicic acid enhances osteogenesis of osteoblasts through the upregulation of miR-130b which directly targets PTEN. Life Sci 2020; 264:118680. [PMID: 33130075 DOI: 10.1016/j.lfs.2020.118680] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 12/22/2022]
Abstract
AIMS Osteoporosis is considered a common skeletal disease. Ortho-silicic acid has been found to enhance the osteogenic differentiation of osteoblasts. However, the molecular mechanism of osteogenesis induced by ortho-silicic acid is still undefined totally. MicroRNAs (miRs) play a key role in osteogenesis of osteoblasts. This study investigated the role of miR-130b in promoting osteogenesis induced by ortho-silicic acid. MAIN METHODS AND KEY FINDINGS In this study, we found ortho-silicic acid enhanced osteogenesis of osteoblasts in vitro and promoted preventing and treating osteoporosis in vivo. Furthermore, the expression of miR-130b increased under application of ortho-silicic acid. In vitro, experiments demonstrated miR-130b overexpression or inhibition significantly promoted or suppressed osteogenic differentiation of osteoblasts under application of ortho-silicic acid, respectively. Consistently, downregulation of miR-130b in ovariectomy (OVX) rats dropped off the beneficial effect of ortho-silicic acid against bone loss. Mechanistically, we identified phosphatase and tensin homologue deleted on human chromosome 10 (PTEN) as the direct target of miR-130b during osteogenesis induced by ortho-silicic acid. SIGNIFICANCE In conclusion, our findings reveal that ortho-silicic acid promotes the osteogenesis of osteoblasts mediated by the miR-130b/PTEN signaling axis, which identifies a new target to prevent and treat osteoporosis.
Collapse
|