1
|
Mantegazza G, Duncan R, Telesca N, Gargari G, Perotti S, Riso P, Guglielmetti S. Lactic acid bacteria naturally associated with ready-to-eat rocket salad can survive the human gastrointestinal transit. Food Microbiol 2024; 118:104418. [PMID: 38049273 DOI: 10.1016/j.fm.2023.104418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/03/2023] [Accepted: 10/28/2023] [Indexed: 12/06/2023]
Abstract
It was theorized that modernization and the decline in harmless microbial populations associated with food have altered the gut microbiota, impacting host metabolism and immunity. Western dietary patterns, characterized by processed foods and preservation methods, may significantly reduce the microbial population associated with food. To mitigate the consequences of bacterial deprivation, the integration of these diets with fermented foods is commonly proposed. Nonetheless, non-fermented food consumed raw may also be an important source of viable microbial cells for the human microbiome. This study investigates whether salad-associated LAB can survive the gastrointestinal transit (GIT) and contribute to the gut microbiota. LAB strains were quantified and isolated from rocket salad (Eruca vesicaria subsp. sativa), and their survival through GIT was assessed via intervention trials in healthy adults and in vitro. Moreover, bacterial communities in fecal samples were analyzed after three days of rocket salad consumption. Washing with a sodium hypochlorite solution drastically reduced total bacterial load and eliminated viable LAB. The quantity of LAB introduced through salads did not significantly alter the gut microbiota composition. Rocket salads harbored Weissella and Leuconostoc species. A significant increase in Weissella spp. but not in Leuconostoc spp. was observed after the consumption of rocket salad. Simulated GIT experiments suggested that the food matrix and the initial number of ingested viable bacteria may have been important in determining survival. These findings propose that plant products could serve as sources of live LAB for the human gut. Further research with diverse vegetables and longer interventions is needed, encouraging studies on raw, non-fermented foods and their impact on the human intestinal microbiome.
Collapse
Affiliation(s)
- Giacomo Mantegazza
- Division of Food Microbiology and Bioprocesses and Università degli Studi di Milano, Milan, Italy
| | - Robin Duncan
- Division of Food Microbiology and Bioprocesses and Università degli Studi di Milano, Milan, Italy
| | - Nicolò Telesca
- Division of Food Microbiology and Bioprocesses and Università degli Studi di Milano, Milan, Italy
| | - Giorgio Gargari
- Division of Food Microbiology and Bioprocesses and Università degli Studi di Milano, Milan, Italy
| | - Susanna Perotti
- Division of Food Microbiology and Bioprocesses and Università degli Studi di Milano, Milan, Italy
| | - Patrizia Riso
- Division of Human Nutrition, Department of Food, Environment, and Nutritional Science, Università degli Studi di Milano, Milan, Italy
| | - Simone Guglielmetti
- Division of Food Microbiology and Bioprocesses and Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
2
|
Lacticaseibacillus rhamnosus FM9 and Limosilactobacillus fermentum Y57 Are as Effective as Statins at Improving Blood Lipid Profile in High Cholesterol, High-Fat Diet Model in Male Wistar Rats. Nutrients 2022; 14:nu14081654. [PMID: 35458216 PMCID: PMC9027066 DOI: 10.3390/nu14081654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/25/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022] Open
Abstract
Elevated serum cholesterol is a major risk factor for coronary heart diseases. Some Lactobacillus strains with cholesterol-lowering potential have been isolated from artisanal food products. The purpose of this study was to isolate probiotic Lactobacillus strains from traditional yoghurt (dahi) and yogurt milk (lassi) and investigate the impact of these strains on the blood lipid profile and anti-obesity effect in a high cholesterol high fat diet model in Wistar rats. Eight candidate probiotic strains were chosen based on in vitro probiotic features and cholesterol reduction ability. By 16S rDNA sequencing, these strains were identified as Limosilactibacillus fermentum FM6, L. fermentum FM16, L. fermentum FM12, Lacticaseibacillus rhamnosus FM9, L. fermentum Y55, L. fermentum Y57, L. rhamnosus Y59, and L. fermentum Y63. The safety of these strains was investigated by feeding 2 × 108 CFU/mL in saline water for 28 days in a Wistar rat model. No bacterial translocation or any other adverse effects were observed in animals after administration of strains in water, which indicates the safety of strains. The cholesterol-lowering profile of these probiotics was evaluated in male Wistar rats using a high-fat, high-cholesterol diet (HFCD) model. For 30 days, animals were fed probiotic strains in water with 2 × 108 CFU/mL/rat/day, in addition to a high fat, high cholesterol diet. The cholesterol-lowering effects of various probiotic strains were compared to those of statin. All strains showed improvement in total cholesterol, LDL, HDL, triglycerides, and weight gain. Serum cholesterol levels were reduced by 9% and 8% for L. rhamnosus FM9 and L. fermentum Y57, respectively, compared to 5% for the statin-treated group. HDL levels significantly improved by 46 and 44% for L. rhamnosus FM9 and L. fermentum Y57, respectively, compared to 46% for the statin-treated group. Compared to the statin-treated group, FM9 and Y57 significantly reduced LDL levels by almost twofold. These findings show that these strains can improve blood lipid profiles as effectively as statins in male Wistar rats. Furthermore, probiotic-fed groups helped weight control in animals on HFCD, indicating the possible anti-obesity potential of these strains. These strains can be used to develop food products and supplements to treat ischemic heart diseases and weight management. Clinical trials, however, are required to validate these findings.
Collapse
|
3
|
The Effectiveness of Potential Probiotics Lactobacillus rhamnosus Vahe and Lactobacillus delbrueckii IAHAHI in Irradiated Rats Depends on the Nutritional Stage of the Host. Probiotics Antimicrob Proteins 2021; 12:1439-1450. [PMID: 32462507 DOI: 10.1007/s12602-020-09662-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several species of eukaryotic organisms living in the high mountain areas of Armenia with naturally occurring levels of radiation have high adaptive responses to radiation. We speculate on the role of the gastrointestinal microbiota in this protection against radiation. Therefore, seventeen microorganisms with high antagonistic activities against several multi-drug-resistant pathogens were isolated from the human and animal gut microbiota, as well as from traditional Armenian fermented products. These strains were tested in vivo on Wistar rats to determine their ability to protect the eukaryotic host against radiation damages. The efficiency of the probiotics' application and the dependence on pre- and post-radiation nutrition of rats were described. The effects of Lactobacillus rhamnosus Vahe, isolated from a healthy breastfed infant, and Lactobacillus delbrueckii IAHAHI, isolated from the fermented dairy product matsuni, on the survival of irradiated rats, and their blood leucocyte and glucose levels, were considered to be the most promising, based on this study's results.
Collapse
|
4
|
Mallappa RH, Balasubramaniam C, Nataraj BH, Ramesh C, Kadyan S, Pradhan D, Muniyappa SK, Grover S. Microbial diversity and functionality of traditional fermented milk products of India: Current scenario and future perspectives. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
de Melo Pereira GV, de Carvalho Neto DP, Maske BL, De Dea Lindner J, Vale AS, Favero GR, Viesser J, de Carvalho JC, Góes-Neto A, Soccol CR. An updated review on bacterial community composition of traditional fermented milk products: what next-generation sequencing has revealed so far? Crit Rev Food Sci Nutr 2020; 62:1870-1889. [PMID: 33207956 DOI: 10.1080/10408398.2020.1848787] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emergence of next-generation sequencing (NGS) technologies has revolutionized the way to investigate the microbial diversity in traditional fermentations. In the field of food microbial ecology, different NGS platforms have been used for community analysis, including 454 pyrosequencing from Roche, Illumina's instruments and Thermo Fisher's SOLiD/Ion Torrent sequencers. These recent platforms generate information about millions of rDNA amplicons in a single running, enabling accurate phylogenetic resolution of microbial taxa. This review provides a comprehensive overview of the application of NGS for microbiome analysis of traditional fermented milk products worldwide. Fermented milk products covered in this review include kefir, buttermilk, koumiss, dahi, kurut, airag, tarag, khoormog, lait caillé, and suero costeño. Lactobacillus-mainly represented by Lb. helveticus, Lb. kefiranofaciens, and Lb. delbrueckii-is the most important and frequent genus with 51 reported species. In general, dominant species detected by culturing were also identified by NGS. However, NGS studies have revealed a more complex bacterial diversity, with estimated 400-600 operational taxonomic units, comprising uncultivable microorganisms, sub-dominant populations, and late-growing species. This review explores the importance of these discoveries and address related topics on workflow, NGS platforms, and knowledge bioinformatics devoted to fermented milk products. The knowledge that has been gained is vital in improving the monitoring, manipulation, and safety of these traditional fermented foods.
Collapse
Affiliation(s)
- Gilberto V de Melo Pereira
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Dão Pedro de Carvalho Neto
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Bruna L Maske
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Juliano De Dea Lindner
- Department of Food Science and Technology, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Alexander S Vale
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Gabriel R Favero
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Jéssica Viesser
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Júlio C de Carvalho
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Carlos R Soccol
- Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| |
Collapse
|
6
|
Lactobacillus plantarum as a Probiotic Potential from Kouzeh Cheese (Traditional Iranian Cheese) and Its Antimicrobial Activity. Probiotics Antimicrob Proteins 2017; 9:189-193. [DOI: 10.1007/s12602-017-9255-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
7
|
Li J, Zheng Y, Xu H, Xi X, Hou Q, Feng S, Wuri L, Bian Y, Yu Z, Kwok LY, Sun Z, Sun T. Bacterial microbiota of Kazakhstan cheese revealed by single molecule real time (SMRT) sequencing and its comparison with Belgian, Kalmykian and Italian artisanal cheeses. BMC Microbiol 2017; 17:13. [PMID: 28068902 PMCID: PMC5223556 DOI: 10.1186/s12866-016-0911-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 12/10/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In Kazakhstan, traditional artisanal cheeses have a long history and are widely consumed. The unique characteristics of local artisanal cheeses are almost completely preserved. However, their microbial communities have rarely been reported. The current study firstly generated the Single Molecule, Real-Time (SMRT) sequencing bacterial diversity profiles of 6 traditional artisanal cheese samples of Kazakhstan origin, followed by comparatively analyzed the microbiota composition between the current dataset and those from cheeses originated from Belgium, Russian Republic of Kalmykia (Kalmykia) and Italy. RESULTS Across the Kazakhstan cheese samples, a total of 238 bacterial species belonging to 14 phyla and 140 genera were identified. Lactococcus lactis (28.93%), Lactobacillus helveticus (26.43%), Streptococcus thermophilus (12.18%) and Lactobacillus delbrueckii (12.15%) were the dominant bacterial species for these samples. To further evaluate the cheese bacterial diversity of Kazakhstan cheeses in comparison with those from other geographic origins, 16S rRNA datasets of 36 artisanal cheeses from Belgium, Russian Republic of Kalmykia (Kalmykia) and Italy were retrieved from public databases. The cheese bacterial microbiota communities were largely different across sample origins. By principal coordinate analysis (PCoA) and multivariate analysis of variance (MANOVA), the structure of the Kazakhstan artisanal cheese samples was found to be different from those of the other geographic origins. Furthermore, the redundancy analysis (RDA) identified 16 bacterial OTUs as the key variables responsible for such microbiota structural difference. CONCLUSION Our results together suggest that the diversity of bacterial communities in different groups is stratified by geographic region. This study does not only provide novel information on the bacterial microbiota of traditional artisanal cheese of Kazakhstan at species level, but also interesting insights into the bacterial diversity of artisanal cheeses of various geographical origins.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Yi Zheng
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Haiyan Xu
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Xiaoxia Xi
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Qiangchuan Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Shuzhen Feng
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Laga Wuri
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Yanfei Bian
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Zhongjie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Tiansong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.
| |
Collapse
|
8
|
Koirala R, Taverniti V, Balzaretti S, Ricci G, Fortina MG, Guglielmetti S. Melting curve analysis of a groEL PCR fragment for the rapid genotyping of strains belonging to the Lactobacillus casei group of species. Microbiol Res 2015; 173:50-8. [PMID: 25801971 DOI: 10.1016/j.micres.2015.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/13/2014] [Accepted: 01/02/2015] [Indexed: 10/24/2022]
Abstract
Lactobacillus casei group (Lcs) consists of three phylogenetically closely related species (L. casei, L. paracasei, and L. rhamnosus), which are widely used in the dairy and probiotic industrial sectors. Strategies to easily and rapidly characterize Lcs are therefore of interest. To this aim, we developed a method according to a technique known as high resolution melting analysis (HRMa), which was applied to a 150 bp groEL gene fragment. The analysis was performed on 53 Lcs strains and 29 strains representatives of species that are commonly present in dairy and probiotic products and can be most probably co-isolated with Lcs strains. DNA amplification was obtained only from Lcs strains, demonstrating the specificity of the groEL primers designed in this study. The HRMa clustered Lcs strains in three groups that exactly corresponded to the species of the L. casei group. A following HRMa separated the 39 L. paracasei strains in two well distinct intraspecific groups, indicating the possible existence of at least two distinct genotypes inside the species. Nonetheless, the phenotypic characterization demonstrated that the genotypes do not correspond to the two L. paracasei subspecies, namely paracasei and tolerans. In conclusion, the melting curve analysis developed in this study is demonstrably a simple, labor-saving, and rapid strategy obtain the genotyping of a bacterial isolate and simultaneously potentially confirm its affiliation to the L. casei group of species. The application of this method to a larger collection of strains may validate the possibility to use the proposed HRMa protocol for the taxonomic discrimination of L. casei group of species. In general, this study suggests that HRMa can be a suitable technique for the genetic typization of Lactobacillus strains.
Collapse
Affiliation(s)
- Ranjan Koirala
- Nepal Academy of Science and Technology (NAST), Khumaltar, Lalitpur, Nepal; Central Department of Biotechnology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Italy
| | - Silvia Balzaretti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Italy
| | - Giovanni Ricci
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Italy
| | - Maria Grazia Fortina
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Italy
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Food Microbiology and Bioprocessing, Università degli Studi di Milano, Italy.
| |
Collapse
|