1
|
Mei G, Xu J, Wen C, Li Y, Chen S, Yang X, Li J, Chen Y, Yang G. Antihyperglycemic effects of triterpenoid saponins from the seeds of Aesculus chinensis Bge. PHYTOCHEMISTRY 2024; 221:114049. [PMID: 38462214 DOI: 10.1016/j.phytochem.2024.114049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/24/2024] [Accepted: 03/02/2024] [Indexed: 03/12/2024]
Abstract
Six undescribed triterpenoid saponins, namely aescuchinosides A-F, along with seven known triterpenoid saponins, were isolated from the seeds of Aesculus chinensis. Barrigenol-like triterpenoids (BATs) constitute these saponins. Protoaescigenin serves as their aglycone, with various oxygen-containing groups, including acetyl, isobutyryl, tigloyl, and angeloyl groups situated at C-21, C-22, and C-28. Various techniques, including 1D and 2D-NMR spectroscopy, high-resolution mass spectrometry, and acid hydrolysis, were employed to determine the structures of these compounds. The antihyperglycemic effects of the isolated compounds were examined in insulin -resistant HepG2 cells induced by palmitic acid treatment. At a concentration of 6 μM, aesculinoside F exhibited a significant increase in glucose consumption. In addition, aesculinoside F demonstrated the potential to improve insulin resistant by upregulating the PI3K/AKT pathway. These results indicate that the seeds of A.chinensis hold promising potential for preventing insulin resistant related disease.
Collapse
Affiliation(s)
- Gui Mei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Jing Xu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Chumao Wen
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, PR China
| | - Yitong Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China
| | - Su Chen
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, PR China
| | - Xiaofei Yang
- College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, PR China
| | - Jun Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| | - Yu Chen
- College of Chemistry and Material Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| | - Guangzhong Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China; Ethnopharmacology Level 3 Laboratory, National Administration of Traditional Chinese Medicine, Wuhan 430074, PR China.
| |
Collapse
|
2
|
Yin Q, Wei Y, Han X, Chen J, Gao H, Sun W. Unraveling the Glucosylation of Astringency Compounds of Horse Chestnut via Integrative Sensory Evaluation, Flavonoid Metabolism, Differential Transcriptome, and Phylogenetic Analysis. FRONTIERS IN PLANT SCIENCE 2022; 12:830343. [PMID: 35185970 PMCID: PMC8850972 DOI: 10.3389/fpls.2021.830343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/27/2021] [Indexed: 06/12/2023]
Abstract
The seeds of Chinese horse chestnut are used as a source of starch and escin, whereas the potential use of whole plant has been ignored. The astringency and bitterness of tea produced from the leaves and flowers were found to be significantly better than those of green tea, suggesting that the enriched flavonoids maybe sensory determinates. During 47 flavonoids identified in leaves and flowers, seven flavonol glycosides in the top 10 including astragalin and isoquercitrin were significantly higher content in flowers than in leaves. The crude proteins of flowers could catalyze flavonol glucosides' formation, in which three glycosyltransferases contributed to the flavonol glucosylation were screened out by multi-dimensional integration of transcriptome, evolutionary analyses, recombinant enzymatic analysis and molecular docking. The deep exploration for flavonol profile and glycosylation provides theoretical and experimental basis for utilization of flowers and leaves of Aesculus chinensis as additives and dietary supplements.
Collapse
Affiliation(s)
- Qinggang Yin
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiding Wei
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyan Han
- Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jingwang Chen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Sun
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Kunatsa Y, Katerere DR. Checklist of African Soapy Saponin-Rich Plants for Possible Use in Communities' Response to Global Pandemics. PLANTS 2021; 10:plants10050842. [PMID: 33922037 PMCID: PMC8143558 DOI: 10.3390/plants10050842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
Plants that exhibit foaming properties when agitated in aqueous solutions are commonly referred to as soapy plants, and they are used in different communities for washing, bathing, and hair shampooing. The frothing ability of these plants is attributed to saponins which are also well-documented to possess antimicrobial attributes. In the light of COVID-19, soap and hand hygiene have taken center stage. The pandemic has also revealed the low access to running water and commercial soaps in many marginalized and poor communities to the detriment of global health. Thus, soapy plants, either in their natural form or through incorporation in commercial products, may be a relevant additional weapon to assist communities to improve hand hygiene and contribute to curbing COVID-19 and other communicable infections. This review paper was compiled from a review of literature that was published between 1980 and 2020. We found 68 plant species, including those which are already used as traditional soaps. Our findings support the potential use of extracts from soapy plants because of their putative viricidal, bactericidal, and fungicidal activities for use in crude home-based formulations and possibly for developing natural commercial soap products.
Collapse
|
4
|
Zhang N, Liu D, Wei S, Cao S, Feng X, Wang K, Ding L, Qiu F. Phenylethanol glycosides from the seeds of Aesculus chinensis var. chekiangensis. BMC Chem 2020; 14:31. [PMID: 32337510 PMCID: PMC7178748 DOI: 10.1186/s13065-020-00685-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/16/2020] [Indexed: 01/11/2023] Open
Abstract
Three new phenylethanol glycosides (1-3) and one known analogue (4) were isolated from the seeds of Aesculus chinensis Bge. var. chekiangensis. To the best of our knowledge, this represents the first isolation of phenylethanol glycosides from the genus of Aesculus, which enriched its chemical composition. Structure elucidations were performed via extensive NMR and HRESIMS data together with comparison with literature data. Thereafter, the isolated compounds were assayed for their neuroprotective activities against CoCl2-induced cytotoxicity in PC12 cells and compound 3 exhibited moderate activity.
Collapse
Affiliation(s)
- Nan Zhang
- 1School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617 People's Republic of China.,2Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Di Liu
- 1School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617 People's Republic of China.,2Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuxiang Wei
- 1School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617 People's Republic of China.,2Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shijie Cao
- 1School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617 People's Republic of China.,2Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinchi Feng
- 1School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617 People's Republic of China
| | - Kai Wang
- 1School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617 People's Republic of China
| | - Liqin Ding
- 1School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617 People's Republic of China.,2Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Qiu
- 1School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai Dist, Tianjin, 301617 People's Republic of China.,2Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
5
|
Zhang N, Wei S, Cao S, Zhang Q, Kang N, Ding L, Qiu F. Bioactive Triterpenoid Saponins From the Seeds of Aesculus chinensis Bge. var. chekiangensis. Front Chem 2020; 7:908. [PMID: 32039145 PMCID: PMC6989559 DOI: 10.3389/fchem.2019.00908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/16/2019] [Indexed: 01/20/2023] Open
Abstract
Phytochemical investigation of Aesculus chinensis Bge. var. chekiangensis (Hu et Fang) Fang obtained 33 triterpenoid saponins, including 14 new ones, aesculiside C–P (1–14). The structure elucidations were performed through comprehensive MS, 1D and 2D-NMR analysis, and their absolute configuration was unambiguously determined by X-ray diffraction analysis as well as Mo2(OAc)4-induced ECD method for the first time. All the substances were examined for their cytotoxic activities against three tumor cell lines, Hep G2, HCT-116, and MGC-803. Of these, compounds 8, 9, 14–16, 18, and 22 exhibited potent cytotoxicities against all cell lines with IC50 of 2–21 μM, while compounds 3, 6, 7, 17–19, 20, 24, and 28 depicted moderate activity (IC50 13 to >40 μM). On these bases, the preliminary structure-activity correlations were also discussed. Meanwhile the neuroprotective properties of triterpenoid saponins from Aesculus genus were evaluated for the first time. Among them, compounds 1, 4, 12, 20, 22, 25, 29, and 31 exhibited moderate activities against COCl2-induced PC12 cell injury.
Collapse
Affiliation(s)
- Nan Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuxiang Wei
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shijie Cao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ning Kang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liqin Ding
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Zhang X, Zhang S, Yang Y, Wang D, Gao H. Natural barrigenol-like triterpenoids: A comprehensive review of their contributions to medicinal chemistry. PHYTOCHEMISTRY 2019; 161:41-74. [PMID: 30818173 DOI: 10.1016/j.phytochem.2019.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 05/07/2023]
Abstract
Barrigenol-like triterpenoids (BATs), which contain an unusual oleanane substituted by many hydroxyl groups as the skeleton, are subdivided into five subtypes: barrigenol A1, barrigenol A2, barrigenol R1, barringtogenol C, and 16-deoxybarringtogenol C. The variations in acyl derivatives, hydroxyl groups, and carbohydrate chains in their structures have enhanced the diversity of BATs. Moreover, the stable polyhydroxy-replaced pentacyclic skeleton provides an ideal platform for structural modifications. To date, more than 500 BAT derivatives have been isolated from plants. Synchronously, BATs possess anti-tumour, anti-Alzheimer's disease, anti-inflammatory, anti-microbial, anti-obesity and anti-allergic activities by regulating numerous cellular molecules. Some BAT derivatives, such as escin obtained from Aesculus hippocastanum L. and xanthoceraside isolated from Xanthoceras sorbifolia Bunge, have been used to treat encephaloedema or inflammatory diseases. This review aims to provide comprehensive information about the chemistry, sources, bioavailability, and anti-tumour effects of BATs, with a particular emphasis on the molecular mechanisms of action. The pharmacokinetics and clinical progress are also concerned. More than 300 structures identified over past 25 years are summarized here (249 compounds) and in the supplementary information (114 compounds). Accordingly, the pharmaceutical activity of barrigenol triterpenoids suggests that some compounds should be developed as promising anti-tumour or anti- Alzheimer's disease agents in future.
Collapse
Affiliation(s)
- Xinxin Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Song Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yiren Yang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Da Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Huiyuan Gao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
7
|
Zhang Z, Chen Y, Jiang X, Zhu P, Li L, Zeng Y, Tang T. The complete chloroplast genome of Aesculus chinensis. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1617056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Zhiyong Zhang
- College of Life sciences, Neijiang Normal University, Neijiang, China
| | - Ying Chen
- College of Life sciences, Neijiang Normal University, Neijiang, China
| | - Xuebo Jiang
- College of Life sciences, Neijiang Normal University, Neijiang, China
| | - Piao Zhu
- College of Life sciences, Neijiang Normal University, Neijiang, China
| | - Ling Li
- College of Life sciences, Neijiang Normal University, Neijiang, China
| | - Yanling Zeng
- College of Life sciences, Neijiang Normal University, Neijiang, China
| | - Tianming Tang
- College of Life sciences, Neijiang Normal University, Neijiang, China
| |
Collapse
|