1
|
Dorali Beni A, Bahramikia S. Pyrogallol experimentally and theoretically suppressed advanced glycation end products (AGEs) formation, as one of the mechanisms involved in the chronic complications of the diabetes. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:726-738. [PMID: 38006229 DOI: 10.1080/10286020.2023.2283478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
This study aimed to explore the inhibitory effect of pyrogallol on AGE formation in the bovine serum albumin (BSA)/glucose system for 21 days at 37 °C. The AGEs formation was measured in terms of Amadori products, total AGEs, argpyrimidine, and pentosidine. Molecular docking was used to investigate the interaction between pyrogallol and BSA. According to the results, in the presence of pyrogallol, the formation of pentosidine and argpyrimidine AGEs decreased. The molecular interaction studies demonstrated that pyrogallol has a high affinity towards arginine residues of albumin. Finally, results proved pyrogallol is a vigorous antiglycation compound and fruitful for AGE inhibition.
Collapse
Affiliation(s)
- Ashkan Dorali Beni
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad 6815144316, Iran
| | - Seifollah Bahramikia
- Department of Biology, Faculty of Basic Sciences, Lorestan University, Khorramabad 6815144316, Iran
| |
Collapse
|
2
|
Dalli M, Daoudi NE, Abrigach F, Azizi SE, Bnouham M, Kim B, Gseyra N. In vitro α-amylase and hemoglobin glycation inhibitory potential of Nigella sativa essential oil, and molecular docking studies of its principal components. Front Pharmacol 2022; 13:1036129. [PMID: 36339531 PMCID: PMC9631318 DOI: 10.3389/fphar.2022.1036129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Nigella sativa is plant that is endowed with various pharmacological activities including antioxidant, anticancer, anti-inflammatory, antibacterial, antidiabetic, and immunostimulant. This study aims to investigate the antidiabetic activity of the N. sativa essential oil on two key enzymes the α-amylase and hemoglobin glycation. After the extraction procedure, the N. sativa essential oil, were subject to qualitative and semi-quantitative analysis using GC/MS, for the identification of the different bioactive compounds. This was followed by an evaluation of the in vitro inhibition capacity of the α-amylase and the hemoglobin glycation. Finally, a molecular docking study was conducted to determine the bioactive compounds responsible for the antidiabetic activity. The extracted essential oil showed the presence of different bioactive compounds including α-phellandrene (29.6%), β-cymene (23.8%), 4-caranol (9.7%), thymol (7%). The N. sativa essential oil was found to be endowed with an antiradical scavenging activity with an IC50 of (7.81 ± 0.08 mg/ml), and to have a ferric reducing activity with an IC50 value of (7.53 ± 0.11 mg/ml). The IC50 value for the α-amylase inhibitory activity was 0.809 mg/ml, indicating an inhibitory impact of the enzyme. The IC50 value for the N. sativa essential oil’s hemoglobin antiglycation activity was 0.093 mg/ml. For most predominating phytochemicals present in the N. sativa essential oil, molecular docking studies against human pancreatic α-amylase and human hemoglobin enzymes revealed that these compounds can serve as lead molecules to develop new antidiabetic compounds.
Collapse
Affiliation(s)
- Mohammed Dalli
- Laboratory of Bioresources, Biotechnology Ethnopharmacology and Health Faculty of Sciences, Mohammed First University, Oujda, Morocco
- *Correspondence: Mohammed Dalli, ; Bonglee Kim ,
| | - Nour Elhouda Daoudi
- Laboratory of Bioresources, Biotechnology Ethnopharmacology and Health Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Farid Abrigach
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Salah-eddine Azizi
- Laboratory of Bioresources, Biotechnology Ethnopharmacology and Health Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Mohamed Bnouham
- Laboratory of Bioresources, Biotechnology Ethnopharmacology and Health Faculty of Sciences, Mohammed First University, Oujda, Morocco
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Mohammed Dalli, ; Bonglee Kim ,
| | - Nadia Gseyra
- Laboratory of Bioresources, Biotechnology Ethnopharmacology and Health Faculty of Sciences, Mohammed First University, Oujda, Morocco
| |
Collapse
|
3
|
Bioactive Compounds from Ephedra fragilis: Extraction Optimization, Chemical Characterization, Antioxidant and AntiGlycation Activities. Molecules 2021; 26:molecules26195998. [PMID: 34641538 PMCID: PMC8512229 DOI: 10.3390/molecules26195998] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/31/2022] Open
Abstract
Response surface methodology (RSM) with a Box-Behnken design (BBD) was used to optimize the extraction of bioactive compounds from Ephedra fragilis. The results suggested that extraction with 61.93% ethanol at 44.43 °C for 15.84 h was the best solution for this combination of variables. The crude ethanol extract (CEE) obtained under optimum extraction conditions was sequentially fractionated with solvents of increasing polarity. The content of total phenolic (TP) and total flavonoid (TF) as well as the antioxidant and antiglycation activities were measured. The phytochemical fingerprint profile of the fraction with the highest activity was characterized by using RP-HPLC. The ethyl acetate fraction (EAF) had the highest TP and TF contents and exhibited the most potent antioxidant and antiglycation activities. The Pearson correlation analysis results showed that TP and TF contents were highly significantly correlated with the antioxidant and antiglycation activities. Totally, six compounds were identified in the EAF of E. fragilis, including four phenolic acids and two flavonoids. Additionally, molecular docking analysis also showed the possible connection between identified bioactive compounds and their mechanisms of action. Our results suggest new evidence on the antioxidant and antiglycation activities of E. fragilis bioactive compounds that may be applied in the treatment and prevention of aging and glycation-associated complications.
Collapse
|