1
|
Bhatt P, Sethi K, Gangola S, Bhandari G, Verma A, Adnan M, Singh Y, Chaube S. Modeling and simulation of atrazine biodegradation in bacteria and its effect in other living systems. J Biomol Struct Dyn 2020; 40:3285-3295. [PMID: 33179575 DOI: 10.1080/07391102.2020.1846623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Atrazine is the most commonly used herbicide worldwide in the agricultural system. The increased environmental concentration of the atrazine showed the toxic effects on the non-target living species. Biodegradation of the atrazine is possible with the bacterial systems. The present study investigated biodegradation potential of atrazine degrading bacteria and the impact of atrazine on environmental systems. Model of atrazine fate in ecological systems constructed using the cell designer. The used model further analyzed and simulated to know the biochemistry and physiology of the atrazine in different cellular networks. Topological analysis of the atrazine degradation confirmed the 289 nodes and 300 edges. Our results showed that the overall biomagnification of the atrazine in the different environmental systems. Atrazine is showing toxic effects on humans and plants, whereas degraded by the bacterial systems. To date, no one has analyzed the complete degradation and poisonous effects of the atrazine in the environment. Therefore, this study is useful for overall system biology based modeling and simulation analysis of atrazine in living systems.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Kanika Sethi
- Department of Microbiology, Dolphin (P.G) Institute of Biomedical and Natural Sciences, Dehradun, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University Bhimtal Campus, Uttarakhand, India
| | - Geeta Bhandari
- Department of Biotechnology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Amit Verma
- Department of Biochemistry, College of Basic Science and Humanities, SD Agricultural University, Gujarat, India
| | - Muhammad Adnan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yashpal Singh
- Department of Veterinary Physiology and Biochemistry, G.B Pant University of Agriculture and Technology, Pantnagar, India
| | - Shshank Chaube
- Department of Mathematics, University of Petrolium and Energy Studies, Dehradun, India
| |
Collapse
|
2
|
Bhatt K, Maheshwari DK. Insights into zinc-sensing metalloregulator 'Zur' deciphering mechanism of zinc transportation in Bacillus spp. by modeling, simulation and molecular docking. J Biomol Struct Dyn 2020; 40:764-779. [PMID: 32924811 DOI: 10.1080/07391102.2020.1818625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To comprehend the molecular mechanism of zinc transportation by bacteria tends to be a very complicated and time-consuming method. To date, fragmented and scanty studies are available about the mechanism of zinc transportation at molecular level. So, the present study scrutinizes in silico pathways of zinc fractions transportation, specifically in Bacillus spp. stimulating dynamic performance of zinc. For this, the constructed model reveals Zur to be the prime regulatory transport protein maintaining bacterial survivability at fluctuation in zinc concentrations, thereby attaining zinc homeostasis. Topology for hub nodes displays appropriate evidence of the molecular basis of bacterial zinc imports and exports. Further, the molecular docking reveals interaction of Zur protein with the zinc ligands (ZnCO3 and ZnSO4). By validation of binding affinity, binding energy and docking score via Autodock Vina and X-Score, the ZnSO4 compound was found to possess excellent stability in the active pocket site of Zur, stating Zur-ZnSO4 complex to be the most potential. Owing to which, the Zur-ZnSO4 complex was selected and subjected to molecular dynamics simulation, revealing RMSD, RG, RMSF, SASA and interaction energy for 20 ns trajectory period. Henceforth,the study provides novel insight into revealing the unrecognized Zur protein pathway, assisting zinc transportation, besides retaining best interaction with ZnSO4 ligand. This is the first system biology where molecular docking and molecular dynamics simulation-based investigation decipher the role of Zur transport protein system and interaction of its amino acids with zinc ligands in a simpler and economical form via in silico techniques.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kalpana Bhatt
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar, Uttarakhand, India
| | - Dinesh Kumar Maheshwari
- Department of Botany and Microbiology, Gurukula Kangri University, Haridwar, Uttarakhand, India
| |
Collapse
|
3
|
Alcolea Palafox M, Franklin Benial AM, K Rastogi V. Biomolecules of 2-Thiouracil, 4-Thiouracil and 2,4-Dithiouracil: A DFT Study of the Hydration, Molecular Docking and Effect in DNA:RNAMicrohelixes. Int J Mol Sci 2019; 20:E3477. [PMID: 31311161 PMCID: PMC6678171 DOI: 10.3390/ijms20143477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
The molecular structure of 2-thiouracil, 4-thiouracil and 2,4-dithiouracil was analyzed under the effect of the first and second hydration shell by using the B3LYP density functional (DFT) method, and the results were compared to those obtained for the uracil molecule. A slight difference in the water distribution appears in these molecules. On the hydration of these molecules several trends in bond lengths and atomic charges were established. The ring in uracil molecule appears easier to be deformed and adapted to different environments as compared to that when it is thio-substituted. Molecular docking calculations of 2-thiouracil against three different pathogens: Bacillus subtilis, Escherichia coli and Candida albicans were carried out. Docking calculations of 2,4-dithiouracil ligand with various targeted proteins were also performed. Different DNA: RNA hybrid microhelixes with uridine, 2-thiouridine, 4-thiouridine and 2,4-dithiouridine nucleosides were optimized in a simple model with three nucleotide base pairs. Two main types of microhelixes were analyzed in detail depending on the intramolecular H-bond of the 2'-OH group. The weaker Watson-Crick (WC) base pair formed with thio-substituted uracil than with unsubstituted ones slightly deforms the helical and backbone parameters, especially with 2,4-dithiouridine. However, the thio-substitution significantly increases the dipole moment of the A-type microhelixes, as well as the rise and propeller twist parameters.
Collapse
Affiliation(s)
- M Alcolea Palafox
- Departamento de Química-Física, Facultad de CienciasQuímicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | | | - V K Rastogi
- Indian Spectroscopy Society, KC 68/1, Old Kavinagar, Ghaziabad 201002, India
| |
Collapse
|
4
|
Bhatt P, Pal K, Bhandari G, Barh A. Modelling of the methyl halide biodegradation in bacteria and its effect on environmental systems. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 158:88-100. [PMID: 31378365 DOI: 10.1016/j.pestbp.2019.04.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Methyl halide group of pesticides are being used widely in past decades as fumigant but due to their hazardous effect, these pesticides are not sold directly. They are volatile and gaseous in nature and may easily come in the contact of trophosphere and stratosphere. In troposphere, they are harmful to the living beings; nevertheless, in stratosphere they react with ozone and degrade the ozone layers. In this study, we have investigated the in-silico pathways of methyl halide and its toxic effect on living systems like pest, humans and environment. Till date, limited studies provide the understanding of degradation of methyl halide and its effect on the environment. This leads to availability of scanty information for overall bio-magnifications of methyl halides at molecular and cellular level. The model developed in the present study explains how a volatile toxic compound not only affects living systems on earth but also on environmental layers. Hub nodes were also evaluated by investigating the developed model topologically. Methyl transferase system is identified as promising enzyme in response to degradation of methyl halides.
Collapse
Affiliation(s)
- Pankaj Bhatt
- Department of Microbiology, Dolphin (P.G) Institute of Biomedical and Natural Sciences Dehradun, Uttarakhand, India.
| | - Kalyanbrata Pal
- Department of Microbiology, Dolphin (P.G) Institute of Biomedical and Natural Sciences Dehradun, Uttarakhand, India
| | - Geeta Bhandari
- Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| | - Anupam Barh
- ICAR-Directorate of Mushroom Research, Solan, H.P, India
| |
Collapse
|
5
|
Pathak RK, Baunthiyal M, Pandey N, Pandey D, Kumar A. Modeling of the jasmonate signaling pathway in Arabidopsis thaliana with respect to pathophysiology of Alternaria blight in Brassica. Sci Rep 2017; 7:16790. [PMID: 29196636 PMCID: PMC5711873 DOI: 10.1038/s41598-017-16884-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/08/2017] [Indexed: 01/01/2023] Open
Abstract
The productivity of Oilseed Brassica, one of the economically important crops of India, is seriously affected by the disease, Alternaria blight. The disease is mainly caused by two major necrotrophic fungi, Alternaria brassicae and Alternaria brassicicola which are responsible for significant yield losses. Till date, no resistant source is available against Alternaria blight, hence plant breeding methods can not be used to develop disease resistant varieties. Jasmonate mediated signalling pathway, which is known to play crucial role during defense response against necrotrophs, could be strengthened in Brassica plants to combat the disease. Since scanty information is available in Brassica-Alternaria pathosystems at molecular level therefore, in the present study efforts have been made to model jasmonic acid pathway in Arabidopsis thaliana to simulate the dynamic behaviour of molecular species in the model. Besides, the developed model was also analyzed topologically for investigation of the hubs node. COI1 is identified as one of the promising candidate genes in response to Alternaria and other linked components of plant defense mechanisms against the pathogens. The findings from present study are therefore informative for understanding the molecular basis of pathophysiology and rational management of Alternaria blight for securing food and nutritional security.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Biotechnology, Govind Ballabh Pant Institute of Engineering & Technology, Pauri Garhwal, 246194, Uttarakhand, India
| | - Mamta Baunthiyal
- Department of Biotechnology, Govind Ballabh Pant Institute of Engineering & Technology, Pauri Garhwal, 246194, Uttarakhand, India.
| | - Neetesh Pandey
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute (IASRI), Pusa, 110012, New Delhi, India
| | - Dinesh Pandey
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, 263145, India
| | - Anil Kumar
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, 263145, India.
| |
Collapse
|
6
|
Römer M, Eichner J, Dräger A, Wrzodek C, Wrzodek F, Zell A. ZBIT Bioinformatics Toolbox: A Web-Platform for Systems Biology and Expression Data Analysis. PLoS One 2016; 11:e0149263. [PMID: 26882475 PMCID: PMC4801062 DOI: 10.1371/journal.pone.0149263] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/30/2016] [Indexed: 12/20/2022] Open
Abstract
Bioinformatics analysis has become an integral part of research in biology. However, installation and use of scientific software can be difficult and often requires technical expert knowledge. Reasons are dependencies on certain operating systems or required third-party libraries, missing graphical user interfaces and documentation, or nonstandard input and output formats. In order to make bioinformatics software easily accessible to researchers, we here present a web-based platform. The Center for Bioinformatics Tuebingen (ZBIT) Bioinformatics Toolbox provides web-based access to a collection of bioinformatics tools developed for systems biology, protein sequence annotation, and expression data analysis. Currently, the collection encompasses software for conversion and processing of community standards SBML and BioPAX, transcription factor analysis, and analysis of microarray data from transcriptomics and proteomics studies. All tools are hosted on a customized Galaxy instance and run on a dedicated computation cluster. Users only need a web browser and an active internet connection in order to benefit from this service. The web platform is designed to facilitate the usage of the bioinformatics tools for researchers without advanced technical background. Users can combine tools for complex analyses or use predefined, customizable workflows. All results are stored persistently and reproducible. For each tool, we provide documentation, tutorials, and example data to maximize usability. The ZBIT Bioinformatics Toolbox is freely available at https://webservices.cs.uni-tuebingen.de/.
Collapse
Affiliation(s)
- Michael Römer
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- * E-mail:
| | - Johannes Eichner
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Andreas Dräger
- Department of Computer Science, University of Tübingen, Tübingen, Germany
- Department of Bioengineering, University of California, San Diego, San Diego, California, United States of America
| | - Clemens Wrzodek
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Finja Wrzodek
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Andreas Zell
- Department of Computer Science, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
A holistic approach for integration of biological systems and usage in drug discovery. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s13721-015-0111-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Dräger A, Zielinski DC, Keller R, Rall M, Eichner J, Palsson BO, Zell A. SBMLsqueezer 2: context-sensitive creation of kinetic equations in biochemical networks. BMC SYSTEMS BIOLOGY 2015; 9:68. [PMID: 26452770 PMCID: PMC4600286 DOI: 10.1186/s12918-015-0212-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/15/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND The size and complexity of published biochemical network reconstructions are steadily increasing, expanding the potential scale of derived computational models. However, the construction of large biochemical network models is a laborious and error-prone task. Automated methods have simplified the network reconstruction process, but building kinetic models for these systems is still a manually intensive task. Appropriate kinetic equations, based upon reaction rate laws, must be constructed and parameterized for each reaction. The complex test-and-evaluation cycles that can be involved during kinetic model construction would thus benefit from automated methods for rate law assignment. RESULTS We present a high-throughput algorithm to automatically suggest and create suitable rate laws based upon reaction type according to several criteria. The criteria for choices made by the algorithm can be influenced in order to assign the desired type of rate law to each reaction. This algorithm is implemented in the software package SBMLsqueezer 2. In addition, this program contains an integrated connection to the kinetics database SABIO-RK to obtain experimentally-derived rate laws when desired. CONCLUSIONS The described approach fills a heretofore absent niche in workflows for large-scale biochemical kinetic model construction. In several applications the algorithm has already been demonstrated to be useful and scalable. SBMLsqueezer is platform independent and can be used as a stand-alone package, as an integrated plugin, or through a web interface, enabling flexible solutions and use-case scenarios.
Collapse
Affiliation(s)
- Andreas Dräger
- Systems Biology Research Group, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0412, CA, USA.
- Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Sand 1, Tübingen, 72076, Germany.
| | - Daniel C Zielinski
- Systems Biology Research Group, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0412, CA, USA.
| | - Roland Keller
- Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Sand 1, Tübingen, 72076, Germany.
| | - Matthias Rall
- Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Sand 1, Tübingen, 72076, Germany.
| | - Johannes Eichner
- Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Sand 1, Tübingen, 72076, Germany.
| | - Bernhard O Palsson
- Systems Biology Research Group, University of California, San Diego, 9500 Gilman Drive, La Jolla, 92093-0412, CA, USA.
- Novo Nordisk Foundation Center for Biosustainability, Kogle Allé 6, Hørsholm, 2970, Denmark.
| | - Andreas Zell
- Center for Bioinformatics Tuebingen (ZBIT), University of Tuebingen, Sand 1, Tübingen, 72076, Germany.
| |
Collapse
|
9
|
|
10
|
Gupta MK, Singh DB, Shukla R, Misra K. A comprehensive metabolic modeling of thyroid pathway in relation to thyroid pathophysiology and therapeutics. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:584-93. [PMID: 24044365 DOI: 10.1089/omi.2013.0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The thyroid pathway represents a complex interaction of different glands for thyroid hormone synthesis. Thyrotropin releasing hormone is synthesized in the hypothalamus and regulates thyrotropin stimulating hormone gene expression in the pituitary gland. In order to understand the complexity of the thyroid pathways, and using experimental data retrieved from the biomedical literature (e.g., NCBI, HuGE Navigator, Protein Data Bank, and KEGG), we constructed a metabolic map of the thyroid hormone pathway at a molecular level and analyzed it topologically. A total of five hub nodes were predicted in regards to the transcription thyroid receptor (TR), cAMP response element-binding protein (CREB), signal transducer and activator of transcription 3 (STAT 3), nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB), and activator protein 1 (AP-1) as being potentially important in study of thyroid disorders and as novel putative therapeutic drug targets. Notably, the thyroid receptor is a highly connected hub node and currently used as a therapeutic target in hypothyroidism. Our analysis represents the first comprehensive description of the thyroid pathway, which pertains to understanding the function of the protein and gene interaction networks. The findings from this study are therefore informative for pathophysiology and rational therapeutics of thyroid disorders.
Collapse
Affiliation(s)
- Manish Kumar Gupta
- 1 Department of Bioinformatics, University Institute of Engineering and Technology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, Uttar Pradesh, India
| | | | | | | |
Collapse
|
11
|
Gupta SK, Singh S, Nischal A, Pant KK, Seth PK. Molecular docking and simulation studies towards exploring antiviral compounds against envelope protein of Japanese encephalitis virus. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13721-013-0040-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Chandrasekaran P, Doss CGP, Nisha J, Sethumadhavan R, Shanthi V, Ramanathan K, Rajasekaran R. In silico analysis of detrimental mutations in ADD domain of chromatin remodeling protein ATRX that cause ATR-X syndrome: X-linked disorder. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s13721-013-0031-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|