1
|
Yu Z, Dong C, Yang Y, Zheng Z, Ge X. USP21 stabilizes immune checkpoint of CD276 and serves as an immunological and tumor prognostic biomarker. Biochem Biophys Res Commun 2024; 745:151221. [PMID: 39736236 DOI: 10.1016/j.bbrc.2024.151221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025]
Abstract
Ubiquitin-specific protease 21 (USP21) belongs to the ubiquitin-specific protease family and is a member of the deubiquitinating enzyme (DUB) family. Previous research has shown that USP21 promotes cancer initiation and progression. However, there have been few pan-cancer analysis on USP21. We analyzed the expression levels of USP21 mRNA and protein in various human tumor tissues using several public databases such as The Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), and Human Protein Atlas (HPA). Kaplan-Meier survival analyses were utilized to test the effect of USP21 on overall survival (OS) and progression-free interval (PFS) of these tumor patients. Our study demonstrated that USP21 was differentially expressed between normal and malignant tissues, conferring a notable value in evaluation of prognosis and diagnosis. In addition, enrichment and correlation analyses linking USP21 with immune features such as immune-cell-infiltration rate and immune-checkpoint-gene expression indicated that USP21 is an applicable immunotherapeutic marker for liver cancer. To further elucidate the role of USP21, we downregulated its expression in hepatocellular carcinoma cells and identified a remarkable decrease in expression of the immune checkpoint CD276, which contributes to the immune escape of tumor cells by suppressing the immune system. Together, our results indicated a promising potential of USP21 for future tumor prevention.
Collapse
Affiliation(s)
- Zhu Yu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Chengyuan Dong
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Yanrong Yang
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Zening Zheng
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Xin Ge
- Department of Clinical Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Yao P, Li X, Chai J, Dong J, Chen Y, Zhang T, Guo X. METTL3-Mediated m6A Methylation of USP21 Contributes to Hepatocellular Carcinoma Progression by Stabilizing H2BFS Through Deubiquitination. Biochem Genet 2024:10.1007/s10528-024-10992-2. [PMID: 39680331 DOI: 10.1007/s10528-024-10992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024]
Abstract
Deubiquitinases play essential roles in hepatocellular carcinoma (HCC) progression, however, the role of ubiquitin-specific peptidase 21 (USP21) in HCC development remains unclear. The present work aims to analyze the effect of USP21 on tumor property of HCC cells and the underlying mechanism. mRNA expression levels of USP21 and H2BFS were analyzed by quantitative real-time polymerase chain reaction. Protein expression of USP21, E-cadherin, N-cadherin, Vimentin, H2BFS and methyltransferase 3 (METTL3) was assessed by western blotting assay or immunohistochemistry assay. Clonogenicity assay was used to analyze cell proliferation. Flow cytometry assay was performed to quantify apoptotic rate of cells. Wound-healing assay and transwell assay were conducted to analyze cell migration and invasion, respectively. Xenograft mouse model assay was performed to determine the effect of USP21 knockdown on tumor formation. m6A RNA immunoprecipitation assay (MeRIP) was used to analyze the effect of METTL3 silencing on methylated level of USP21. USP21 expression was upregulated in HCC tissues and cells when compared with control groups. USP21 silencing inhibited proliferation, migration and invasion and induced apoptosis of HCC cells, accompanied by the increased E-cadherin protein expression and decreased N-cadherin and Vimentin protein expression. Moreover, USP21 knockdown delayed tumor formation in vivo. USP21 stabilized H2BFS by deubiquitination, and H2BFS overexpression attenuated USP21 silencing-induced effects in HCC cells. Further, METTL3-mediated m6A methylation of USP21. METTL3-mediated m6A methylation of USP21 promoted HCC progression by stabilizing H2BFS through deubiquitination.
Collapse
Affiliation(s)
- Peng Yao
- Department of Hepatobiliary Surgery, Yuncheng Central Hospital, The Eighth Clinical College of Shanxi Medical University, No. 3690, Hedong Street, Yuncheng, 044031, Shanxi, China.
| | - Xiaozheng Li
- Department of Hepatobiliary Surgery, Yuncheng Central Hospital, The Eighth Clinical College of Shanxi Medical University, No. 3690, Hedong Street, Yuncheng, 044031, Shanxi, China
| | - Jiasui Chai
- Department of Hepatobiliary Surgery, Yuncheng Central Hospital, The Eighth Clinical College of Shanxi Medical University, No. 3690, Hedong Street, Yuncheng, 044031, Shanxi, China
| | - Jiejie Dong
- Department of Hepatobiliary Surgery, Yuncheng Central Hospital, The Eighth Clinical College of Shanxi Medical University, No. 3690, Hedong Street, Yuncheng, 044031, Shanxi, China
| | - Yan Chen
- Department of Hepatobiliary Surgery, Yuncheng Central Hospital, The Eighth Clinical College of Shanxi Medical University, No. 3690, Hedong Street, Yuncheng, 044031, Shanxi, China
| | - Tong Zhang
- Department of Hepatobiliary Surgery, Yuncheng Central Hospital, The Eighth Clinical College of Shanxi Medical University, No. 3690, Hedong Street, Yuncheng, 044031, Shanxi, China
| | - Xingren Guo
- Department of Hepatobiliary Surgery, Yuncheng Central Hospital, The Eighth Clinical College of Shanxi Medical University, No. 3690, Hedong Street, Yuncheng, 044031, Shanxi, China
| |
Collapse
|
3
|
Chen Z, Yu L, Zheng Z, Wang X, Guo Q, Chen Y, Zhang Y, Zhang Y, Xiao J, Chen K, Fan H, Ding Y. CPT1A mediates radiation sensitivity in colorectal cancer. eLife 2024; 13:RP97827. [PMID: 39607749 PMCID: PMC11604221 DOI: 10.7554/elife.97827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
The prevalence and mortality rates of colorectal cancer (CRC) are increasing worldwide. Radiation resistance hinders radiotherapy, a standard treatment for advanced CRC, leading to local recurrence and metastasis. Elucidating the molecular mechanisms underlying radioresistance in CRC is critical to enhance therapeutic efficacy and patient outcomes. Bioinformatic analysis and tumour tissue examination were conducted to investigate the CPT1A mRNA and protein levels in CRC and their correlation with radiotherapy efficacy. Furthermore, lentiviral overexpression and CRISPR/Cas9 lentiviral vectors, along with in vitro and in vivo radiation experiments, were used to explore the effect of CPT1A on radiosensitivity. Additionally, transcriptomic sequencing, molecular biology experiments, and bioinformatic analyses were employed to elucidate the molecular mechanisms by which CPT1A regulates radiosensitivity. CPT1A was significantly downregulated in CRC and negatively correlated with responsiveness to neoadjuvant radiotherapy. Functional studies suggested that CPT1A mediates radiosensitivity, influencing reactive oxygen species (ROS) scavenging and DNA damage response. Transcriptomic and molecular analyses highlighted the involvement of the peroxisomal pathway. Mechanistic exploration revealed that CPT1A downregulates the FOXM1-SOD1/SOD2/CAT axis, moderating cellular ROS levels after irradiation and enhancing radiosensitivity. CPT1A downregulation contributes to radioresistance in CRC by augmenting the FOXM1-mediated antioxidant response. Thus, CPT1A is a potential biomarker of radiosensitivity and a novel target for overcoming radioresistance, offering a future direction to enhance CRC radiotherapy.
Collapse
Affiliation(s)
- Zhenhui Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhouChina
| | - Lu Yu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Zhihao Zheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Xusheng Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Qiqing Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yuchuan Chen
- State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Department of Infectious Diseases, Nanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yaowei Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Yuqin Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Jianbiao Xiao
- Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical UniversityGuangzhouChina
| | - Keli Chen
- HuiQiao Medical Center, Nanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Hongying Fan
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical UniversityGuangzhouChina
| | - Yi Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical UniversityGuangzhouChina
| |
Collapse
|
4
|
Wang M, Yi J, Gao H, Wei X, Xu W, Zhao M, Zhao M, Shen Y, Wang Z, Wu N, Wei W, Jin S. Radiation-induced YAP/TEAD4 binding confers non-small cell lung cancer radioresistance via promoting NRP1 transcription. Cell Death Dis 2024; 15:619. [PMID: 39187525 PMCID: PMC11347582 DOI: 10.1038/s41419-024-07017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Despite the importance of radiation therapy as a non-surgical treatment for non-small cell lung cancer (NSCLC), radiation resistance has always been a concern, due to poor patient response and prognosis. Therefore, it is crucial to uncover novel targets to enhance radiotherapy and investigate the mechanisms underlying radiation resistance. Previously, we demonstrated that NRP1 was connected to radiation resistance in NSCLC cells. In the present study, bioinformatics analysis of constructed radiation-resistant A549 and H1299 cell models revealed that transcription coactivator YAP is a significant factor in cell proliferation and metastasis. However, there has been no evidence linking YAP and NRP1 to date. In this research, we have observed that YAP contributes to radiation resistance in NSCLC cells by stimulating cell proliferation, migration, and invasion. Mechanistically, YAP dephosphorylation after NSCLC cell radiation. YAP acts as a transcription co-activator by binding to the transcription factor TEAD4, facilitating TEAD4 to bind to the NRP1 promoter region and thereby increasing NRP1 expression. NRP1 has been identified as a new target gene for YAP/TEAD4. Notably, when inhibiting YAP binds to TEAD4, it inhibits NRP1 expression, and Rescue experiments show that YAP/TEAD4 influences NRP1 to regulate cell proliferation, metastasis and leading to radiation resistance generation. According to these results, YAP/TEAD4/NRP1 is a significant mechanism for radioresistance and can be utilized as a target for enhancing radiotherapy efficacy.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/radiotherapy
- Carcinoma, Non-Small-Cell Lung/pathology
- TEA Domain Transcription Factors
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/radiotherapy
- Lung Neoplasms/genetics
- Radiation Tolerance
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/genetics
- YAP-Signaling Proteins/metabolism
- Cell Proliferation
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Neuropilin-1/metabolism
- Neuropilin-1/genetics
- Muscle Proteins/metabolism
- Muscle Proteins/genetics
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Cell Movement
- Animals
- A549 Cells
- Mice, Nude
- Protein Binding
- Transcription, Genetic/radiation effects
- Mice
Collapse
Affiliation(s)
- Mingwei Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Junxuan Yi
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Hui Gao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinfeng Wei
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Weiqiang Xu
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Mingqi Zhao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Mengdie Zhao
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yannan Shen
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Ning Wu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Wei
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China.
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
5
|
Nie H, Yu Y, Wang F, Huang X, Wang H, Wang J, Tao M, Ning Y, Zhou J, Zhao Q, Xu F, Fang J. Comprehensive analysis of the relationship between ubiquitin-specific protease 21 (USP21) and prognosis, tumor microenvironment infiltration, and therapy response in colorectal cancer. Cancer Immunol Immunother 2024; 73:156. [PMID: 38834869 PMCID: PMC11150338 DOI: 10.1007/s00262-024-03731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Ubiquitin-specific proteases family is crucial to host immunity against pathogens. However, the correlations between USP21 and immunosurveillance and immunotherapy for colorectal cancer (CRC) have not been reported. METHODS The differential expression of USP21 between CRC tissues and normal tissues was analyzed using multiple public databases. Validation was carried out in clinical samples through qRT-PCR and IHC. The correlation between USP21 and the prognosis, as well as clinical pathological characteristics of CRC patients, was investigated. Moreover, cell models were established to assess the influence of USP21 on CRC growth and progression, employing CCK-8 assays, colony formation assays, and wound-healing assays. Subsequently, gene set variation analysis (GSVA) was used to explore the potential biological functions of USP21 in CRC. The study also examined the impact of USP21 on cytokine levels and immune cell infiltration in the tumor microenvironment (TME). Finally, the effect of USP21 on the response to immunotherapy and chemotherapy in CRC was analyzed. RESULTS The expression of USP21 was significantly upregulated in CRC. High USP21 is correlated with poor prognosis in CRC patients and facilitates the proliferation and migration capacities of CRC cells. GSVA indicated an association between low USP21 and immune activation. Moreover, low USP21 was linked to an immune-activated TME, characterized by high immune cell infiltration. Importantly, CRC with low USP21 exhibited higher tumor mutational burden, high PD-L1 expression, and better responsiveness to immunotherapy and chemotherapeutic drugs. CONCLUSION This study revealed the role of USP21 in TME, response to therapy, and clinical prognosis in CRC, which provided novel insights for the therapeutic application in CRC.
Collapse
Affiliation(s)
- Haihang Nie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yali Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xing Huang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haizhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mi Tao
- Department of Nephrology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yumei Ning
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - JingKai Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China.
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China.
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Jun Fang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Clinical Research Center for Intestinal and Colorectal Diseases, Wuhan, 430071, China.
- Department of General Medical, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Shi ZY, Li CY, Chen RY, Shi JJ, Liu YJ, Lu JF, Yang GJ, Chen J. The emerging role of deubiquitylating enzyme USP21 as a potential therapeutic target in cancer. Bioorg Chem 2024; 147:107400. [PMID: 38688196 DOI: 10.1016/j.bioorg.2024.107400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Zhen-Yuan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
7
|
Cao X, Yan Z, Chen Z, Ge Y, Hu X, Peng F, Huang W, Zhang P, Sun R, Chen J, Ding M, Zong D, He X. The Emerging Role of Deubiquitinases in Radiosensitivity. Int J Radiat Oncol Biol Phys 2024; 118:1347-1370. [PMID: 38092257 DOI: 10.1016/j.ijrobp.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/03/2023] [Accepted: 12/03/2023] [Indexed: 02/05/2024]
Abstract
Radiation therapy is a primary treatment for cancer, but radioresistance remains a significant challenge in improving efficacy and reducing toxicity. Accumulating evidence suggests that deubiquitinases (DUBs) play a crucial role in regulating cell sensitivity to ionizing radiation. Traditional small-molecule DUB inhibitors have demonstrated radiosensitization effects, and novel deubiquitinase-targeting chimeras (DUBTACs) provide a promising strategy for radiosensitizer development by harnessing the ubiquitin-proteasome system. This review highlights the mechanisms by which DUBs regulate radiosensitivity, including DNA damage repair, the cell cycle, cell death, and hypoxia. Progress on DUB inhibitors and DUBTACs is summarized, and their potential radiosensitization effects are discussed. Developing drugs targeting DUBs appears to be a promising alternative approach to overcoming radioresistance, warranting further research into their mechanisms.
Collapse
Affiliation(s)
- Xiang Cao
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zhenyu Yan
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Zihan Chen
- Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yizhi Ge
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Xinyu Hu
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Wenxuan Huang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Pingchuan Zhang
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Ruozhou Sun
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jiazhen Chen
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Mingjun Ding
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Dan Zong
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China.
| | - Xia He
- Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China; Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Lin JJ, Lu YC. Ubiquitin-specific protease 21 promotes tumorigenicity and stemness of colorectal cancer by deubiquitinating and stabilizing ZEB1. World J Gastrointest Oncol 2024; 16:1006-1018. [PMID: 38577450 PMCID: PMC10989364 DOI: 10.4251/wjgo.v16.i3.1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one very usual tumor together with higher death rate. Ubiquitin-specific protease 21 (USP21) has been confirmed to take part into the regulation of CRC progression through serving as a facilitator. Interestingly, the promotive function of USP21 has also discovered in the progression of CRC. ZEB1 has illustrated to be modulated by USP7, USP22 and USP51 in cancers. However, the regulatory functions of USP21 on ZEB1 in CRC progression need more investigations. AIM To investigate the relationship between USP21 and ZEB1 in CRC progression. METHODS The mRNA and protein expressions were assessed through RT-qPCR, western blot and IHC assay. The interaction between USP21 and ZEB1 was evaluated through Co-IP and GST pull down assays. The cell proliferation was detected through colony formation assay. The cell migration and invasion abilities were determined through Transwell assay. The stemness was tested through sphere formation assay. The tumor growth was evaluated through in vivo mice assay. RESULTS In this work, USP21 and ZEB1 exhibited higher expression in CRC, and resulted into poor prognosis. Moreover, the interaction between USP21 and ZEB1 was further investigated. It was demonstrated that USP21 contributed to the stability of ZEB1 through modulating ubiquitination level. In addition, USP21 strengthened cell proliferation, migration and stemness through regulating ZEB1. At last, through in vivo assays, it was illustrated that USP21/ZEB1 axis aggravated tumor growth. CONCLUSION For the first time, these above findings manifested that USP21 promoted tumorigenicity and stemness of CRC by deubiquitinating and stabilizing ZEB1. This discovery suggested that USP21/ZEB1 axis may provide novel sights for the treatment of CRC.
Collapse
Affiliation(s)
- Jun-Jun Lin
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Chaohu 238000, Anhui Province, China
| | - Ye-Cai Lu
- Department of Gastrointestinal Surgery, Chaohu Hospital of Anhui Medical University, Chaohu 238000, Anhui Province, China
| |
Collapse
|
9
|
Sun X, Yu J, Cui X, Tang Y, Yu Y. Inhibition of USP21 leads to ovarian carcinoma cell death by suppressing MAPK signaling. Biotechnol Appl Biochem 2024; 71:232-239. [PMID: 37964466 DOI: 10.1002/bab.2535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Ovarian cancer is the most aggressive and lethal of all gynecologic malignancies. Although the overexpression (OE) of ubiquitin-specific peptidase 21 (USP21) has been observed in multiple cancers, its expression profile and biological function in ovarian cancer remain unknown. The expression levels of USP21 in ovarian cancer cells and tissues as well as adjacent normal tissues were assessed by qRT-PCR or Western blot assay. The biological function of USP21 in ovarian cancer cells was assessed by cell growth assay in vitro and a tumor growth model in vivo. Our study revealed that USP21 was markedly elevated in ovarian carcinoma tissues compared with adjacent normal tissues. Downregulation of USP21 attenuated the expression levels of MEK2 and p-ERK1/2. Depletion of USP21 resulted in suppressed cell growth of ovarian cancers in vitro and inhibited tumor growth in vivo. Conversely, OE of USP21 promoted the cell proliferation of ovarian cancers and conferred resistance to BAY 11-7082. These findings provide evidences supporting the notion of USP21 as a promising therapeutic target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xin Sun
- Department of Gynecology, Zibo Central Hospital, Zibo, Shandong, China
| | - Jia Yu
- Department of Gynecology, Zibo Central Hospital, Zibo, Shandong, China
| | - Xiaorong Cui
- Department of Gynecology, Zibo Central Hospital, Zibo, Shandong, China
| | - Yujie Tang
- Department of Gynecology, Zibo Central Hospital, Zibo, Shandong, China
| | - Yani Yu
- Department of Gynecology, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
10
|
Zhang M, Shao Y, Gu W. The Mechanism of Ubiquitination or Deubiquitination Modifications in Regulating Solid Tumor Radiosensitivity. Biomedicines 2023; 11:3240. [PMID: 38137461 PMCID: PMC10741492 DOI: 10.3390/biomedicines11123240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy, a treatment method employing radiation to eradicate tumor cells and subsequently reduce or eliminate tumor masses, is widely applied in the management of numerous patients with tumors. However, its therapeutic effectiveness is somewhat constrained by various drug-resistant factors. Recent studies have highlighted the ubiquitination/deubiquitination system, a reversible molecular modification pathway, for its dual role in influencing tumor behaviors. It can either promote or inhibit tumor progression, impacting tumor proliferation, migration, invasion, and associated therapeutic resistance. Consequently, delving into the potential mechanisms through which ubiquitination and deubiquitination systems modulate the response to radiotherapy in malignant tumors holds paramount significance in augmenting its efficacy. In this paper, we comprehensively examine the strides made in research and the pertinent mechanisms of ubiquitination and deubiquitination systems in governing radiotherapy resistance in tumors. This underscores the potential for developing diverse radiosensitizers targeting distinct mechanisms, with the aim of enhancing the effectiveness of radiotherapy.
Collapse
Affiliation(s)
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
| |
Collapse
|
11
|
Liang W, Liu D, Wu J. c-JUN-induced upregulation of LINC00174 contributes to colorectal cancer proliferation and invasion through accelerating USP21 expression. Cell Biol Int 2023; 47:1782-1798. [PMID: 37434557 DOI: 10.1002/cbin.12069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/14/2023] [Accepted: 07/03/2023] [Indexed: 07/13/2023]
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies due to its invasiveness and metastasis. Recent studies revealed the pivotal roles of long noncoding RNAs (lncRNAs) in tumorigenesis and progressions of various tumors. However, the biological roles and molecular mechanisms of long intergenic noncoding RNA 00174 (LINC00174) in human CRC remain unclear. Here, we report that LINC00174 expression was higher in human CRC tissues and cell lines than in adjacent normal tissues and a colon epithelial cell line (FHC). High expression of LINC00174 was positively correlated with poor overall and disease-free survival in patients with CRC. Loss- and gain-of-function of LINC00174 demonstrated its critical roles in promoting cell proliferation, apoptosis resistance, migration, and invasion of CRC cells in vitro. Moreover, overexpression of LINC00174 enhanced tumor growth in vivo. Mechanistic experiments revealed that LINC00174 could bind to microRNA (miR)-2467-3p and augment the expression and function of ubiquitin-specific peptidase 21 (USP21). Rescue assays found that miR-2467-3p inhibition can offset the actions of LINC00174 or USP21 knockdown in CRC cells. Additionally, transcriptional factor c-JUN transcriptionally activated LINC00174 expression and mediated LINC00174-induced malignant phenotypes of CRC cell lines. Totally, our findings shed light on a new therapeutic strategy in modulating LINC00174/miR-2467-3p, which may interfere with the expression of USP21, and revealed that LINC00174 could be a new therapeutic target or prognostic marker in CRC.
Collapse
Affiliation(s)
- Weijie Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, He'nan Province, China
| | - Dongdong Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, He'nan Province, China
| | - Jie Wu
- Department of Ultrasound Intervention, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, He'nan Province, China
| |
Collapse
|
12
|
Chen H, Yang W, Li Y, Ji Z. PLAGL2 promotes bladder cancer progression via RACGAP1/RhoA GTPase/YAP1 signaling. Cell Death Dis 2023; 14:433. [PMID: 37454211 PMCID: PMC10349853 DOI: 10.1038/s41419-023-05970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
PLAGL2 is upregulated in various tumors, including bladder cancer (BCa). However, the mechanisms underlying the tumorigenic effects of PLAGL2 in BCa remain unclear. In our study, we proved that PLAGL2 was overexpressed in BCa tissues and correlated with decreased survival. Functionally, PLAGL2 deficiency significantly suppressed the proliferation and metastasis of BCa cells in vitro and in vivo. RNA sequencing, qRT‒PCR, immunoblotting, immunofluorescence staining, luciferase reporter, and ChIP assays revealed that overexpressed PLAGL2 disrupted the Hippo pathway and increased YAP1/TAZ activity by transactivating RACGAP1. Further investigations demonstrated that PLAGL2 activated YAP1/TAZ signaling via RACGAP1-mediated RhoA activation. Importantly, the RhoA inhibitor simvastatin or the YAP1/TAZ inhibitor verteporfin abrogated the proproliferative and prometastatic effects of BCa enhanced by PLAGL2. These findings suggest that PLAGL2 promotes BCa progression via RACGAP1/RhoA GTPase/YAP1 signaling. Hence, the core nodes of signaling may be promising therapeutic targets for BCa.
Collapse
Affiliation(s)
- Hualin Chen
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Wenjie Yang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Yingjie Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhigang Ji
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
13
|
Kim YJ, Lee Y, Shin H, Hwang S, Park J, Song EJ. Ubiquitin-proteasome system as a target for anticancer treatment-an update. Arch Pharm Res 2023; 46:573-597. [PMID: 37541992 DOI: 10.1007/s12272-023-01455-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
As the ubiquitin-proteasome system (UPS) regulates almost every biological process, the dysregulation or aberrant expression of the UPS components causes many pathological disorders, including cancers. To find a novel target for anticancer therapy, the UPS has been an active area of research since the FDA's first approval of a proteasome inhibitor bortezomib in 2003 for treating multiple myeloma (MM). Here, we summarize newly described UPS components, including E3 ubiquitin ligases, deubiquitinases (DUBs), and immunoproteasome, whose malfunction leads to tumorigenesis and whose inhibitors have been investigated in clinical trials as anticancer therapy since 2020. We explain the mechanism and effects of several inhibitors in depth to better comprehend the advantages of targeting UPS components for cancer treatment. In addition, we describe attempts to overcome resistance and limited efficacy of some launched proteasome inhibitors, as well as an emerging PROTAC-based tool targeting UPS components for anticancer therapy.
Collapse
Affiliation(s)
- Yeon Jung Kim
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yeonjoo Lee
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hyungkyung Shin
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - SuA Hwang
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jinyoung Park
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Eun Joo Song
- College of Pharmacy, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
14
|
Liang XW, Wang SZ, Liu B, Chen JC, Cao Z, Chu FR, Lin X, Liu H, Wu JC. A review of deubiquitinases and thier roles in tumorigenesis and development. Front Bioeng Biotechnol 2023; 11:1204472. [PMID: 37251574 PMCID: PMC10213685 DOI: 10.3389/fbioe.2023.1204472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Ubiquitin is a small protein that can be added onto target protein for inducing target degradation, thereby modulating the activity and stability of protein. Relatively, deubiquitinases (DUBs), a class catalase that can remove ubiquitin from substrate protein, provide a positive regulation of the protein amount at transcription level, post-translational modification, protein interaction, etc. The reversible and dynamic ubiquitination-deubiquitination process plays an essential role in maintaining protein homeostasis, which is critical to almost all the biological processes. Therefore, the metabolic dysregulation of deubiquitinases often lead to serious consequences, including the growth and metastasis of tumors. Accordingly, deubiquitinases can be served as key drug targets for the treatment of tumors. The small molecule inhibitors targeting deubiquitinases has become one of the hot spots of anti-tumor drug research areas. This review concentrated on the function and mechanism of deubiquitinase system in the proliferation, apoptosis, metastasis and autophagy of tumor cells. The research status of small molecule inhibitors of specific deubiquitinases in tumor treatment is introduced, aiming to provide reference for the development of clinical targeted drugs.
Collapse
Affiliation(s)
- Xian-Wen Liang
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Sheng-Zhong Wang
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bing Liu
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jia-Cheng Chen
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zhi Cao
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Feng-Ran Chu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Xiong Lin
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Hui Liu
- Department of Gastrointestinal Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jin-Cai Wu
- Department of Hepatobiliary and Pancreatic Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
15
|
Wang QD, Shi T, Xu Y, Liu Y, Zhang MJ. USP21 contributes to the aggressiveness of laryngeal cancer cells by deubiquitinating and stabilizing AURKA. Kaohsiung J Med Sci 2023; 39:354-363. [PMID: 36919585 DOI: 10.1002/kjm2.12649] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 03/16/2023] Open
Abstract
Laryngeal cancer is a usual malignant tumor of the head and neck. The role and mechanism of deubiquitinase USP21 in laryngeal cancer are still unclear. We aimed to explore whether USP21 affected laryngeal cancer progress through deubiquitinating AURKA. USP21 and AURKA levels were evaluated by qRT-PCR and Western blot. Kaplan-Meier analysis was conducted by survival package. MTT was performed to detect cell proliferation. The wound healing assay was applied to evaluate cell migration. Transwell was used to measure cell invasion. Co-IP and GST-pull down determined the interaction between USP21 and AURKA. In addition, AURKA ubiquitination levels were analyzed. USP21 was signally elevated in laryngeal cancer tissues and cells. USP21 level in clinical stages III-IV was higher than that in clinical stages I-II, and high levels of USP21 were highly correlated with poor prognosis in laryngeal cancer. USP21 inhibition suppressed AMC-HN-8 and TU686 cell proliferation, migration and invasion. Co-IP and GST-pull down confirmed the interaction between USP21 and AURKA. Knockdown of USP21 markedly increased the ubiquitination level of AURKA, and USP21 restored AURKA activity through deubiquitination. In addition, overexpression of AURKA reversed the effects of USP21 knockdown on cell growth, migration, and invasion. USP21 stabilized AURKA through deubiquitination to promote laryngeal cancer progression.
Collapse
Affiliation(s)
- Qing-Dong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, People's Republic of China
| | - Tao Shi
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, People's Republic of China
| | - Yang Xu
- Department of Otolaryngology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, People's Republic of China
| | - Yang Liu
- Department of Emergency, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, People's Republic of China
| | - Mei-Jia Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, People's Republic of China
| |
Collapse
|
16
|
Göricke F, Vu V, Smith L, Scheib U, Böhm R, Akkilic N, Wohlfahrt G, Weiske J, Bömer U, Brzezinka K, Lindner N, Lienau P, Gradl S, Beck H, Brown PJ, Santhakumar V, Vedadi M, Barsyte-Lovejoy D, Arrowsmith CH, Schmees N, Petersen K. Discovery and Characterization of BAY-805, a Potent and Selective Inhibitor of Ubiquitin-Specific Protease USP21. J Med Chem 2023; 66:3431-3447. [PMID: 36802665 PMCID: PMC10009755 DOI: 10.1021/acs.jmedchem.2c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
USP21 belongs to the ubiquitin-specific protease (USP) subfamily of deubiquitinating enzymes (DUBs). Due to its relevance in tumor development and growth, USP21 has been reported as a promising novel therapeutic target for cancer treatment. Herein, we present the discovery of the first highly potent and selective USP21 inhibitor. Following high-throughput screening and subsequent structure-based optimization, we identified BAY-805 to be a non-covalent inhibitor with low nanomolar affinity for USP21 and high selectivity over other DUB targets as well as kinases, proteases, and other common off-targets. Furthermore, surface plasmon resonance (SPR) and cellular thermal shift assays (CETSA) demonstrated high-affinity target engagement of BAY-805, resulting in strong NF-κB activation in a cell-based reporter assay. To the best of our knowledge, BAY-805 is the first potent and selective USP21 inhibitor and represents a valuable high-quality in vitro chemical probe to further explore the complex biology of USP21.
Collapse
Affiliation(s)
- Fabian Göricke
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Leanna Smith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Ulrike Scheib
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Raphael Böhm
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Namik Akkilic
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Gerd Wohlfahrt
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Jörg Weiske
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | - Ulf Bömer
- Nuvisan Innovation Campus Berlin, 13353 Berlin, Germany
| | | | - Niels Lindner
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Philip Lienau
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Stefan Gradl
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Hartmut Beck
- Research & Development, Pharmaceuticals, Bayer AG, 42096 Wuppertal, Germany
| | - Peter J Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | - Kirstin Petersen
- Research & Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| |
Collapse
|
17
|
Wang QD, Liu LL, Li D, Gao L, Zhang MJ. Salt-like transcription factor 4 promotes laryngeal cancer progression through transcriptional activation of ubiquitin-specific protease 21 to stabilize Yin Yang 1. Pathol Int 2023; 73:109-119. [PMID: 36285444 DOI: 10.1111/pin.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022]
Abstract
Laryngeal cancer (LC) is a rare and challenging clinical problem. Our aim was to investigate the mechanism of salt-like transcription factor 4 (SALL4) in LC. LC tissue and paracancerous tissue were collected. Relative mRNA or protein levels were measured by quantitative real-time polymerase chain reaction or Western blot. MTT, wound healing, and transwell assay were performed to evaluate cell proliferation, migration and invasion. The binding relationship between SALL4 and USP21 promoter was verified by dual-luciferase assay and ChIP. Co-IP and glutathione-S-transferase (GST)-pull down were performed to measure the protein interaction between USP21 and YY1. Additionally, YY1 ubiquitination level was analyzed. It was found that SALL4 mRNA and SALL4 protein levels were elevated in LC clinical tissues and various LC cells. Knockdown of SALL4 inhibited epithelial-mesenchymal transition (EMT) of LC cells. USP21 was transcriptionally activated by SALL4. Co-IP and GST-pull down confirmed USP21 interacted with YY1. USP21 protected YY1 from degradation through deubiquitination. Furthermore, overexpression of USP21 reversed the effect of knockdown of SALL4 on YY1 and EMT in LC cells. In general, SALL4 facilitated EMT of LC cells through modulating USP21/YY1 axis.
Collapse
Affiliation(s)
- Qing-Dong Wang
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, P.R. China
| | - Li-Li Liu
- Department of Anesthesiology, Second Department of Jiamusi Central Hospital, Jiamusi, Heilongjiang Province, P.R. China
| | - Di Li
- Department of Otolaryngology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, P.R. China
| | - Li Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, P.R. China
| | - Mei-Jia Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang Province, P.R. China
| |
Collapse
|
18
|
Hou J, Li W, Zhang S, Tan D, Lv K, Zhu Y, Hou Y, Guo H, Jiang L. UHRF1 plays an oncogenic role in small cell lung cancer. Mol Carcinog 2023; 62:385-397. [PMID: 36537722 DOI: 10.1002/mc.23493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Small cell lung cancer (SCLC) is a malignant tumor characterized by aggressiveness and dismal prognosis. The specific role of ubiquitin-like PHD and RING finger domain (UHRF1), a frequently overexpressed cancer-promoting gene in various tumors, is poorly understood in SCLC. Herein, we explored the potential carcinogenic role of UHRF1 in SCLC. First, public databases were used to analyze the expression of UHRF1 in SCLC, and tissue specimens in our center were examined to confirm the results while clinical outcomes were collected to analyze its relationship with UHRF1. Then, UHRF1 knockdown and overexpression cell lines were established to evaluate the carcinogenic function of UHRF1 in vitro and in vivo. The mechanism of the biological consequences was determined by co-inmunoprecipitation. Moreover, we also analyzed the influence of UHRF1 on cisplatin (DDP) sensitivity of SCLC. The expression of UHRF1 was significantly higher in SCLC tissues than in normal tissues, and high levels of UHRF1 suggested a poor prognosis for SCLC. Mechanistically, UHRF1 promoted SCLC growth through yes-associated protein 1 (YAP1). Specifically, UHRF1 bound to YAP1 and inhibited YAP1 ubiquitin degradation, thus stabilizing the YAP1 protein in SCLC cells. UHRF1 downregulation enhanced DDP sensitivity in SCLC cells and was correlated with a favorable prognosis in patients with SCLC treated with platinum-based chemotherapy. UHRF1 plays an oncogenic role in SCLC by modulating YAP1. Therefore, UHRF1 could be used as a biomarker to predict the prognosis of SCLC patients and serve as a potential therapeutic target for SCLC patients.
Collapse
Affiliation(s)
- Jia Hou
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wenyuan Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shirong Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Deli Tan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kejia Lv
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yue Zhu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yuzhu Hou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, ShaanXi, China
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Cancer Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Key Laboratory for Environment and Disease-related Genes of the Education Ministry, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Lili Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
19
|
Takeshita H, Yoshida R, Inoue J, Ishikawa K, Shinohara K, Hirayama M, Oyama T, Kubo R, Yamana K, Nagao Y, Gohara S, Sakata J, Nakashima H, Matsuoka Y, Nakamoto M, Hirayama M, Kawahara K, Takahashi N, Hirosue A, Kuwahara Y, Fukumoto M, Toya R, Murakami R, Nakayama H. FOXM1-Mediated Regulation of Reactive Oxygen Species and Radioresistance in Oral Squamous Cell Carcinoma Cells. J Transl Med 2023; 103:100060. [PMID: 36801643 DOI: 10.1016/j.labinv.2022.100060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/30/2022] [Indexed: 01/11/2023] Open
Abstract
Radioresistance is a major obstacle to the successful treatment of oral squamous cell carcinoma (OSCC). To help overcome this issue, we have developed clinically relevant radioresistant (CRR) cell lines generated by irradiating parental cells over time, which are useful for OSCC research. In the present study, we conducted gene expression analysis using CRR cells and their parental lines to investigate the regulation of radioresistance in OSCC cells. Based on gene expression changes over time in CRR cells and parental lines subjected to irradiation, forkhead box M1 (FOXM1) was selected for further analysis in terms of its expression in OSCC cell lines, including CRR cell lines and clinical specimens. We suppressed or upregulated the expression of FOXM1 in OSCC cell lines, including CRR cell lines, and examined radiosensitivity, DNA damage, and cell viability under various conditions. The molecular network regulating radiotolerance was also investigated, especially the redox pathway, and the radiosensitizing effect of FOXM1 inhibitors was examined as a potential therapeutic application. We found that FOXM1 was not expressed in normal human keratinocytes but was expressed in several OSCC cell lines. The expression of FOXM1 was upregulated in CRR cells compared with that detected in the parental cell lines. In a xenograft model and clinical specimens, FOXM1 expression was upregulated in cells that survived irradiation. FOXM1-specific small interfering RNA (siRNA) treatment increased radiosensitivity, whereas FOXM1 overexpression decreased radiosensitivity, and DNA damage was altered significantly under both conditions, as well as the levels of redox-related molecules and reactive oxygen species production. Treatment with the FOXM1 inhibitor thiostrepton had a radiosensitizing effect and overcame radiotolerance in CRR cells. According to these results, the FOXM1-mediated regulation of reactive oxygen species could be a novel therapeutic target for the treatment of radioresistant OSCC; thus, treatment strategies targeting this axis might overcome radioresistance in this disease.
Collapse
Affiliation(s)
- Hisashi Takeshita
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Junki Inoue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kohei Ishikawa
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Department of Dentistry, Self-Defense Forces Kumamoto Hospital, Kumamoto, Japan
| | - Kosuke Shinohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mayumi Hirayama
- Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toru Oyama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryuta Kubo
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Yamana
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuka Nagao
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunsuke Gohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Junki Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikaru Nakashima
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Masafumi Nakamoto
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Nozomu Takahashi
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiyuki Hirosue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshikazu Kuwahara
- Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Manabu Fukumoto
- Pathology Informatics Team, RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo, Japan
| | - Ryo Toya
- Department of Radiation Oncology, Kumamoto University Hospital, Kumamoto, Japan
| | - Ryuji Murakami
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
20
|
Wu Y, Guo Y, Wang Q. USP21 accelerates the proliferation and glycolysis of esophageal cancer cells by regulating the STAT3/FOXO1 pathway. Tissue Cell 2022; 79:101916. [DOI: 10.1016/j.tice.2022.101916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022]
|
21
|
Sun Q, Wang L, Zhang C, Hong Z, Han Z. Cervical cancer heterogeneity: a constant battle against viruses and drugs. Biomark Res 2022; 10:85. [PMCID: PMC9670454 DOI: 10.1186/s40364-022-00428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/30/2022] [Indexed: 11/19/2022] Open
Abstract
Cervical cancer is the first identified human papillomavirus (HPV) associated cancer and the most promising malignancy to be eliminated. However, the ever-changing virus subtypes and acquired multiple drug resistance continue to induce failure of tumor prevention and treatment. The exploration of cervical cancer heterogeneity is the crucial way to achieve effective prevention and precise treatment. Tumor heterogeneity exists in various aspects including the immune clearance of viruses, tumorigenesis, neoplasm recurrence, metastasis and drug resistance. Tumor development and drug resistance are often driven by potential gene amplification and deletion, not only somatic genomic alterations, but also copy number amplifications, histone modification and DNA methylation. Genomic rearrangements may occur by selection effects from chemotherapy or radiotherapy which exhibits genetic intra-tumor heterogeneity in advanced cervical cancers. The combined application of cervical cancer therapeutic vaccine and immune checkpoint inhibitors has become an effective strategy to address the heterogeneity of treatment. In this review, we will integrate classic and recently updated epidemiological data on vaccination rates, screening rates, incidence and mortality of cervical cancer patients worldwide aiming to understand the current situation of disease prevention and control and identify the direction of urgent efforts. Additionally, we will focus on the tumor environment to summarize the conditions of immune clearance and gene integration after different HPV infections and to explore the genomic factors of tumor heterogeneity. Finally, we will make a thorough inquiry into completed and ongoing phase III clinical trials in cervical cancer and summarize molecular mechanisms of drug resistance among chemotherapy, radiotherapy, biotherapy, and immunotherapy.
Collapse
Affiliation(s)
- Qian Sun
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Liangliang Wang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Cong Zhang
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhenya Hong
- grid.33199.310000 0004 0368 7223Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhiqiang Han
- grid.33199.310000 0004 0368 7223Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
22
|
An T, Lu Y, Yan X, Hou J. Insights Into the Properties, Biological Functions, and Regulation of USP21. Front Pharmacol 2022; 13:944089. [PMID: 35846989 PMCID: PMC9279671 DOI: 10.3389/fphar.2022.944089] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) antagonize ubiquitination by removing ubiquitin from their substrates. The role of DUBs in controlling various physiological and pathological processes has been extensively studied, and some members of DUBs have been identified as potential therapeutic targets in diseases ranging from tumors to neurodegeneration. Ubiquitin-specific protease 21 (USP21) is a member of the ubiquitin-specific protease family, the largest subfamily of DUBs. Although USP21 was discovered late and early research progress was slow, numerous studies in the last decade have gradually revealed the importance of USP21 in a wide variety of biological processes. In particular, the pro-carcinogenic effect of USP21 has been well elucidated in the last 2 years. In the present review, we provide a comprehensive overview of the current knowledge on USP21, including its properties, biological functions, pathophysiological roles, and cellular regulation. Limited pharmacological interventions for USP21 have also been introduced, highlighting the importance of developing novel and specific inhibitors targeting USP21.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanting Lu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xu Yan
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, School of Medicine, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Jingjing Hou,
| |
Collapse
|
23
|
Peng X, Mo Y, Liu J, Liu H, Wang S. Identification and Validation of miRNA-TF-mRNA Regulatory Networks in Uterine Fibroids. Front Bioeng Biotechnol 2022; 10:856745. [PMID: 35392402 PMCID: PMC8981149 DOI: 10.3389/fbioe.2022.856745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/02/2022] [Indexed: 11/28/2022] Open
Abstract
Uterine fibroids (UF) are the most common benign gynecologic tumors and lead to heavy menstrual bleeding, severe anemia, abdominal pain, and infertility, which seriously harm a women’s health. Unfortunately, the regulatory mechanisms of UF have not been elucidated. Recent studies have demonstrated that miRNAs play a vital role in the development of uterine fibroids. As a high-throughput technology, microarray is utilized to identify differentially expressed genes (DEGs) and miRNAs (DEMs) between UF and myometrium. We identified 373 candidate DEGs and the top 100 DEMs. Function enrichment analysis showed that candidate DEGs were mainly enriched in biological adhesion, locomotion and cell migration, and collagen-containing extracellular matrix. Subsequently, protein-protein interaction (PPI) networks are constructed to analyze the functional interaction between DEGs and screen hub DEGs. Subsequently, the expression levels of hub DEGs were validated by real-time PCR of clinical UF samples. The DGIdb database was used to select candidate drugs for hub DEGs. Molecular docking was applied to test the affinity between proteins and drugs. Furthermore, target genes for 100 candidate DEMs were predicted by miRwalk3.0. After overlapping with 373 candidate DEGs, 28 differentially expressed target genes (DEGTs) were obtained. A miRNA-mRNA network was constructed to investigate the interactions between miRNA and mRNA. Additionally, two miRNAs (hsa-miR-381-3p and hsa-miR-181b-5p) were identified as hub DEMs and validated through RT-PCR. In order to better elucidate the pathogenesis of UF and the synergistic effect between miRNA and transcription factor (TF), we constructed a miRNA-TF-mRNA regulatory network. Meanwhile, in vitro results suggested that dysregulated hub DEMs were associated with the proliferation, migration, and apoptosis of UF cells. Our findings provided a novel horizon to reveal the internal mechanism and novel targets for the diagnosis and treatment of UF.
Collapse
Affiliation(s)
- Xiaotong Peng
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yanqun Mo
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Junliang Liu
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
| | - Huining Liu
- Department of Gynaecology and Obstetrics, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Huining Liu, ; Shuo Wang,
| | - Shuo Wang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Huining Liu, ; Shuo Wang,
| |
Collapse
|