1
|
Wan K, Nie T, Ouyang W, Xiong Y, Bian J, Huang Y, Ling L, Huang Z, Zhu X. Exploring the impact of N4-acetylcytidine modification in RNA on non-neoplastic disease: unveiling its role in pathogenesis and therapeutic opportunities. Brief Funct Genomics 2025; 24:elae020. [PMID: 38841796 PMCID: PMC11735739 DOI: 10.1093/bfgp/elae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024] Open
Abstract
RNA modifications include not only methylation modifications, such as m6A, but also acetylation modifications, which constitute a complex interaction involving "writers," "readers," and "erasers" that play crucial roles in growth, genetics, and disease. N4-acetylcytidine (ac4C) is an ancient and highly conserved RNA modification that plays a profound role in the pathogenesis of a wide range of diseases. This review provides insights into the functional impact of ac4C modifications in disease and introduces new perspectives for disease treatment. These studies provide important insights into the biological functions of post-transcriptional RNA modifications and their potential roles in disease mechanisms, offering new perspectives and strategies for disease treatment.
Collapse
Affiliation(s)
- Keyu Wan
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Tiantian Nie
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Wenhao Ouyang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yunjing Xiong
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jing Bian
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Ying Huang
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
- The First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Li Ling
- Department of Neurology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, China
| | - Zhenjun Huang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xianhua Zhu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
2
|
De Miguel MP, Cadenas-Martin M, Stokking M, Martin-Gonzalez AI. Biomedical Application of MSCs in Corneal Regeneration and Repair. Int J Mol Sci 2025; 26:695. [PMID: 39859409 PMCID: PMC11766311 DOI: 10.3390/ijms26020695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
The World Health Organization estimates that approximately 285 million people suffer from visual impairments, around 5% of which are caused by corneal pathologies. Currently, the most common clinical treatment consists of a corneal transplant (keratoplasty) from a human donor. However, worldwide demand for donor corneas amply exceeds the available supply. Lamellar keratoplasty (transplantation replacement of only one of the three layers of the cornea) is partially solving the problem of cornea undersupply. Obviously, cell therapy applied to every one of these layers will expand current therapeutic options, reducing the cost of ophthalmological interventions and increasing the effectiveness of surgery. Mesenchymal stem cells (MSCs) are adult stem cells with the capacity for self-renewal and differentiation into different cell lineages. They can be obtained from many human tissues, such as bone marrow, umbilical cord, adipose tissue, dental pulp, skin, and cornea. Their ease of collection and advantages over embryonic stem cells or induced pluripotent stem cells make them a very practical source for experimental and potential clinical applications. In this review, we focus on recent advances using MSCs from different sources to replace the damaged cells of the three corneal layers, at both the preclinical and clinical levels for specific corneal diseases.
Collapse
Affiliation(s)
- Maria P. De Miguel
- Cell Engineering Laboratory, La Paz University Hospital Health Research Institute, IdiPAZ, 28046 Madrid, Spain; (M.C.-M.); (M.S.); (A.I.M.-G.)
| | | | | | | |
Collapse
|
3
|
Xiao B, Wu S, Tian Y, Huang W, Chen G, Luo D, Cai Y, Chen M, Zhang Y, Liu C, Zhao J, Li L. Advances of NAT10 in diseases: insights from dual properties as protein and RNA acetyltransferase. Cell Biol Toxicol 2024; 41:17. [PMID: 39725720 PMCID: PMC11671434 DOI: 10.1007/s10565-024-09962-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024]
Abstract
N-acetyltransferase 10 (NAT10) is a member of the Gcn5-related N-acetyltransferase (GNAT) family and it plays a crucial role in various cellular processes, such as regulation of cell mitosis, post-DNA damage response, autophagy and apoptosis regulation, ribosome biogenesis, RNA modification, and other related pathways through its intrinsic protein acetyltransferase and RNA acetyltransferase activities. Moreover, NAT10 is closely associated with the pathogenesis of tumors, Hutchinson-Gilford progeria syndrome (HGPS), systemic lupus erythematosus, pulmonary fibrosis, depression and host-pathogen interactions. In recent years, mRNA acetylation has emerged as a prominent focus of research due to its pivotal role in regulating RNA stability and translation. NAT10 stands out as the sole identified modification enzyme responsible for RNA acetylation. There remains some ambiguity regarding the similarities and differences in NAT10's actions on protein and RNA substrates. While NAT10 involves acetylation modification in both cases, which is a crucial molecular mechanism in epigenetic regulation, there are significant disparities in the catalytic mechanisms, regulatory pathways, and biological processes involved. Therefore, this review aims to offer a comprehensive overview of NAT10 as a protein and RNA acetyltransferase, covering its basic catalytic features, biological functions, and roles in related diseases.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
- Department of Laboratory Medicine, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese Medicine, The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510095, Guangdong, China.
| | - Shunhong Wu
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yan Tian
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Weikai Huang
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Guangzhan Chen
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Dongxin Luo
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yishen Cai
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Ming Chen
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Yuqian Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Chuyan Liu
- Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China
| | - Junxiu Zhao
- College of Public Health, Dali University, Dali, 671003, Yunnan, China
| | - Linhai Li
- Department of Laboratory Medicine, Affiliated Qingyuan Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, Guangdong, China.
| |
Collapse
|
4
|
Yang Q, Zhong QM, Song MQ, Tong LG, Bai CZ. Exosomes derived from Danshen decoction-pretreated bone marrow mesenchymal stem cells alleviate myocardial infarction via anti-apoptosis and up-regulation of autophagy. Heliyon 2024; 10:e38034. [PMID: 39347388 PMCID: PMC11437974 DOI: 10.1016/j.heliyon.2024.e38034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Cardiomyocyte loss and myocardial fibrosis are major determinants of myocardial infarction (MI) pathological changes. Mesenchymal stem cell (MSC)-derived exosomes (exos) and Danshen decoction (DSY) have been demonstrated to mediate cardiac repair following MI. BM-MSCs exos or BM-MSCsDSY exos were intramuscularly injected into post-MI rats. On the 7th, 14th and 28th days, serum CK, LDH, α-HBDH, ALT, and AST were measured and electrocardiogram changes were monitored to identify cardiac function; Triphenyltetrazolium chloride staining, Hematein&Eosin staining, Masson trichrome staining and Transmission Electron Microscope were adopted to analyze infarct area, cardiac morphology, histopathology, and fibrosis and cardiomyocyte ultrastructure; TUNEL assay, real-time PCR and western blot were performed to detect cardiomyocyte apoptosis and autophagy. As a result, BMMSCsDSY exos are superior to BM-MSCs-exos in improvement of cardiac function, morphology, histopathology and cardiomyocyte ultrastructure, as well as in reduction of infarction area and cardiac fibrosis by inhibiting apoptosis and promoting autophagy of cardiomyocytes.
Collapse
Affiliation(s)
- Qian Yang
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, No. 70, Nanshifang Street, Taiyuan City, Shanxi Province, 030012, China
| | - Qi-Ming Zhong
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, No. 70, Nanshifang Street, Taiyuan City, Shanxi Province, 030012, China
| | - Mei-Qing Song
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, No. 70, Nanshifang Street, Taiyuan City, Shanxi Province, 030012, China
| | - Li-Guo Tong
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, No. 70, Nanshifang Street, Taiyuan City, Shanxi Province, 030012, China
| | - Chong-Zhi Bai
- Central Laboratory, Shanxi Province Hospital of Traditional Chinese Medicine, No. 70, Nanshifang Street, Taiyuan City, Shanxi Province, 030012, China
| |
Collapse
|
5
|
Xu W, Fei X, Cui Z, Pan D, Liu Y, Liu T. DNMT1 driven by mouse amniotic fluid mesenchymal stem cell exosomes improved corneal cryoinjury via inducing microRNA-33 promoter DNA hypermethylation modification in corneal epithelium cells. Hum Cell 2024; 37:1091-1106. [PMID: 38782857 DOI: 10.1007/s13577-024-01082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Severe corneal cryoinjury can cause permanent corneal swelling and bullous keratopathy, one of the main reason for loss of sight. Mouse amniotic fluid mesenchymal stem cells (mAF-MSCs) can repair corneal damage caused by freezing; however, whether the exosomes derived from mAF-MSCs have the same repair effect is unknown. In this study, the mAF-MSC-exosomes were transplanted into the eyeballs of corneal cryoinjured mice. Histopathological examination showed that the mAF-MSC-exosomes improved the corneal structure and status of corneal epithelial cells in corneal cryoinjured mice. RRBS-sequencing showed that compared with the control group, four genes (Rpl13-ps6, miR-33, Hymai, and Plagl1), underwent DNA hypermethylation modification after mAF-MSC-exosomes treatment. The result of FISH indicated that miR-33-3p hybridization signals were enhanced in corneal epithelial cells from mice treated with mAF-MSC-exosomes. Semi-quantitative PCR and western blotting indicated that mAF-MSC-exosomes contained high levels of DNMT1 mRNA and protein. Additionally, luciferase report assays indicated that miR-33-3p overexpression in NIH-3T3 mouse embryonic fibroblast cells inhibited the activity of luciferase carrying a sequence from the 3' untranslated region of Bcl6. Moreover, BCL6 mRNA and protein levels in corneal tissues from mice treated with mAF-MSC-exosomes were higher than those in the control group. Therefore, our results suggested that mAF-MSC-exosomes could repair corneal cryoinjury by releasing DNMT1, which induced hypermethylation of the miR-33 promoter in corneal epithelial cells. Consequent downregulated miR-33 transcription upregulated Bcl6 expression, ultimately achieving the repair of corneal cryoinjury in mice.
Collapse
Affiliation(s)
- Weiqi Xu
- Department of Ophthalmology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Xinfeng Fei
- Department of Ophthalmology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Zeyu Cui
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Building C, 365 Xiangyang Road, Shanghai, 200031, China
| | - Dikang Pan
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yan Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai, 200080, China.
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Building C, 365 Xiangyang Road, Shanghai, 200031, China.
| |
Collapse
|
6
|
Schiffers S, Oberdoerffer S. ac4C: a fragile modification with stabilizing functions in RNA metabolism. RNA (NEW YORK, N.Y.) 2024; 30:583-594. [PMID: 38531654 PMCID: PMC11019744 DOI: 10.1261/rna.079948.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
In recent years, concerted efforts to map and understand epitranscriptomic modifications in mRNA have unveiled new complexities in the regulation of gene expression. These studies cumulatively point to diverse functions in mRNA metabolism, spanning pre-mRNA processing, mRNA degradation, and translation. However, this emerging landscape is not without its intricacies and sources of discrepancies. Disparities in detection methodologies, divergent interpretations of functional outcomes, and the complex nature of biological systems across different cell types pose significant challenges. With a focus of N4-acetylcytidine (ac4C), this review endeavors to unravel conflicting narratives by examining the technological, biological, and methodological factors that have contributed to discrepancies and thwarted research progress. Our goal is to mitigate detection inconsistencies and establish a unified model to elucidate the contribution of ac4C to mRNA metabolism and cellular equilibrium.
Collapse
Affiliation(s)
- Sarah Schiffers
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Shalini Oberdoerffer
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
7
|
Zhang Y, Lei Y, Dong Y, Chen S, Sun S, Zhou F, Zhao Z, Chen B, Wei L, Chen J, Meng Z. Emerging roles of RNA ac4C modification and NAT10 in mammalian development and human diseases. Pharmacol Ther 2024; 253:108576. [PMID: 38065232 DOI: 10.1016/j.pharmthera.2023.108576] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
RNA ac4C modification is a novel and rare chemical modification observed in mRNA. Traditional biochemical studies had primarily associated ac4C modification with tRNA and rRNA until in 2018, Arango D et al. first reported the presence of ac4C modification on mRNA and demonstrated its critical role in mRNA stability and translation regulation. Furthermore, they established that the ac4C modification on mRNA is mediated by the classical N-acetyltransferase NAT10. Subsequent studies have underscored the essential implications of NAT10 and mRNA ac4C modification across both physiological and pathological regulatory processes. In this review, we aimed to explore the discovery history of RNA ac4C modification, its detection methods, and its regulatory mechanisms in disease and physiological development. We offer a forward-looking examination and discourse concerning the employment of RNA ac4C modification as a prospective therapeutic strategy across diverse diseases. Furthermore, we comprehensively summarize the functions and mechanisms of NAT10 in gene expression regulation and pathogenesis independent of RNA ac4C modification.
Collapse
Affiliation(s)
- Yigan Zhang
- Institute of Biomedical Research, Department of Infectious Diseases, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei rovincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Yumei Lei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yanbin Dong
- Institute of Biophysics, Chinese Academy of Sciences, Key Laboratory of Nucleic Acid Biology, Chinese Academy of Sciences, Beijing, China
| | - Shuwen Chen
- School of Biomedical Engineering, Hubei University of Medicine, Shiyan, China
| | - Siyuan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Fange Zhou
- The First Clinical School of Hubei University of Medicine, Shiyan, China
| | - Zhiwen Zhao
- Department of Emergency Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Lv Wei
- Institute of Biophysics, Chinese Academy of Sciences, Key Laboratory of Nucleic Acid Biology, Chinese Academy of Sciences, Beijing, China.
| | - Juan Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| | - Zhongji Meng
- Institute of Biomedical Research, Department of Infectious Diseases, Regulatory Mechanism and Targeted Therapy for Liver Cancer Shiyan Key Laboratory, Hubei rovincial Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China; Hubei Key Laboratory of Embryonic Stem Cell Research, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| |
Collapse
|
8
|
Margiana R. Enhancing Spermatogenesis in Non-obstructive Azoospermia Through Mesenchymal Stem Cell Therapy22. Curr Stem Cell Res Ther 2024; 19:1429-1441. [PMID: 38243988 DOI: 10.2174/011574888x283311231226081845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/29/2023] [Accepted: 11/10/2023] [Indexed: 01/22/2024]
Abstract
Stem cells hold great promise as novel and encouraging therapeutic tools in the treatment of degenerative disorders due to their differentiation potential while maintaining the capability to self-renewal and their unlimited ability to divide and regenerate tissue. A variety of different types of stem cells can be used in cell therapy. Among these, mesenchymal stem cell (MSC) therapy has gradually established itself as a novel method for treating damaged tissues that need restoration and renewal. Male infertility is an important health challenge affecting approximately 8-12% of people around the world. This abnormality can be caused by primary, congenital, acquired, or idiopathic reasons. Men with no sperm in their semen have a condition called azoospermia, caused by non-obstructive (NOA) causes and post-testicular obstructive causes. Accumulating evidence has shown that various types of MSCs can differentiate into germ cells and improve spermatogenesis in the seminiferous tubules of animal models. In addition, recent studies in animal models have exhibited that extracellular vesicles derived from MSCs can stimulate the progression of spermatogenesis and germ cell regeneration in the recipient testes. In spite of the fact that various improvements have been made in the treatment of azoospermia disorder in animal models by MSC or their extracellular vesicles, no clinical trials have been carried out to test their therapeutic effect on the NOA. In this review, we summarize the potential of MSC transplantation for treating infertility caused by NOA.
Collapse
Affiliation(s)
- Ria Margiana
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Indonesia General Academic Hospital, Depok, Indonesia
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia
| |
Collapse
|
9
|
Cui Z, Xu Y, Wu P, Lu Y, Tao Y, Zhou C, Cui R, Li J, Han R. NAT10 promotes osteogenic differentiation of periodontal ligament stem cells by regulating VEGFA-mediated PI3K/AKT signaling pathway through ac4C modification. Odontology 2023; 111:870-882. [PMID: 36879181 DOI: 10.1007/s10266-023-00793-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023]
Abstract
Periodontal tissue regeneration engineering based on human periodontal ligament stem cells (hPDLSCs) provides a broad prospect for the treatment of periodontal disease. N-Acetyltransferase 10 (NAT10)-catalyzed non-histone acetylation is widely involved in physiological or pathophysiological processes. However, its function in hPDLSCs is still missing. hPDLSCs were isolated, purified, and cultured from extracted teeth. Surface markers were detected by flow cytometry. Osteogenic, adipogenic, and chondrogenic differentiation potential was detected by alizarin red staining (ARS), oil red O staining, and Alcian blue staining. Alkaline phosphatase (ALP) activity was assessed by ALP assay. Quantitative real-time PCR (qRT-PCR) and western blot were used to detect the expression of key molecules, such as NAT10, Vascular endothelial growth factor A (VEGFA), PI3K/AKT pathway, as well as bone markers (RUNX2, OCN, OPN). RNA-Binding Protein Immunoprecipitation PCR (RIP-PCR) was used to detect the N4-acetylcytidine (ac4C) mRNA level. Genes related to VEGFA were identified by bioinformatics analysis. NAT10 was highly expressed in the osteogenic differentiation process with enhanced ALP activity and osteogenic capability, and elevated expression of osteogenesis-related markers. The ac4C level and expression of VEGFA were obviously regulated by NAT10 and overexpression of VEGFA also had similar effects to NAT10. The phosphorylation level of PI3K and AKT was also elevated by overexpression of VEGFA. VEGFA could reverse the effects of NAT10 in hPDLSCs. NAT10 enhances the osteogenic development of hPDLSCs via regulation of the VEGFA-mediated PI3K/AKT signaling pathway by ac4C alteration.
Collapse
Affiliation(s)
- Zhao Cui
- Pediatric Surgery, Children's Hospital of Changchun, Changchun, 130021, Jilin Province, People's Republic of China
| | - Yunhe Xu
- Department of Stomatology, The First Hospital of Jilin University, Changchun, 130021, Jilin Province, People's Republic of China
| | - Peng Wu
- Pediatric Surgery, Children's Hospital of Changchun, Changchun, 130021, Jilin Province, People's Republic of China
| | - Ying Lu
- Pediatric Surgery, Children's Hospital of Changchun, Changchun, 130021, Jilin Province, People's Republic of China
| | - Yongxin Tao
- Pediatric Surgery, Children's Hospital of Changchun, Changchun, 130021, Jilin Province, People's Republic of China
| | - Chuibing Zhou
- Pediatric Surgery, Children's Hospital of Changchun, Changchun, 130021, Jilin Province, People's Republic of China
| | - Ruting Cui
- Pediatric Surgery, Children's Hospital of Changchun, Changchun, 130021, Jilin Province, People's Republic of China
| | - Jingying Li
- Pediatric Surgery, Children's Hospital of Changchun, Changchun, 130021, Jilin Province, People's Republic of China
| | - Rongpeng Han
- Pediatric Surgery, Children's Hospital of Changchun, No. 1321, Beian Road, Chaoyang District, Changchun, 130021, Jilin Province, People's Republic of China.
| |
Collapse
|
10
|
Ma Y, Fan C, Wang Y, Li W, Jiang H, Yang W. Comprehensive analysis of mRNAs in the cerebral cortex in APP/PS1 double-transgenic mice with Alzheimer's disease based on high-throughput sequencing of N4-acetylcytidine. Funct Integr Genomics 2023; 23:267. [PMID: 37548859 DOI: 10.1007/s10142-023-01192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
N4-acetylcytidine (ac4C), a significant modified nucleoside, participates in the development of many diseases. Messenger RNAs (mRNAs) contain most of the information of the genome and are the molecules that transmit information from genes to proteins. Alzheimer's disease (AD) is a progressive neurodegenerative disease in which fibrillar amyloid plaques are present. However, it remains unknown how mRNA ac4C modification affects the development of AD. In the current study, ac4C-modified mRNAs were comprehensively analyzed in AD mice by ac4C-RIP-seq and RNA-seq. Next, a protein-protein interaction (PPI) network was constructed to examine the relationships between the genes with differential ac4C modification levels and their RNA expression levels. The differentially expressed genes (DEGs) acquired above were subjected to Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to further analyze the molecular mechanisms in AD. In total, 3312 significant ac4C peaks were found on 2512 mRNAs, 1241 of which were hyperacetylated and 1271 of which were hypoacetylated. In addition, 956 mRNAs with differential expression were found, including 520 upregulated mRNAs and 436 downregulated mRNAs. Overall, 134 mRNAs with simultaneous changes at the ac4C levels as well as RNA expression levels were identified via joint analysis. Then, through PPI network construction and functional enrichment analysis, 37 key mRNAs were screened, which were predominantly enriched in GABAergic synapses and the PI3K/AKT signaling pathway. The significant difference in the abundance of mRNA ac4C modification indicates that this modification is associated with AD progression, which may provide insight for more investigations of the potential mechanisms.
Collapse
Affiliation(s)
- Yanzhen Ma
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui, China
| | - Chang Fan
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui, China
| | - Yongzhong Wang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui, China
| | - Weizu Li
- Department of Pharmacology, Basic Medicine College, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, China
| | - Hui Jiang
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui, China.
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China.
| | - Wenming Yang
- Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, China.
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of Chinese Medicine, Anhui, China.
| |
Collapse
|
11
|
Luo J, Cao J, Chen C, Xie H. Emerging role of RNA acetylation modification ac4C in diseases: Current advances and future challenges. Biochem Pharmacol 2023; 213:115628. [PMID: 37247745 DOI: 10.1016/j.bcp.2023.115628] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The oldest known highly conserved modification of RNA, N4-acetylcytidine, is widely distributed from archaea to eukaryotes and acts as a posttranscriptional chemical modification of RNA, contributing to the correct reading of specific nucleotide sequences during translation, stabilising mRNA and improving transcription efficiency. Yeast Kre33 and human NAT10, the only known authors of ac4C, modify tRNA with the help of the Tan1/THUMPD1 adapter to stabilise its structure. Currently, the mRNA for N4-acetylcytidine (ac4C), catalysed by NAT10 (N-acetyltransferase 10), has been implicated in a variety of human diseases, particularly cancer. This article reviews advances in the study of ac4C modification of RNA and the ac4C-related gene NAT10 in normal physiological cell development, cancer, premature disease and viral infection and discusses its therapeutic promise and future research challenges.
Collapse
Affiliation(s)
- Jie Luo
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jingsong Cao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Institute of Clinical Medicine, University of South China, Hengyang 421001, China
| | - Cong Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Haitao Xie
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
12
|
Soleimani M, Masoumi A, Momenaei B, Cheraqpour K, Koganti R, Chang AY, Ghassemi M, Djalilian AR. Applications of mesenchymal stem cells in ocular surface diseases: sources and routes of delivery. Expert Opin Biol Ther 2023; 23:509-525. [PMID: 36719365 PMCID: PMC10313829 DOI: 10.1080/14712598.2023.2175605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) are novel, promising agents for treating ocular surface disorders. MSCs can be isolated from several tissues and delivered by local or systemic routes. They produce several trophic factors and cytokines, which affect immunomodulatory, transdifferentiating, angiogenic, and pro-survival pathways in their local microenvironment via paracrine secretion. Moreover, they exert their therapeutic effect through a contact-dependent manner. AREAS COVERED In this review, we discuss the characteristics, sources, delivery methods, and applications of MSCs in ocular surface disorders. We also explore the potential application of MSCs to inhibit senescence at the ocular surface. EXPERT OPINION Therapeutic application of MSCs in ocular surface disorders are currently under investigation. One major research area is corneal epitheliopathies, including chemical or thermal burns, limbal stem cell deficiency, neurotrophic keratopathy, and infectious keratitis. MSCs can promote corneal epithelial repair and prevent visually devastating sequelae of non-healing wounds. However, the optimal dosages and delivery routes have yet to be determined and further clinical trials are needed to address these fundamental questions.
Collapse
Affiliation(s)
- Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Masoumi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Momenaei
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Kasra Cheraqpour
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Arthur Y Chang
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahmoud Ghassemi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Geng Z, Chen H, Zou G, Yuan L, Liu P, Li B, Zhang K, Jing F, Nie X, Liu T, Zhang B. Human Amniotic Fluid Mesenchymal Stem Cell-Derived Exosomes Inhibit Apoptosis in Ovarian Granulosa Cell via miR-369-3p/YAF2/PDCD5/p53 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3695848. [PMID: 35936223 PMCID: PMC9346541 DOI: 10.1155/2022/3695848] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/18/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Human amniotic fluid stem cell-derived exosome (HuAFSC-exosome) transplantation is considered a promising treatment for premature ovarian failure (POF). However, its mechanism remains unclear. In this study, exosomes were isolated and enriched from HuAFSC subsets of CD44+/CD105+, and the exosomes were transplanted into a POF model in vitro and in vivo. Our results confirmed that the exosomes produced by CD44+/CD105+ HuAFSCs could achieve therapeutic effects in a mouse POF model. Our research also showed that CD44+/CD105+ HuAFSC-exosomes carrying miR-369-3p could specifically downregulate the expression of YAF2, inhibit the stability of PDCD5/p53, and reduce the apoptosis of ovarian granulosa cells (OGCs), thereby exerting therapeutic effects on POF. Knowledge of these mechanisms demonstrates that miRNAs carried by CD44+/CD105+ HuAFSC-exosomes are critical to the therapy of POF. This will be useful for the clinical application of stem cells.
Collapse
Affiliation(s)
- Zixiang Geng
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haiyang Chen
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Gang Zou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Long Yuan
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Peng Liu
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Bingrong Li
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Kaiyong Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| | - Fangyuan Jing
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Xiaoli Nie
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200086, China
| |
Collapse
|
14
|
Ni Z, Nie X, Zhang H, Wang L, Geng Z, Du X, Qian H, Liu W, Liu T. Atranorin driven by nano materials SPION lead to ferroptosis of gastric cancer stem cells by weakening the mRNA 5-hydroxymethylcytidine modification of the Xc-/GPX4 axis and its expression. Int J Med Sci 2022; 19:1680-1694. [PMID: 36237989 PMCID: PMC9553860 DOI: 10.7150/ijms.73701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer is a highly malignant tumor. Gastric cancer stem cells (GCSCs) are the main causes of drug resistance, metastasis, recurrence, and poor prognosis. As a secondary metabolite of lichen, Atranorin has a variety of biological effects, such as antibacterial, anti-inflammatory, analgesic, and wound healing; however, its killing effect on GCSCs has not been reported. In this study, we constructed Atranorin complexes comprising superparamagnetic iron oxide nanoparticles (SPION) (Atranorin@SPION). In vitro and in vivo experiments confirmed that Atranorin@SPION could significantly inhibit the proliferation, invasion, angiogenesis, and tumorigenicity of CD44+/ CD24+ GCSCs, and induce oxidative stress injury, Fe2+ accumulation, and ferroptosis. Quantitative real-time reverse transcription PCR and western blotting results showed that Atranorin@SPION not only reduced the expression levels of GCSC stem cell markers and cell proliferation and division markers, but also significantly inhibited the expression levels of key molecules in the cystine/glutamate transporter (Xc-)/glutathione peroxidase 4 (GPX4) and Tet methylcytosine dioxygenase (TET) family proteins. The results of high performance liquid chromatography-mass spectrometry and Dot blotting showed that Atranorin@SPION significantly inhibited the mRNA 5‑hydroxymethylcytidine modification of GCSCs. Meanwhile, the results of RNA immunoprecipitation-PCR also indicated that Atranorin@SPIONs significantly reduced the 5-hydroxymethylcytidine modification level of GPX4 and SLC7A11 mRNA 3' untranslated region in GCSCs, resulting in a decrease in their stability, shortening their half-lives and reducing translation activity. Therefore, this study revealed that Atranorin@SPIONs induced ferroptosis of GCSCs by weakening the expression of the Xc-/GPX4 axis and the 5-hydroxymethylcytidine modification of mRNAs in the pathway, thereby achieving their therapeutic effect on gastric cancer.
Collapse
Affiliation(s)
- Zhentian Ni
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoli Nie
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| | - Hairong Zhang
- Department of Imaging, Dahua Hospital, Xuhui District, Shanghai 200237, China
| | - Lingquan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zixiang Geng
- Department of Acupuncture, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200086, China
| | - Xiling Du
- School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Haiyang Qian
- Department of Imaging, Dahua Hospital, Xuhui District, Shanghai 200237, China
| | - Wentao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Te Liu
- Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, China
| |
Collapse
|
15
|
Li D, Tian L, Wang X, Chen M. Macular corneal dystrophy related to novel mutations of CHST6 in a Chinese family and clinical observation after penetrating keratoplasty. BMC Med Genomics 2021; 14:247. [PMID: 34645431 PMCID: PMC8513235 DOI: 10.1186/s12920-021-01095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Macular corneal dystrophy (MCD) is a rare corneal stromal dystrophy with bilateral progressive vision loss. The pathogenic gene of MCD is carbohydrate sulfotransferase 6 (CHST6). Herein, we report a novel missense mutation and a rare exon deletion mutation in the CHST6 gene in a Chinese family with MCD. METHODS Genomic DNA was extracted from the peripheral blood, and next generation sequencing was used to analyse the gene sequence. The pathogenic mutations were identified in all affected family members. The proband successively received binocular penetrating keratoplasty (PKP), and the corneas were examined by histopathology and colloidal iron staining to prove the diagnosis. A long-term follow-up was made to observe the changes after PKP. RESULTS Genetic analysis demonstrated hemizygous mutations in the proband, including a novel c.520A>C (p.K174Q) missense mutation and a rarely reported exon 3 deletion mutation, which were co-segregated with the MCD phenotypes in the pedigree. The positive colloidal iron staining confirmed the diagnosis of MCD in the proband. However, the clinical phenotype and pathological manifestation of both eyes were different from each other because of complicated keratitis in the left eye. During the nine years of follow-up, visual acuity was improved significantly, and the cornea was transparent without rejection and postoperative recurrence in both eyes. CONCLUSIONS The novel hemizygous mutations were thought to contribute to the loss of CHST6 function, which induced typical clinical and pathological features of MCD. PKP was an effective treatment for MCD.
Collapse
Affiliation(s)
- Dewei Li
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Le Tian
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Xiaochuan Wang
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China
| | - Min Chen
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 5 Yan'erdao Road, Qingdao, 266071, China.
| |
Collapse
|