1
|
Maktabi MA, Vossaert L, Van den Veyver IB. Cell-based Noninvasive Prenatal Testing (cbNIPT)-A Review on the Current Developments and Future Prospects. Clin Obstet Gynecol 2023; 66:636-648. [PMID: 37650673 PMCID: PMC10491429 DOI: 10.1097/grf.0000000000000798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Considering the diagnostic limitations of cfDNA-based noninvasive prenatal testing (NIPT), scientists have long been interested in isolating and analyzing rare intact fetal and trophoblast cells from maternal blood or endocervical samples to diagnose fetal genetic conditions. These cells may be scarce and difficult to isolate, but they are a direct source of pure fetal genetic material. In this review, we summarize the history of cell-based NIPT, present an updated review on its current developments, evaluate its genetic diagnostic potential, and discuss its future prospects for clinical use.
Collapse
Affiliation(s)
| | - Liesbeth Vossaert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ignatia B Van den Veyver
- Department of Obstetrics and Gynecology
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
2
|
Chen Y, Wu Z, Sutlive J, Wu K, Mao L, Nie J, Zhao XZ, Guo F, Chen Z, Huang Q. Noninvasive prenatal diagnosis targeting fetal nucleated red blood cells. J Nanobiotechnology 2022; 20:546. [PMID: 36585678 PMCID: PMC9805221 DOI: 10.1186/s12951-022-01749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Noninvasive prenatal diagnosis (NIPD) aims to detect fetal-related genetic disorders before birth by detecting markers in the peripheral blood of pregnant women, holding the potential in reducing the risk of fetal birth defects. Fetal-nucleated red blood cells (fNRBCs) can be used as biomarkers for NIPD, given their remarkable nature of carrying the entire genetic information of the fetus. Here, we review recent advances in NIPD technologies based on the isolation and analysis of fNRBCs. Conventional cell separation methods rely primarily on physical properties and surface antigens of fNRBCs, such as density gradient centrifugation, fluorescence-activated cell sorting, and magnetic-activated cell sorting. Due to the limitations of sensitivity and purity in Conventional methods, separation techniques based on micro-/nanomaterials have been developed as novel methods for isolating and enriching fNRBCs. We also discuss emerging methods based on microfluidic chips and nanostructured substrates for static and dynamic isolation of fNRBCs. Additionally, we introduce the identification techniques of fNRBCs and address the potential clinical diagnostic values of fNRBCs. Finally, we highlight the challenges and the future directions of fNRBCs as treatment guidelines in NIPD.
Collapse
Affiliation(s)
- Yanyu Chen
- grid.207374.50000 0001 2189 3846Academy of Medical Sciences, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China ,grid.49470.3e0000 0001 2331 6153School of Physics and Technology, Wuhan University, Wuhan, 430072 China
| | - Zhuhao Wu
- grid.411377.70000 0001 0790 959XDepartment of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405 USA
| | - Joseph Sutlive
- grid.38142.3c000000041936754XDivision of Thoracic and Cardiac Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Ke Wu
- grid.49470.3e0000 0001 2331 6153School of Physics and Technology, Wuhan University, Wuhan, 430072 China
| | - Lu Mao
- grid.207374.50000 0001 2189 3846Academy of Medical Sciences, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China
| | - Jiabao Nie
- grid.38142.3c000000041936754XDivision of Thoracic and Cardiac Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA ,grid.261112.70000 0001 2173 3359Department of Biological Sciences, Northeastern University, Boston, MA 02115 USA
| | - Xing-Zhong Zhao
- grid.49470.3e0000 0001 2331 6153School of Physics and Technology, Wuhan University, Wuhan, 430072 China
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, United States.
| | - Zi Chen
- Division of Thoracic and Cardiac Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Qinqin Huang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
3
|
Research Progress in Isolation and Enrichment of Fetal Cells from Maternal Blood. J CHEM-NY 2022. [DOI: 10.1155/2022/7131241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prenatal diagnosis is an important means of early diagnosis of genetic diseases, which can effectively reduce the risk of birth defects. Free fetal cells, as a carrier of intact fetal genetic material, provide hope for the development of high-sensitivity and high-accuracy prenatal diagnosis technology. However, the number of fetal cells is small and it is difficult to apply clinically. In recent years, noninvasive prenatal diagnosis (NIPD) technology for fetal genetic material in maternal peripheral blood has developed rapidly, which makes it possible to diagnose genetic diseases by fetal cells in maternal peripheral blood. This article reviewed the current status of fetal cell separation and enrichment technology and its application in noninvasive prenatal diagnosis technology.
Collapse
|
4
|
Ito N, Tsukamoto K, Taniguchi K, Takahashi K, Okamoto A, Aoki H, Otera‐Takahashi Y, Kitagawa M, Ogata‐Kawata H, Morita H, Hata K, Nakabayashi K. Isolation and characterization of fetal nucleated red blood cells from maternal blood as a target for single cell sequencing-based non-invasive genetic testing. Reprod Med Biol 2021; 20:352-360. [PMID: 34262404 PMCID: PMC8254165 DOI: 10.1002/rmb2.12392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Although non-invasive prenatal testing (NIPT) based on cell-free DNA (cfDNA) in maternal plasma has been prevailing worldwide, low levels of fetal DNA fraction may lead to false-negative results. Since fetal cells in maternal blood provide a pure source of fetal genomic DNA, we aimed to establish a workflow to isolate and sequence fetal nucleated red blood cells (fNRBCs) individually as a target for NIPT. METHODS Using male-bearing pregnancy cases, we isolated fNRBCs individually from maternal blood by FACS, and obtained their genomic sequence data through PCR screening with a Y-chromosome marker and whole-genome amplification (WGA)-based whole-genome sequencing. RESULTS The PCR and WGA efficiencies of fNRBC candidates were consistently lower than those of control cells. Sequencing data analyses revealed that although the majority of the fNRBC candidates were confirmed to be of fetal origin, many of the WGA-based genomic libraries from fNRBCs were considered to have been amplified from a portion of genomic DNA. CONCLUSIONS We established a workflow to isolate and sequence fNRBCs individually. However, our results demonstrated that, to make cell-based NIPT targeting fNRBCs feasible, cell isolation procedures need to be further refined such that the nuclei of fNRBCs are kept intact.
Collapse
Affiliation(s)
- Noriko Ito
- Department of Maternal‐Fetal BiologyNational Center for Child Health and DevelopmentTokyoJapan
- Department of Pharmacotherapeutics, Course of Medical and Dental SciencesNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Kazuhiro Tsukamoto
- Department of Pharmacotherapeutics, Course of Medical and Dental SciencesNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Kosuke Taniguchi
- Department of Maternal‐Fetal BiologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Ken Takahashi
- Department of Maternal‐Fetal BiologyNational Center for Child Health and DevelopmentTokyoJapan
- Department of Obstetrics and GynecologyThe Jikei University School of MedicineTokyoJapan
| | - Aikou Okamoto
- Department of Obstetrics and GynecologyThe Jikei University School of MedicineTokyoJapan
| | | | | | | | - Hiroko Ogata‐Kawata
- Department of Maternal‐Fetal BiologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Hideaki Morita
- Department of Allergy and Clinical ImmunologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Kenichiro Hata
- Department of Maternal‐Fetal BiologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Kazuhiko Nakabayashi
- Department of Maternal‐Fetal BiologyNational Center for Child Health and DevelopmentTokyoJapan
| |
Collapse
|
5
|
Rosner M, Kolbe T, Hengstschläger M. Fetomaternal microchimerism and genetic diagnosis: On the origins of fetal cells and cell-free fetal DNA in the pregnant woman. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108399. [PMID: 34893150 DOI: 10.1016/j.mrrev.2021.108399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
During pregnancy several types of fetal cells and fetal stem cells, including pregnancy-associated progenitor cells (PAPCs), traffic into the maternal circulation. Whereas they also migrate to various maternal organs and adopt the phenotype of the target tissues to contribute to regenerative processes, fetal cells also play a role in the pathogenesis of maternal diseases. In addition, cell-free fetal DNA (cffDNA) is detectable in the plasma of pregnant women. Together they constitute the well-known phenomenon of fetomaternal microchimerism, which inspired the concept of non-invasive prenatal testing (NIPT) using maternal blood. An in-depth knowledge concerning the origins of these fetal cells and cffDNA allows a more comprehensive understanding of the biological relevance of fetomaternal microchimerism and has implications for the ongoing expansion of resultant clinical applications.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria; Department IFA Tulln, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Zhang H, Yu X, Liu Y, Lin B, Jiang M, Song J, Di W, Zhu Z, Yang C. HUNTER-Chip: Bioinspired Hierarchically Aptamer Structure-Based Circulating Fetal Cell Isolation for Non-Invasive Prenatal Testing. Anal Chem 2021; 93:7235-7241. [PMID: 33949845 DOI: 10.1021/acs.analchem.1c00330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Isolation and genetic analysis of circulating fetal cells from billions of maternal cells in peripheral blood are the cornerstone of fetal cell-based non-invasive prenatal testing. Inspired by the hierarchically multivalent architecture for enhanced capture of nature, an aptamer-based Hierarchically mUltivalent aNTibody mimic intERface (HUNTER) was designed with a tremendous avidity effect for highly efficient capture and non-destructive release of fetal cells. It was engineered by grafting Y-shaped DNA nanostructures to a linear polymer chain, creating a flexible polymer chain with bivalent aptamer side chains. This hierarchical arrangement of the aptamer ensures morphological complementarity, collective multiple-site interaction, and multivalent recognition between the aptamer and target cells. In combination with a deterministic lateral displacement (DLD)-patterned microdevice named as HUNTER-Chip, it achieves a binding affinity over 65-fold and a capture efficiency over 260%-fold due to the combination of hierarchically designed aptamers and frequent cell-ligand collision created by DLD. Moreover, a nuclease-assisted cell release strategy facilitates the release of fetal cells for gene analysis, such as fluorescence in situ hybridization. With the advantages of high affinity, excellent capture efficiency, and compatible downstream analysis, the HUNTER-Chip holds great potential for non-invasive prenatal diagnosis.
Collapse
Affiliation(s)
- Huimin Zhang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemical of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Xiyuan Yu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemical of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilong Liu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemical of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bingqian Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemical of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Meng Jiang
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Juan Song
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemical of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wen Di
- Department of Obstetrics and Gynecology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai 200127, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemical of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.,MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemical of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
7
|
Wei X, Chen K, Guo S, Liu W, Zhao XZ. Emerging Microfluidic Technologies for the Detection of Circulating Tumor Cells and Fetal Nucleated Red Blood Cells. ACS APPLIED BIO MATERIALS 2021; 4:1140-1155. [DOI: 10.1021/acsabm.0c01325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoyun Wei
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Key Laboratory of Medical Information and 3D Bioprinting of Zhejiang Province, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Keke Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shishang Guo
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
8
|
Nemescu D, Constantinescu D, Gorduza V, Carauleanu A, Caba L, Navolan DB. Comparison between paramagnetic and CD71 magnetic activated cell sorting of fetal nucleated red blood cells from the maternal blood. J Clin Lab Anal 2020; 34:e23420. [PMID: 32588489 PMCID: PMC7521243 DOI: 10.1002/jcla.23420] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 11/28/2022] Open
Abstract
Background Fetal nucleated red blood cells (NRBC) from maternal circulation are rare events but can be enriched and used to evaluate the genetics of the fetus. We compared two simplified selection methods of the fetal cells from the maternal blood. Methods We isolated fetal cells from maternal blood through double‐density gradient centrifugation followed either by magnetic cell selection, based on the paramagnetic proprieties of the NRBC hemoglobin, converted to methemoglobin, or by a positive magnetic‐activated cell sorting (MACS) enrichment, using anti‐CD71 monoclonal antibodies. Finally, the cells were identified through fluorescence in situ hybridization (FISH) with specific chromosome X and Y probes. Results We processed 10 mL of peripheral blood samples from 27 pregnant women with singleton normal male fetuses. Hemoglobin‐based enrichment isolated significantly more NRBCs: 29.7 × 104 cells than anti‐CD71 MACS: 10.1 × 104 cells (P < .001). The FISH analysis found at least one XY cell in 81.5% and 61.5% of cases, respectively, for paramagnetic and anti‐CD71 selection. Also, the average number of XY cells identified through paramagnetic selection was 5.09 ± 2.5, significantly higher than those observed through CD71 sorting: 3.38 ± 1.7 cells (average ± SE) (P = .03). Conclusion The combination of density gradient centrifugation with paramagnetic selection has the advantage of simplicity and achieves a minimal manipulation and treatment of cells. It yields an increased number of NRBCs and FISH confirmed fetal cells, compared to the anti‐CD71 sorting.
Collapse
Affiliation(s)
- Dragos Nemescu
- Grigore T Popa University of Medicine and Pharmacy, Iasi, Romania
| | | | - Vlad Gorduza
- Grigore T Popa University of Medicine and Pharmacy, Iasi, Romania
| | | | - Lavinia Caba
- Grigore T Popa University of Medicine and Pharmacy, Iasi, Romania
| | | |
Collapse
|
9
|
Zhang H, Yang Y, Liu Y, Wang Y, Ruan W, Song J, Yu X, Wu L, Zhu Z, Hong G, Yang C. Stimuli-Responsive Microfluidic Interface Enables Highly Efficient Capture and Release of Circulating Fetal Cells for Non-Invasive Prenatal Testing. Anal Chem 2020; 92:9281-9286. [PMID: 32450685 DOI: 10.1021/acs.analchem.0c01622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating fetal nucleated cells (CFCs) carrying whole genomic coding of the fetus in maternal blood have been pursued as ideal biomarkers for noninvasive prenatal testing (NIPT). However, a significant limitation is the need to enrich sufficient cells in quantity and purity for fetal genetic disorder diagnosis. This study for the first time demonstrates a stimuli-responsive ligand enabling interface on array patterned microfluidic chip (NIPT-Chip) for high efficient isolation and release of CFCs in untreated whole blood. Deterministic lateral displacement (DLD)-array was patterned in the chip to increase collision frequency between CFCs and surface-anchored antibody to achieve high efficient cell capture. More importantly, the stimuli-responsive interface enables gentle release of captured CFCs through a thiol exchange reaction for downstream gene analysis of NIPT. With the advantages of simple processing, efficient isolation, and gentle release, NIPT-Chip offers great potential for clinical translation of circulating fetal cell-based NIPT.
Collapse
Affiliation(s)
- Huimin Zhang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yuanyuan Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Genetic Testing, Xiamen, 361005, China
| | - Yilong Liu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemical of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yidi Wang
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemical of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Weidong Ruan
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemical of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jia Song
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xiyuan Yu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhi Zhu
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemical of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guolin Hong
- Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, Xiamen Key Laboratory of Genetic Testing, Xiamen, 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.,MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemical of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
10
|
Dong J, Chen JF, Smalley M, Zhao M, Ke Z, Zhu Y, Tseng HR. Nanostructured Substrates for Detection and Characterization of Circulating Rare Cells: From Materials Research to Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903663. [PMID: 31566837 PMCID: PMC6946854 DOI: 10.1002/adma.201903663] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/02/2019] [Indexed: 05/03/2023]
Abstract
Circulating rare cells in the blood are of great significance for both materials research and clinical applications. For example, circulating tumor cells (CTCs) have been demonstrated as useful biomarkers for "liquid biopsy" of the tumor. Circulating fetal nucleated cells (CFNCs) have shown potential in noninvasive prenatal diagnostics. However, it is technically challenging to detect and isolate circulating rare cells due to their extremely low abundance compared to hematologic cells. Nanostructured substrates offer a unique solution to address these challenges by providing local topographic interactions to strengthen cell adhesion and large surface areas for grafting capture agents, resulting in improved cell capture efficiency, purity, sensitivity, and reproducibility. In addition, rare-cell retrieval strategies, including stimulus-responsiveness and additive reagent-triggered release on different nanostructured substrates, allow for on-demand retrieval of the captured CTCs/CFNCs with high cell viability and molecular integrity. Several nanostructured substrate-enabled CTC/CFNC assays are observed maturing from enumeration and subclassification to molecular analyses. These can one day become powerful tools in disease diagnosis, prognostic prediction, and dynamic monitoring of therapeutic response-paving the way for personalized medical care.
Collapse
Affiliation(s)
- Jiantong Dong
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jie-Fu Chen
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew Smalley
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|