1
|
Wu H, Lyu X, Xu M, Chen Y, Liao S, Zhang G, Lin Y, Cai X. A Multifunctional miRNA Delivery System Based on Tetrahedral Framework Nucleic Acids for Regulating Inflammatory Periodontal Ligament Stem Cells and Attenuating Periodontitis Bone Loss. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39679863 DOI: 10.1021/acsami.4c17195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Periodontitis is a chronic inflammatory disease that leads to periodontal tissue damage and tooth loss. Therefore, controlling inflammatory bone loss and promoting osteogenesis is a crucial challenge clinically. MicroRNA (miRNA) based gene therapy has shown substantial prospects in recent years, but its application has been limited due to structural instability and easy degradation by enzymes. Research has shown that miRNA-200c is regarded as a key miRNA by regulating multiple signaling pathways during the process of bone resorption. Tetrahedral framework nucleic acid (tFNA) can be considered an ideal carrier of miRNA due to its good tissue permeability, cell uptake efficiency, and biocompatibility. This study developed a tFNA system carrying miR-200c, named T-200c, to exert various biological effects in human periodontal ligament stem cells (PDLSCs). The activation of the NF-κB pathway is diminished, whereas the Akt/β-catenin pathway is enhanced, resulting in a notable decrease in the release of diverse inflammatory mediators and cellular reactive oxygen species. This modulation fosters cell proliferation and osteogenic differentiation, thereby rejuvenating the functionality of PDLSCs. These changes offer a viable alternative for the treatment of periodontitis and the regeneration of periodontal tissues.
Collapse
Affiliation(s)
- Haoyan Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoying Lyu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mengzhuo Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ye Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shengnan Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
- National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Zheng H, Liu J, Sun L, Meng Z. The role of N-acetylcysteine in osteogenic microenvironment for bone tissue engineering. Front Cell Dev Biol 2024; 12:1435125. [PMID: 39055649 PMCID: PMC11269162 DOI: 10.3389/fcell.2024.1435125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Bone defect is a common clinical symptom which can arise from various causes. Currently, bone tissue engineering has demonstrated positive therapeutic effects for bone defect repair by using seeding cells such as mesenchymal stem cells and precursor cells. N-acetylcysteine (NAC) is a stable, safe and highly bioavailable antioxidant that shows promising prospects in bone tissue engineering due to the ability to attenuate oxidative stress and enhance the osteogenic potential and immune regulatory function of cells. This review systematically introduces the antioxidant mechanism of NAC, analyzes the advancements in NAC-related research involving mesenchymal stem cells, precursor cells, innate immune cells and animal models, discusses its function using the classic oral microenvironment as an example, and places particular emphasis on the innovative applications of NAC-modified tissue engineering biomaterials. Finally, current limitations and future prospects are proposed, with the aim of providing inspiration for targeted readers in the field.
Collapse
Affiliation(s)
- Haowen Zheng
- School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Jiacheng Liu
- School of Dentistry, Tianjin Medical University, Tianjin, China
- Department of Prosthodontics, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| | - Lanxin Sun
- School of Dentistry, Tianjin Medical University, Tianjin, China
| | - Zhaosong Meng
- Department of Oral and Maxillofacial Surgery, Tianjin Medical University School and Hospital of Stomatology, Tianjin, China
| |
Collapse
|
3
|
Ustianowska K, Ustianowski Ł, Bakinowska E, Kiełbowski K, Szostak J, Murawka M, Szostak B, Pawlik A. The Genetic Aspects of Periodontitis Pathogenesis and the Regenerative Properties of Stem Cells. Cells 2024; 13:117. [PMID: 38247810 PMCID: PMC10814055 DOI: 10.3390/cells13020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Periodontitis (PD) is a prevalent and chronic inflammatory disease with a complex pathogenesis, and it is associated with the presence of specific pathogens, such as Porphyromonas gingivalis. Dysbiosis and dysregulated immune responses ultimately lead to chronic inflammation as well as tooth and alveolar bone loss. Multiple studies have demonstrated that genetic polymorphisms may increase the susceptibility to PD. Furthermore, gene expression is modulated by various epigenetic mechanisms, such as DNA methylation, histone modifications, or the activity of non-coding RNA. These processes can also be induced by PD-associated pathogens. In this review, we try to summarize the genetic processes that are implicated in the pathogenesis of PD. Furthermore, we discuss the use of these mechanisms in diagnosis and therapeutic purposes. Importantly, novel treatment methods that could promote tissue regeneration are greatly needed in PD. In this paper, we also demonstrate current evidence on the potential use of stem cells and extracellular vesicles to stimulate tissue regeneration and suppress inflammation. The understanding of the molecular mechanisms involved in the pathogenesis of PD, as well as the impact of PD-associated bacteria and stem cells in these processes, may enhance future research and ultimately improve long-term treatment outcomes.
Collapse
Affiliation(s)
- Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Martyna Murawka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| |
Collapse
|