1
|
Hu L, Sui X, Dong X, Li Z, Lun S, Wang S. Low beauvericin concentrations promote PC-12 cell survival under oxidative stress by regulating lipid metabolism and PI3K/AKT/mTOR signaling. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115786. [PMID: 38061083 DOI: 10.1016/j.ecoenv.2023.115786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/12/2024]
Abstract
Beauvericin (BEA), a naturally occurring cyclic peptide with good pharmacological activity, has been widely explored in anticancer research. Although BEA is toxic, studies have demonstrated its antioxidant activity. However, to date, the antioxidant mechanisms of BEA remain unclear. Herein, we conducted a comprehensive and detailed study of the antioxidant mechanism of BEA using an untargeted metabolomics approach, subsequently validating the results. BEA concentrations of 0.5 and 1 μM significantly inhibited H2O2-induced oxidative stress (OS), decreased reactive oxygen species levels in PC-12 cells, and restored the mitochondrial membrane potential. Untargeted metabolomics indicated that BEA was primarily involved in lipid-related metabolism, suggesting its role in resisting OS in PC-12 cells by participating in lipid metabolism. BEA combated OS damage by increasing phosphatidylcholine, phosphatidylethanolamine, and sphingolipid levels. In the current study, BEA upregulated proteins related to the PI3K/AKT/mTOR pathway, thereby promoting cell survival. These findings support the antioxidant activity of BEA at low concentrations, warranting further research into its pharmacological effects.
Collapse
Affiliation(s)
- Liming Hu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Xintong Sui
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Xin Dong
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Zhimeng Li
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Shiyi Lun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Shumin Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| |
Collapse
|
2
|
Elshamy AI, Mohamed TA, Yoneyama T, Noji M, Ban S, Imagawa H, Efferth T, Hegazy MEF, Umeyama A. Bifusicoumarins A-D: Cytotoxic 3S-dihydroisocoumarins from the entomopathogenic fungus Cordyceps bifusispora (NBRC 108997). PHYTOCHEMISTRY 2023:113743. [PMID: 37269936 DOI: 10.1016/j.phytochem.2023.113743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Cordyceps is a genus of ascomycete fungi with some of them being edible and/or having a long tradition in Chinese medicine. The chemical characterization of a solvent extract of the entomopathogenic fungus Cordyceps bifusispora afforded four undescribed coumarins, bifusicoumarin A-D (1-4), along with previously reported metabolites (5-8). Structural elucidation was performed via NMR, UV and HRMS analyses, X-ray single crystal diffraction and experimental ECD. The high throughput resazurin reduction assay, that measures cell viability, indicated that 5 has a IC50 between 1 and 15 μM for several assayed tumor lines. Moreover, a protein-interaction network indicated that C. bifusispora is a promising source of additional antitumor metabolites based on SwissTargetPrediction software predictions.
Collapse
Affiliation(s)
- Abdelsamed I Elshamy
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Bohouth St., Dokki, Giza, 12622, Egypt.
| | - Tarik A Mohamed
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt
| | - Tatsuro Yoneyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Masaaki Noji
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Sayaka Ban
- Medical Mycology Research Center, Chiba University, Japan
| | - Hiroshi Imagawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Mohamed-Elamir F Hegazy
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima, 770-8514, Japan.
| | - Akemi Umeyama
- Chemistry of Medicinal Plants Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
3
|
Zhao C, Bu H, Zhu J, Wang Y, Oliver KM, Hu F, Huang B, Li Z, Peng F. Integration of Untargeted Metabolomics with Transcriptomics Provides Insights into Beauvericin Biosynthesis in Cordyceps chanhua under H 2O 2-Induced Oxidative Stress. J Fungi (Basel) 2022; 8:484. [PMID: 35628740 PMCID: PMC9143143 DOI: 10.3390/jof8050484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Cordyceps chanhua is an important cordycipitoid mushroom widely used in Asia and beyond. Beauvericin (BEA), one of the bioactive compounds of C. chanhua, has attracted much attention because of its medicinal value and food safety risk. In order to clear up the relationship between oxidative stress and BEA synthesis, we investigated the impact of H2O2-induced oxidative stress on the secondary metabolism of C. chanhua using untargeted metabolomics and a transcript profiling approach. Metabolic profiling of C. chanhua mycelia found that in total, 73 differential metabolites were identified, including organic acids, phospholipids, and non-ribosomal peptides (NRPs), especially the content of BEA, increasing 13-fold under oxidative stress treatment. Combining transcriptomic and metabolomic analyses, we found that the genes and metabolites associated with the NRP metabolism, especially the BEA biosynthesis, were highly significantly enriched under H2O2-induced stress, which indicated that the BEA metabolism might be positive in the resistance of C. chanhua to oxidative stress. These results not only aid in better understanding of the resistance mechanisms of C. chanhua against oxidative stress but also might be helpful for molecular breeding of C. chanhua with low BEA content.
Collapse
Affiliation(s)
- Cheng Zhao
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Haifen Bu
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Jiahua Zhu
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Yulong Wang
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Kerry M. Oliver
- Department of Entomology, University of Georgia, Athens, GA 30602, USA;
| | - Fenglin Hu
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Bo Huang
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Zengzhi Li
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| | - Fan Peng
- Engineering Research Center of Fungal Biotechnology, Ministry of Education, Anhui Provincial Key Laboratory for Microbial Control, Anhui Agricultural University, Hefei 230036, China; (C.Z.); (H.B.); (J.Z.); (Y.W.); (F.H.); (B.H.); (Z.L.)
| |
Collapse
|
4
|
Characterization and Toxicity of Crude Toxins Produced by Cordyceps fumosorosea against Bemisia tabaci (Gennadius) and Aphis craccivora (Koch). Toxins (Basel) 2021; 13:toxins13030220. [PMID: 33803611 PMCID: PMC8003032 DOI: 10.3390/toxins13030220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Cordyceps fumosorosea, an insect pathogenic fungus, produces different toxins/secondary metabolites which can act as pest control agents. This study reports the extraction and characterization of crude mycelial extracts of C. fumosorosea isolate SP502 along with their bio-efficacy against Bemisia tabaci and Aphis craccivora. Fourier transform infrared spectroscopy, liquid chromatography, mass spectrometery and nuclear magnetic resonance analysis of C. fumosorosea isolate SP502 extracts showed the presence of five major compounds—Trichodermin, 5-Methylmellein, Brevianamide F, Enniatin and Beauvericin—which all may potentially be involved in insecticidal activity. The HPLC analysis of C. fumosorosea mycelial extracts and Beauvericin standard showed similar chromatographic peaks, with the content of Beauvericin in the crude toxin being calculated as 0.66 mg/ml. The median lethal concentrations of C. fumosorosea mycelial extracts towards first, second, third and fourth instar nymphs of A. craccivora were 46.35, 54.55, 68.94, and 81.92 µg/mL, respectively. The median lethal concentrations of C. fumosorosea mycelial extracts towards first, second, third and fourth instar nymphs of B. tabaci were 62.67, 72.84, 77.40, and 94.40 µg/mL, respectively. Our results demonstrate that bioactive compounds produced by C. fumosorosea isolate SP502 have insecticidal properties and could, therefore, be developed into biopesticides for the management of B. tabaci and A. craccivora.
Collapse
|
5
|
Chhetri DR, Chhetri A, Shahi N, Tiwari S, Karna SKL, Lama D, Pokharel YR. Isaria tenuipes Peck, an entomopathogenic fungus from Darjeeling Himalaya: Evaluation of in-vitro antiproliferative and antioxidant potential of its mycelium extract. BMC Complement Med Ther 2020; 20:185. [PMID: 32527241 PMCID: PMC7291650 DOI: 10.1186/s12906-020-02973-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/26/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Isaria tenuipes is one of the potent species in the members of the genus Isaria, which is well reported to possess multiple bioactive substances of therapeutic importance. Therefore, an in vitro experimental study was carried to evaluate the bioactivities of the crude methanolic extract from the mycelium of this fungus. METHODS The fungus was authenticated through morphological characters and the species discrepancy was resolved using the nuclear rDNA ITS sequence. The methanolic extract was fingerprinted by FTIR. The antioxidant components in terms of total phenols and flavonoids were determined as gallic acid and quercetin equivalents respectively. Antioxidant activities of the methanolic extract was assessed using 1, 1-diphenyl-2-picrylhydrazyl (DPPH), 2, 2/-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid) radical cation (ABTS0+), Fe2+chelating activity, and hydroxyl radical scavenging assays. Cytotoxicity of the extract was determined by [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] (MTT) assay on three cancer cell lines: HeLa, HepG2, and PC3. Apoptosis was further studied by propidium iodide (PI) and Annexin-V/PI staining flow cytometric analysis. Anti-proliferation capacity was studied by colony-forming assay. RESULTS In the present study total phenol content of the dried methanol extract was 148.09 ± 3.51μg gallic acid equivalent/mg and flavonoid was 9.02±0.95 μg quercetin/mg. The antioxidant activities of methanol-water extract (8:2 v/v) from cultured mycelia of I. tenuipes investigated and evaluated with 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay revealed IC50 value of 5.04mg/ml with an inhibition rate of 74.77% at 10mg/ml and with an iron-chelating assay the chelating ability was recorded to be 86.76% where the IC50 value was 4.43 mg/ml. In comparison among the antioxidant assays, 2,2/-azinobis-(3-ethylbenzthiazoline-6-sulphonic acid) radical cation (ABTS0+) and hydroxyl assay exhibited radical scavenging rate of 44.42% and 49.82% respectively at a concentration of 10 mg/ml. The IC50 value of the extract in MTT assay was 43.45μg/ml with HeLa cells, 119.33μg/ml with PC3 cells, and 125.55μg/ml with HepG2 cells. CONCLUSION In this study, it can be concluded that the crude methanolic extract exhibited potent antioxidant and antiproliferative activities suggesting natural antioxidative and antiproliferative agents.
Collapse
Affiliation(s)
- Dhani Raj Chhetri
- Biochemistry and Molecular Biology Lab, Department of Botany, Sikkim University, Gangtok, Sikkim, 737102, India
| | - Abhijit Chhetri
- Biochemistry and Molecular Biology Lab, Department of Botany, Sikkim University, Gangtok, Sikkim, 737102, India
| | - Nerina Shahi
- Cancer Biology Laboratory, Faculty of Life Science and Biotechnology, South Asian University, Chanakyapuri, New Delhi, 110021, India
| | - Snigdha Tiwari
- National Fungal Culture Collection of India, Biodiversity and Palaeobiology Group, MACS' Agharkar Research Institute, G.G. Agarkar Road, Pune, 411004, India
| | - Shibendra Kumar Lal Karna
- Cancer Biology Laboratory, Faculty of Life Science and Biotechnology, South Asian University, Chanakyapuri, New Delhi, 110021, India
| | - Dorjay Lama
- Department of Microbiology, St. Joseph's College, North Point, Darjeeling, West Bengal, 734104, India
| | - Yuba Raj Pokharel
- Cancer Biology Laboratory, Faculty of Life Science and Biotechnology, South Asian University, Chanakyapuri, New Delhi, 110021, India.
- Centre for Health and Disease Studies Nepal, P.O. Box No. 9503, Sankhmul, Baneshwor, Kathmandu, Nepal.
| |
Collapse
|
6
|
Oyeka C, Amasiani R, Ekwealor C. Mycotoxins contamination of maize in Anambra State, Nigeria. FOOD ADDITIVES & CONTAMINANTS: PART B 2019. [DOI: 10.1080/19393210.2019.1661528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- C.A Oyeka
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - R.N. Amasiani
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - C.C. Ekwealor
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
7
|
Mascarin G, Dunlap C, Barrigossi J, Quintela E, de Noronha N. First record of epizootics in the ocola skipper,Panoquina ocola(Lepidopera: Hesperiidae), caused byIsaria tenuipesin flooded rice fields of Central Brazil. J Appl Microbiol 2017; 122:1020-1028. [DOI: 10.1111/jam.13390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/21/2016] [Accepted: 12/24/2016] [Indexed: 12/01/2022]
Affiliation(s)
- G.M. Mascarin
- EMBRAPA Rice and Beans; Santo Antônio de Goiás GO Brazil
| | - C.A. Dunlap
- United States Department of Agriculture; Agriculture Research Service; Crop Bioprotection Research Unit; National Center for Agricultural Utilization Research; Peoria IL USA
| | | | - E.D. Quintela
- EMBRAPA Rice and Beans; Santo Antônio de Goiás GO Brazil
| | | |
Collapse
|