1
|
Famuyiwa FG, Patil RB, Famuyiwa SO, Olayemi UI, Olanudun EA, Bhongade BA, Sangshetti JN, Shalom EO, Vakare SN, Musa MS, Moin AT, Uddin MH, Faloye KO. Elucidating the monoamine oxidase B inhibitory effect of kaurene diterpenoids from Xylopia aethiopica: An in silico approach. PLoS One 2024; 19:e0308021. [PMID: 39602408 PMCID: PMC11602026 DOI: 10.1371/journal.pone.0308021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/15/2024] [Indexed: 11/29/2024] Open
Abstract
Parkinson disease is a neurogenerative disease common in adults and results in different kinds of memory dysfuntions. This study evaluated the monoamine oxidase B (MAO-B) inhibitory potential of kaurane diterpenoids previously isolated from Xylopia aethiopica through comprehensive computational approaches. Molecular docking study and molecular dynamics simulation were used to access the binding mode and interaction of xylopic acid and MAO-B enzyme. The ADMET properties of the phytochemical were evaluated to provide information on its druggability. The molecular docking and molecular dynamics simulation revealed xylopic acid as potential MAO-B inhibitor due to the good binding energy elicited and stability throughout the 100 ns simulation period. The ADMET properties of the ligand showed it as a promising drug candidate. The study recommend further comprehensive in vitro investigation towards the development of xylopic acid as potent MAO-B inhibitor.
Collapse
Affiliation(s)
| | - Rajesh B. Patil
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society’s, Sinhgad College of Pharmacy, Pune, Maharashtra, India
| | | | - Uduak Ime Olayemi
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Esther Aina Olanudun
- Department of Industrial Chemistry, Faculty of Science, University of Ilesa, Ilesa, Nigeria
| | - Bhoomendra A. Bhongade
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | | | | | - Suvarna N. Vakare
- Department of Pharmaceutical Chemistry, Sinhgad Technical Education Society’s, Sinhgad College of Pharmacy, Pune, Maharashtra, India
| | - Mohammed Sakib Musa
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, Bangladesh
| | - Abu Tayab Moin
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chattogram, Bangladesh
| | - Mohammad Helal Uddin
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chattogram, Bangladesh
| | | |
Collapse
|
2
|
Chavez BG, Leite Dias S, D'Auria JC. The evolution of tropane alkaloids: Coca does it differently. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102606. [PMID: 39067083 DOI: 10.1016/j.pbi.2024.102606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
It is undeniable that tropane alkaloids (TAs) have been both beneficial and detrimental to human health in the modern era. Understanding their biosynthesis is vital for using synthetic biology to engineer organisms for pharmaceutical production. The most parsimonious approaches to pathway elucidation are traditionally homology-based methods. However, this approach has largely failed for TA biosynthesis in angiosperms. In the recent decade, significant progress has been made in elucidating the TA synthesis pathway in Erythroxylum coca, highlighting the parallel development of TAs in both the Solanaceae and Erythroxylaceae families. This separate evolutionary path has uncovered substantial divergence in the TAs formed by E. coca and distinct enzymatic reactions that differ from the traditional TA biosynthetic pathway found in TA-producing nightshade plants.
Collapse
Affiliation(s)
- Benjamin Gabriel Chavez
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Seeland 06466, Germany
| | - Sara Leite Dias
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Seeland 06466, Germany
| | - John Charles D'Auria
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Seeland 06466, Germany.
| |
Collapse
|
3
|
Hurtado-Díaz I, Ramírez-Cisneros MÁ, Alvarez L, Sánchez-Carranza JN, Columba-Palomares MC, Silva-Guzmán JA, Cruz-Sosa F, Bernabé-Antonio A. Metabolites Profile of Extracts and Fractions of Erythroxylum mexicanum Kunth by UHPLC-QTOF-MS/MS and its Antibacterial, Cytotoxic and Nitric Oxide Inhibitory Activities. Chem Biodivers 2024; 21:e202301474. [PMID: 38215210 DOI: 10.1002/cbdv.202301474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
The present study shows the untargeted metabolite profiling and in vitro antibacterial, cytotoxic, and nitric oxide (NO) inhibitory activities of the methanolic leaves extract (MLE) and methanolic stem extract (MSE) of Erythroxylum mexicanum, as well as the fractions from MSE. Using ultra-high performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS), a total of 70 metabolites were identified; mainly alkaloids in the MLE, while the MSE showed a high abundance of diterpenoids. The MSE fractions exhibited differential activity against Gram-positive bacteria. Notably, the hexane fraction (HSF) against Streptococcus pyogenes ATCC 19615 (MIC=62.5 μg/mL) exhibited a bactericidal effect. The MSE fractions exhibited cytotoxicity against all cancer cell lines tested, with selectivity towards them compared to a noncancerous cell line. Particularly, the HSF and chloroform fraction (CSF) showed the highest cytotoxicity against prostate cancer (PC-3) cells, with IC50 values of 19.9 and 18.1 μg/mL and selectivity indexes of 3.8 and 4.2, respectively. Both the HSF and ethyl acetate (EASF) fractions of the MSE inhibited NO production in RAW 264.7 macrophages, with NO production percentages of 50.0 % and 51.7 %, respectively, at a concentration of 30 μg/mL. These results indicated that E. mexicanum can be a source of antibacterial, cytotoxic, and anti-inflammatory metabolites.
Collapse
Affiliation(s)
- Israel Hurtado-Díaz
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, 45200, Zapopan, Jalisco, Mexico
| | - M Ángeles Ramírez-Cisneros
- Chemical Research Center-IICBA, Autonomous University of the State of Morelos, Av. Universidad 1001, Chamilpa, 62209, Cuernavaca, Morelos, Mexico
| | - Laura Alvarez
- Chemical Research Center-IICBA, Autonomous University of the State of Morelos, Av. Universidad 1001, Chamilpa, 62209, Cuernavaca, Morelos, Mexico
| | - Jessica Nayelli Sánchez-Carranza
- Faculty of Pharmacy, Autonomous University of the State of Morelos, Av. Universidad 1001, Chamilpa, 62209, Cuernavaca, Morelos, México
| | - María Crystal Columba-Palomares
- Faculty of Pharmacy, Autonomous University of the State of Morelos, Av. Universidad 1001, Chamilpa, 62209, Cuernavaca, Morelos, México
| | - José Antonio Silva-Guzmán
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, 45200, Zapopan, Jalisco, Mexico
| | - Francisco Cruz-Sosa
- Department of Biotechnology, Autonomous Metropolitan University-Iztapalapa Campus, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Mexico City, 09310, Mexico
| | - Antonio Bernabé-Antonio
- Department of Wood, Pulp and Paper, University Center of Exact Sciences and Engineering, University of Guadalajara, Km 15.5 Guadalajara-Nogales, Col. Las Agujas, 45200, Zapopan, Jalisco, Mexico
| |
Collapse
|
4
|
He CM, Zhou XX, Ye XH, Chen W, Tong YH. Erythroxylumaustroguangdongense (Erythroxylaceae), a new species from Guangdong, China. PHYTOKEYS 2022; 202:133-138. [PMID: 36761818 PMCID: PMC9848950 DOI: 10.3897/phytokeys.202.84688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/01/2022] [Indexed: 06/18/2023]
Abstract
Erythroxylumaustroguangdongense (Erythroxylaceae), a new species from Guangdong Province, China, is described and illustrated. This new species is morphologically most similar to E.calyptratum, but is distinguished by the leathery leaf blade with fewer pairs of secondary veins and flowers borne on leafless nodes of the basal part of the current branch with much longer pedicels and sub-rectangular petal appendages. This is the second native species of Erythroxylum recorded from China.
Collapse
Affiliation(s)
- Chun-Mei He
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, ChinaGuangdong Academy of ForestryGuangzhouChina
| | - Xin-Xin Zhou
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization & Key Laboratory of Digital Botanical Garden of Guangdong Province, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, ChinaSouth China Botanical Garden, Chinese Academy of SciencesGuangzhouChina
| | - Xue-He Ye
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization & Key Laboratory of Digital Botanical Garden of Guangdong Province, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, ChinaSouth China Botanical Garden, Chinese Academy of SciencesGuangzhouChina
- Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, ChinaZhongkai University of Agriculture and EngineeringGuangzhouChina
| | - Weijun Chen
- Zhuhai Charmview International Travel Co. LTD, Zhuhai, 519000, ChinaZhuhai Charmview International Travel Co. LTDZhuhaiChina
| | - Yi-Hua Tong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization & Key Laboratory of Digital Botanical Garden of Guangdong Province, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, ChinaSouth China Botanical Garden, Chinese Academy of SciencesGuangzhouChina
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, ChinaCenter of Conservation Biology, Core Botanical Gardens, Chinese Academy of SciencesGuangzhouChina
| |
Collapse
|
5
|
White DM, Meinhard L, Bailey B, Pirro S. The complete genome sequences of 56 Erythroxylum species. BIODIVERSITY GENOMES 2022; 2022:10.56179/001c.40336. [PMID: 36482919 PMCID: PMC9728009 DOI: 10.56179/001c.40336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We present the whole genome sequences of 56 wild Erythroxylum species from Africa, China, and the American tropics. Deep Illumina sequencing was performed on a single leaf of each voucher. We de novo assembled sequence reads and then identified and used conserved regions across all preassemblies join contigs in a finishing step. The raw and assembled data is publicly available via Genbank.
Collapse
|