1
|
Doody NE, Smith NJ, Akam EC, Askew GN, Kwok JCF, Ichiyama RM. Differential expression of genes in the RhoA/ROCK pathway in the hippocampus and cortex following intermittent hypoxia and high-intensity interval training. J Neurophysiol 2024; 132:531-543. [PMID: 38985935 PMCID: PMC11427053 DOI: 10.1152/jn.00422.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Structural neuroplasticity such as neurite extension and dendritic spine dynamics is enhanced by brain-derived neurotrophic factor (BDNF) and impaired by types of inhibitory molecules that induce growth cone collapse and actin depolymerization, for example, myelin-associated inhibitors, chondroitin sulfate proteoglycans, and negative guidance molecules. These inhibitory molecules can activate RhoA/rho-associated coiled-coil containing protein kinase (ROCK) signaling (known to restrict structural plasticity). Intermittent hypoxia (IH) and high-intensity interval training (HIIT) are known to upregulate BDNF that is associated with improvements in learning and memory and greater functional recovery following neural insults. We investigated whether the RhoA/ROCK signaling pathway is also modulated by IH and HIIT in the hippocampus, cortex, and lumbar spinal cord of male Wistar rats. The gene expression of 25 RhoA/ROCK signaling pathway components was determined following IH, HIIT, or IH combined with HIIT (30 min/day, 5 days/wk, 6 wk). IH included 10 3-min bouts that alternated between hypoxia (15% O2) and normoxia. HIIT included 10 3-min bouts alternating between treadmill speeds of 50 cm·s-1 and 15 cm·s-1. In the hippocampus, IH and HIIT significantly downregulated Acan and NgR2 mRNA that are involved in the inhibition of neuroplasticity. However, IH and IH + HIIT significantly upregulated Lingo-1 and NgR3 in the cortex. This is the first time IH and HIIT have been linked to the modulation of plasticity-inhibiting pathways. These results provide a fundamental step toward elucidating the interplay between the neurotrophic and inhibitory mechanisms involved in experience-driven neural plasticity that will aid in optimizing physiological interventions for the treatment of cognitive decline or neurorehabilitation.NEW & NOTEWORTHY Intermittent hypoxia (IH) and high-intensity interval training (HIIT) enhance neuroplasticity and upregulate neurotrophic factors in the central nervous system (CNS). We provide evidence that IH and IH + HIIT also have the capacity to regulate genes involved in the RhoA/ROCK signaling pathway that is known to restrict structural plasticity in the CNS. This provides a new mechanistic insight into how these interventions may enhance hippocampal-related plasticity and facilitate learning, memory, and neuroregeneration.
Collapse
Affiliation(s)
- Natalie E Doody
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Nicole J Smith
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Elizabeth C Akam
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Jessica C F Kwok
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Institute of Experimental Medicine, The Czech Academy of Sciences, Prague 4, Czech Republic
| | - Ronaldo M Ichiyama
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
2
|
Zhang W, Zhang L, Zhu J, Xiao C, Cui H, Yang C, Yan P, Tang M, Wang Y, Chen L, Liu Y, Zou Y, Wu X, Zhang L, Yang C, Yao Y, Li J, Liu Z, Jiang X, Zhang B. Additional Evidence for the Relationship Between Type 2 Diabetes and Stroke Through Observational and Genetic Analyses. Diabetes 2023; 72:1671-1681. [PMID: 37552871 DOI: 10.2337/db22-0954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
While type 2 diabetes mellitus (T2DM) is commonly considered a putative causal risk factor for stroke, the effect of stroke on T2DM remains unclear. The intrinsic link underlying T2DM and stroke has not been thoroughly examined. We aimed to evaluate the phenotypic and genetic relationships underlying T2DM and stroke. We evaluated phenotypic associations using data from the UK Biobank (N = 472,050). We then investigated genetic relationships by leveraging genomic data in European ancestry for T2DM, with and without adjusting (adj) for BMI (T2DM: n = 74,124 case subjects/824,006 control subjects; T2DMadjBMI: n = 50,409 case subjects/523,897 control subjects), and for stroke (n = 73,652 case subjects/1,234,808 control subjects). We performed additional analyses using genomic data in East Asian ancestry for T2DM (n = 77,418 case subjects/356,122 control subjects) and for stroke (n = 27,413 case subjects/237,242 control subjects). Observational analyses suggested a significantly increased hazard of stroke among individuals with T2DM (hazard ratio 2.28 [95% CI 1.97-2.64]), but a slightly increased hazard of T2DM among individuals with stroke (1.22 [1.03-1.45]) which attenuated to 1.14 (0.96-1.36) in sensitivity analysis. A positive global T2DM-stroke genetic correlation was observed (rg = 0.35; P = 1.46 × 10-27), largely independent of BMI (T2DMadjBMI-stroke: rg = 0.27; P = 3.59 × 10-13). This was further corroborated by 38 shared independent loci and 161 shared expression-trait associations. Mendelian randomization analyses suggested a putative causal effect of T2DM on stroke in Europeans (odds ratio 1.07 [95% CI 1.06-1.09]), which remained significant in East Asians (1.03 [1.01-1.06]). Conversely, despite a putative causal effect of stroke on T2DM also observed in Europeans (1.21 [1.07-1.37]), it attenuated to 1.04 (0.91-1.19) in East Asians. Our study provides additional evidence to underscore the significant relationship between T2DM and stroke. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Wenqiang Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Li Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Jingwei Zhu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Chenghan Xiao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Huijie Cui
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Chao Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Peijing Yan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Mingshuang Tang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Lin Chen
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Yunjie Liu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Yanqiu Zou
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Xueyao Wu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Ling Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
- Department of Iatrical Polymer Material and Artificial Apparatus, School of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Yuqin Yao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
| | - Zhenmi Liu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, West China-Peking Union Medical College C.C. Chen Institute of Health, West China School of Public Health, and West China Fourth Hospital, Sichuan University, Chengdu
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Xing C, Lv J, Zhu Z, Cong W, Bian H, Zhang C, Gu R, Chen D, Tan X, Su L, Zhang Y. Regulation of microglia related neuroinflammation contributes to the protective effect of Gelsevirine on ischemic stroke. Front Immunol 2023; 14:1164278. [PMID: 37063929 PMCID: PMC10098192 DOI: 10.3389/fimmu.2023.1164278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Stroke, especially ischemic stroke, is an important cause of neurological morbidity and mortality worldwide. Growing evidence suggests that the immune system plays an intricate function in the pathophysiology of stroke. Gelsevirine (Gs), an alkaloid from Gelsemium elegans, has been proven to decrease inflammation and neuralgia in osteoarthritis previously, but its role in stroke is unknown. In this study, the middle cerebral artery occlusion (MCAO) mice model was used to evaluate the protective effect of Gs on stroke, and the administration of Gs significantly improved infarct volume, Bederson score, neurobiological function, apoptosis of neurons, and inflammation state in vivo. According to the data in vivo and the conditioned medium (CM) stimulated model in vitro, the beneficial effect of Gs came from the downregulation of the over-activity of microglia, such as the generation of inflammatory factors, dysfunction of mitochondria, production of ROS and so on. By RNA-seq analysis and Western-blot analysis, the JAK-STAT signal pathway plays a critical role in the anti-inflammatory effect of Gs. According to the results of molecular docking, inhibition assay, and thermal shift assay, the binding of Gs on JAK2 inhibited the activity of JAK2 which inhibited the over-activity of JAK2 and downregulated the phosphorylation of STAT3. Over-expression of a gain-of-function STAT3 mutation (K392R) abolished the beneficial effects of Gs. So, the downregulation of JAK2-STAT3 signaling pathway by Gs contributed to its anti-inflammatory effect on microglia in stroke. Our study revealed that Gs was benefit to stroke treatment by decreasing neuroinflammation in stroke as a potential drug candidate regulating the JAK2-STAT3 signal pathway.
Collapse
Affiliation(s)
- Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Zhihui Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wei Cong
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Chenxi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Ruxin Gu
- Department of Geriatric Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dagui Chen
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xiying Tan
- Department of Pharmacy, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Xiying Tan, ; Li Su, ; Yu Zhang,
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Xiying Tan, ; Li Su, ; Yu Zhang,
| | - Yu Zhang
- School of Pharmacy, Nanjing Medical University, Nanjing, China
- *Correspondence: Xiying Tan, ; Li Su, ; Yu Zhang,
| |
Collapse
|
5
|
Chen D, Li J, Huang Y, Wei P, Miao W, Yang Y, Gao Y. Interleukin 13 promotes long-term recovery after ischemic stroke by inhibiting the activation of STAT3. J Neuroinflammation 2022; 19:112. [PMID: 35578342 PMCID: PMC9109418 DOI: 10.1186/s12974-022-02471-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Microglia/macrophages are activated after cerebral ischemic stroke and can contribute to either brain injury or recovery by polarizing microglia/macrophage into distinctive functional phenotypes with pro- or anti-inflammatory properties. Interleukin-13 (IL-13) is an anti-inflammatory cytokine that regulates microglia/macrophage polarization toward an anti-inflammatory phenotype. However, it is not clear whether IL-13 is beneficial after ischemic stroke long-term and the underlying molecular mechanism(s) remain unknown. Thus, we examined the effect of IL-13 on long-term recovery and microglia/macrophage polarization in mice with transient middle cerebral artery occlusion model (tMCAO). METHODS tMCAO was induced in adult male C57BL/6J mice. IL-13 (60 μg/kg) was administered intranasally starting 2 h after stroke and continued for seven consecutive days. Sensorimotor function, spatial learning and memory function, as well as brain infarct volume were assessed up to 35 days after stroke. White matter integrity was evaluated by electrophysiology, immunofluorescence staining, and transmission electron microscopy. Microglia/macrophage activation was assessed using immunofluorescence staining and quantitative real-time polymerase chain reaction. Changes in immune cells in the brain and the periphery, and expression of IL-13 receptors in different brain cells were detected by flow cytometry. Primary neuron/microglia co-cultures and a STAT3 inhibitor were used for mechanistic studies. RESULTS Post-treatment with IL-13 improved long-term neurofunctional recovery and decreased brain tissue atrophy after stroke. Intranasal delivery of IL-13 enhanced the structural and functional integrity of white matter after stroke. Furthermore, the neuroprotection afforded by IL-13 administration was not due to a direct effect on neurons, but by indirectly regulating the anti-inflammatory phenotype of microglia/macrophages. IL-13 treatment also had no effect on peripheral immune cells. Mechanistically, IL-13 improved the long-term outcome after ischemic stroke by promoting the polarization of microglia/macrophages toward the anti-inflammatory phenotype at least partially by inhibiting the phosphorylation of STAT3. CONCLUSIONS IL-13 promotes white matter repair and improves neurofunctional outcomes after ischemic stroke by modulating microglia/macrophages via inhibition of STAT3 phosphorylation.
Collapse
Affiliation(s)
- Di Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Jiaying Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Yichen Huang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Pengju Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Wanying Miao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Yaomei Yang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, 138 Yixueyuan Road, 200032, Shanghai, China.
| |
Collapse
|