1
|
Kulkarni C, Liu D, Fardeen T, Dickson ER, Jang H, Sinha SR, Gubatan J. Artificial intelligence and machine learning technologies in ulcerative colitis. Therap Adv Gastroenterol 2024; 17:17562848241272001. [PMID: 39247718 PMCID: PMC11378191 DOI: 10.1177/17562848241272001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/17/2024] [Indexed: 09/10/2024] Open
Abstract
Interest in artificial intelligence (AI) applications for ulcerative colitis (UC) has grown tremendously in recent years. In the past 5 years, there have been over 80 studies focused on machine learning (ML) tools to address a wide range of clinical problems in UC, including diagnosis, prognosis, identification of new UC biomarkers, monitoring of disease activity, and prediction of complications. AI classifiers such as random forest, support vector machines, neural networks, and logistic regression models have been used to model UC clinical outcomes using molecular (transcriptomic) and clinical (electronic health record and laboratory) datasets with relatively high performance (accuracy, sensitivity, and specificity). Application of ML algorithms such as computer vision, guided image filtering, and convolutional neural networks have also been utilized to analyze large and high-dimensional imaging datasets such as endoscopic, histologic, and radiological images for UC diagnosis and prediction of complications (post-surgical complications, colorectal cancer). Incorporation of these ML tools to guide and optimize UC clinical practice is promising but will require large, high-quality validation studies that overcome the risk of bias as well as consider cost-effectiveness compared to standard of care.
Collapse
Affiliation(s)
- Chiraag Kulkarni
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Derek Liu
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Touran Fardeen
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Eliza Rose Dickson
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Hyunsu Jang
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Sidhartha R Sinha
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 300 Pasteur Drive, M211, Stanford, CA 94305, USA
| | - John Gubatan
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, 300 Pasteur Drive, M211, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Uchikov P, Khalid U, Vankov N, Kraeva M, Kraev K, Hristov B, Sandeva M, Dragusheva S, Chakarov D, Petrov P, Dobreva-Yatseva B, Novakov I. The Role of Artificial Intelligence in the Diagnosis and Treatment of Ulcerative Colitis. Diagnostics (Basel) 2024; 14:1004. [PMID: 38786302 PMCID: PMC11119852 DOI: 10.3390/diagnostics14101004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVES This review aims to delve into the role of artificial intelligence in medicine. Ulcerative colitis (UC) is a chronic, inflammatory bowel disease (IBD) characterized by superficial mucosal inflammation, rectal bleeding, diarrhoea and abdominal pain. By identifying the challenges inherent in UC diagnosis, we seek to highlight the potential impact of artificial intelligence on enhancing both diagnosis and treatment methodologies for this condition. METHOD A targeted, non-systematic review of literature relating to ulcerative colitis was undertaken. The PubMed and Scopus databases were searched to categorize a well-rounded understanding of the field of artificial intelligence and its developing role in the diagnosis and treatment of ulcerative colitis. Articles that were thought to be relevant were included. This paper only included articles published in English. RESULTS Artificial intelligence (AI) refers to computer algorithms capable of learning, problem solving and decision-making. Throughout our review, we highlighted the role and importance of artificial intelligence in modern medicine, emphasizing its role in diagnosis through AI-assisted endoscopies and histology analysis and its enhancements in the treatment of ulcerative colitis. Despite these advances, AI is still hindered due to its current lack of adaptability to real-world scenarios and its difficulty in widespread data availability, which hinders the growth of AI-led data analysis. CONCLUSIONS When considering the potential of artificial intelligence, its ability to enhance patient care from a diagnostic and therapeutic perspective shows signs of promise. For the true utilization of artificial intelligence, some roadblocks must be addressed. The datasets available to AI may not truly reflect the real-world, which would prevent its impact in all clinical scenarios when dealing with a spectrum of patients with different backgrounds and presenting factors. Considering this, the shift in medical diagnostics and therapeutics is coinciding with evolving technology. With a continuous advancement in artificial intelligence programming and a perpetual surge in patient datasets, these networks can be further enhanced and supplemented with a greater cohort, enabling better outcomes and prediction models for the future of modern medicine.
Collapse
Affiliation(s)
- Petar Uchikov
- Department of Special Surgery, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.U.); (I.N.)
| | - Usman Khalid
- Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Nikola Vankov
- University Multiprofile Hospital for Active Treatment “Saint George”, 4000 Plovdiv, Bulgaria;
| | - Maria Kraeva
- Department of Otorhynolaryngology, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Krasimir Kraev
- Department of Propedeutics of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Bozhidar Hristov
- Section “Gastroenterology”, Second Department of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Milena Sandeva
- Department of Midwifery, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Snezhanka Dragusheva
- Department of Nursing Care, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
- Department of Anesthesiology, Emergency and Intensive Care Medicine, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Dzhevdet Chakarov
- Department of Propaedeutics of Surgical Diseases, Section of General Surgery, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Petko Petrov
- Department of Maxillofacial Surgery, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Bistra Dobreva-Yatseva
- Section “Cardiology”, First Department of Internal Diseases, Medical Faculty, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Ivan Novakov
- Department of Special Surgery, Faculty of Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (P.U.); (I.N.)
| |
Collapse
|
3
|
Wu L, Wang Q, Gao QC, Shi GX, Li J, Fan FR, Wu J, He PF, Yu Q. Potential mechanisms and drug prediction of Rheumatoid Arthritis and primary Sjögren's Syndrome: A public databases-based study. PLoS One 2024; 19:e0298447. [PMID: 38359008 PMCID: PMC10868835 DOI: 10.1371/journal.pone.0298447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Rheumatoid arthritis (RA) and primary Sjögren's syndrome (pSS) are the most common systemic autoimmune diseases, and they are increasingly being recognized as occurring in the same patient population. These two diseases share several clinical features and laboratory parameters, but the exact mechanism of their co-pathogenesis remains unclear. The intention of this study was to investigate the common molecular mechanisms involved in RA and pSS using integrated bioinformatic analysis. RNA-seq data for RA and pSS were picked up from the Gene Expression Omnibus (GEO) database. Co-expression genes linked with RA and pSS were recognized using weighted gene co-expression network analysis (WGCNA) and differentially expressed gene (DEG) analysis. Then, we screened two public disease-gene interaction databases (GeneCards and Comparative Toxicogenomics Database) for common targets associated with RA and pSS. The DGIdb database was used to predict therapeutic drugs for RA and pSS. The Human microRNA Disease Database (HMDD) was used to screen out the common microRNAs associated with RA and pSS. Finally, a common miRNA-gene network was created using Cytoscape. Four hub genes (CXCL10, GZMA, ITGA4, and PSMB9) were obtained from the intersection of common genes from WGCNA, differential gene analysis and public databases. Twenty-four drugs corresponding to hub gene targets were predicted in the DGIdb database. Among the 24 drugs, five drugs had already been reported for the treatment of RA and pSS. Other drugs, such as bortezomib, carfilzomib, oprozomib, cyclosporine and zidovudine, may be ideal drugs for the future treatment of RA patients with pSS. According to the miRNA-gene network, hsa-mir-21 may play a significant role in the mechanisms shared by RA and pSS. In conclusion, we identified commom targets as potential biomarkers in RA and pSS from publicly available databases and predicted potential drugs based on the targets. A new understanding of the molecular mechanisms associated with RA and pSS is provided according to the miRNA-gene network.
Collapse
Affiliation(s)
- Li Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anesthesiology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Qi-chao Gao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Gao-xiang Shi
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
- Department of Anaesthesia, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Anesthesiology, Shanxi Provincial People’s Hospital (Fifth Hospital) of Shanxi Medical University, Taiyuan, China
| | - Fu-rong Fan
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jing Wu
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Pei-Feng He
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| | - Qi Yu
- Shanxi Key Laboratory of Big Data for Clinical Decision Research, Taiyuan, China
- School of Management, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
4
|
Mo S, Shen X, Huang B, Wang Y, Lin L, Chen Q, Weng M, Sugasawa T, Gu W, Tsushima Y, Nakajima T. Single-cell dissection, hdWGCNA and deep learning reveal the role of oxidatively stressed plasma cells in ulcerative colitis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1730-1739. [PMID: 37814814 PMCID: PMC10686794 DOI: 10.3724/abbs.2023237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 10/11/2023] Open
Abstract
Ulcerative colitis (UC) develops as a result of complex interactions between various cell types in the mucosal microenvironment. In this study, we aim to elucidate the pathogenesis of ulcerative colitis at the single-cell level and unveil its clinical significance. Using single-cell RNA sequencing and high-dimensional weighted gene co-expression network analysis, we identify a subpopulation of plasma cells (PCs) with significantly increased infiltration in UC colonic mucosa, characterized by pronounced oxidative stress. Combining 10 machine learning approaches, we find that the PC oxidative stress genes accurately distinguish diseased mucosa from normal mucosa (independent external testing AUC=0.991, sensitivity=0.986, specificity=0.909). Using MCPcounter and non-negative matrix factorization, we identify the association between PC oxidative stress genes and immune cell infiltration as well as patient heterogeneity. Spatial transcriptome data is used to verify the infiltration of oxidatively stressed PCs in colitis. Finally, we develop a gene-immune convolutional neural network deep learning model to diagnose UC mucosa in different cohorts (independent external testing AUC=0.984, sensitivity=95.9%, specificity=100%). Our work sheds light on the key pathogenic cell subpopulations in UC and is essential for the development of future clinical disease diagnostic tools.
Collapse
Affiliation(s)
- Shaocong Mo
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghai200040China
| | - Xin Shen
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghai200040China
| | | | - Yulin Wang
- Department of NephrologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Lingxi Lin
- Department of Digestive DiseasesHuashan HospitalFudan UniversityShanghai200040China
| | - Qiuming Chen
- Department of Thoracic SurgeryThe First Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhou310003China
| | - Meilin Weng
- Department of AnesthesiologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Takehito Sugasawa
- Laboratory of Clinical Examination and Sports MedicineDepartment of Clinical MedicineFaculty of MedicineUniversity of TsukubaIbaraki305-8577Japan
| | - Wenchao Gu
- Department of Diagnostic and Interventional RadiologyUniversity of TsukubaIbaraki305-8577Japan
- Department of Diagnostic Radiology and Nuclear MedicineGunma University Graduate School of MedicineMaebashi371-8511Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear MedicineGunma University Graduate School of MedicineMaebashi371-8511Japan
| | - Takahito Nakajima
- Department of Diagnostic and Interventional RadiologyUniversity of TsukubaIbaraki305-8577Japan
| |
Collapse
|
5
|
Jiang S, Wang T, Zhang KH. Data-driven decision-making for precision diagnosis of digestive diseases. Biomed Eng Online 2023; 22:87. [PMID: 37658345 PMCID: PMC10472739 DOI: 10.1186/s12938-023-01148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
Modern omics technologies can generate massive amounts of biomedical data, providing unprecedented opportunities for individualized precision medicine. However, traditional statistical methods cannot effectively process and utilize such big data. To meet this new challenge, machine learning algorithms have been developed and applied rapidly in recent years, which are capable of reducing dimensionality, extracting features, organizing data and forming automatable data-driven clinical decision systems. Data-driven clinical decision-making have promising applications in precision medicine and has been studied in digestive diseases, including early diagnosis and screening, molecular typing, staging and stratification of digestive malignancies, as well as precise diagnosis of Crohn's disease, auxiliary diagnosis of imaging and endoscopy, differential diagnosis of cystic lesions, etiology discrimination of acute abdominal pain, stratification of upper gastrointestinal bleeding (UGIB), and real-time diagnosis of esophageal motility function, showing good application prospects. Herein, we reviewed the recent progress of data-driven clinical decision making in precision diagnosis of digestive diseases and discussed the limitations of data-driven decision making after a brief introduction of methods for data-driven decision making.
Collapse
Affiliation(s)
- Song Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006 China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, 330006 China
| | - Ting Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006 China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, 330006 China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006 China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, 330006 China
| |
Collapse
|
6
|
Patra R, Dey AK, Mukherjee S. Identification of genes critical for inducing ulcerative colitis and exploring their tumorigenic potential in human colorectal carcinoma. PLoS One 2023; 18:e0289064. [PMID: 37535606 PMCID: PMC10399749 DOI: 10.1371/journal.pone.0289064] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/11/2023] [Indexed: 08/05/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease leading to continuous mucosal inflammation in the rectum extending proximally towards the colon. Chronic and/or recurrent UC is one of the critical predisposing mediators of the oncogenesis of human colorectal carcinoma (CRC). Perturbations of the differential expression of the UC-critical genes exert an intense impact on the neoplastic transformation of the affected tissue(s). Herein, a comprehensive exploration of the UC-critical genes from the transcriptomic profiles of UC patients was conducted to study the differential expression, functional enrichment, genomic alterations, signal transduction pathways, and immune infiltration level encountered by these genes concerning the oncogenesis of CRC. The study reveals that WFDC2, TTLL12, THRA, and EPHB3 play crucial roles as UC-CRC critical genes and are positively correlated with the molecular transformation of UC to CRC. Taken together, these genes can be used as potential biomarkers and therapeutic targets for combating UC-induced human CRC.
Collapse
Affiliation(s)
- Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Amit Kumar Dey
- Biomedical Research Centre, Translational Geroproteomics Unit, National Institute on Aging, National Institute of Health (NIH), Baltimore, MD, United States of America
| | - Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| |
Collapse
|
7
|
Long J, Cong F, Wei Y, Liu J, Tang W. Increased Kremen2 predicts worse prognosis in colon cancer. Pathol Oncol Res 2023; 29:1611082. [PMID: 37123533 PMCID: PMC10130194 DOI: 10.3389/pore.2023.1611082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/03/2023] [Indexed: 05/02/2023]
Abstract
Background: Colon cancer (CC) is the fifth most prevalent cancer around the globe and poses a major risk to human health. Even though Kremen2 serves as a prognostic indicator in individuals with malignant tumours, its role in evaluating the prognosis of individuals with colon cancer has not been confirmed. Methods: Here, we examined the protein expression of Kremen2 in CC tissues and paired adjacent normal tissues by immunohistochemistry (IHC), then analyzed the clinical and RNA-seq data presented in The Cancer Genome Atlas (TCGA) database to confirm the relationship between Kremen2 levels and CC. In addition, the associations between Kremen2 mRNA expression and infiltrating immune cells were examined. Results: The study showed that the mRNA expression and protein level of Kremen2 were increased in CC tissues compared with adjacent normal tissues. According to Kaplan-Meier analysis, high Kremen2 expression in CC was linked to poor overall survival and progression-free survival. Clinical correlation analysis highlighted that a high level of Kremen2 expression was strongly linked with tumour progression, particularly lymph node metastasis. Cox regression analysis highlighted that Kremen2 was an independent prognostic indicator for CC. Bioinformatic studies highlighted that Kremen2 might be associated with the immune status in CC. Conclusion: Increased Kremen2 could serve as a potential prognostic CC biomarker.
Collapse
Affiliation(s)
- Junxian Long
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Department of Breast and Thyroid Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fengyun Cong
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Department of Gastroenteroanal Surgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yousheng Wei
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Jungang Liu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi, China
| | - Weizhong Tang
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi, China
- *Correspondence: Weizhong Tang,
| |
Collapse
|
8
|
Zhang L, Mao R, Lau CT, Chung WC, Chan JCP, Liang F, Zhao C, Zhang X, Bian Z. Identification of useful genes from multiple microarrays for ulcerative colitis diagnosis based on machine learning methods. Sci Rep 2022; 12:9962. [PMID: 35705632 PMCID: PMC9200771 DOI: 10.1038/s41598-022-14048-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/31/2022] [Indexed: 12/11/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease with an increasing incidence and prevalence worldwide. The diagnosis for UC mainly relies on clinical symptoms and laboratory examinations. As some previous studies have revealed that there is an association between gene expression signature and disease severity, we thereby aim to assess whether genes can help to diagnose UC and predict its correlation with immune regulation. A total of ten eligible microarrays (including 387 UC patients and 139 healthy subjects) were included in this study, specifically with six microarrays (GSE48634, GSE6731, GSE114527, GSE13367, GSE36807, and GSE3629) in the training group and four microarrays (GSE53306, GSE87473, GSE74265, and GSE96665) in the testing group. After the data processing, we found 87 differently expressed genes. Furthermore, a total of six machine learning methods, including support vector machine, least absolute shrinkage and selection operator, random forest, gradient boosting machine, principal component analysis, and neural network were adopted to identify potentially useful genes. The synthetic minority oversampling (SMOTE) was used to adjust the imbalanced sample size for two groups (if any). Consequently, six genes were selected for model establishment. According to the receiver operating characteristic, two genes of OLFM4 and C4BPB were finally identified. The average values of area under curve for these two genes are higher than 0.8, either in the original datasets or SMOTE-adjusted datasets. Besides, these two genes also significantly correlated to six immune cells, namely Macrophages M1, Macrophages M2, Mast cells activated, Mast cells resting, Monocytes, and NK cells activated (P < 0.05). OLFM4 and C4BPB may be conducive to identifying patients with UC. Further verification studies could be conducted.
Collapse
Affiliation(s)
- Lin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Mao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chung Tai Lau
- Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Wai Chak Chung
- Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Jacky C P Chan
- Department of Computer Science, HKBU Faculty of Science, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Feng Liang
- Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China
| | - Chenchen Zhao
- Oncology Department, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuan Zhang
- Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China. .,Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong, SAR, China.
| | - Zhaoxiang Bian
- Chinese Clinical Trial Registry (Hong Kong), Hong Kong Chinese Medicine Clinical Study Centre, Chinese EQUATOR Centre, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, China. .,Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong, SAR, China.
| |
Collapse
|