1
|
Grząbka-Zasadzińska A, Woźniak M, Kaszubowska-Rzepka A, Baranowska M, Sip A, Ratajczak I, Borysiak S. Enhancing Sustainability and Antifungal Properties of Biodegradable Composites: Caffeine-Treated Wood as a Filler for Polylactide. MATERIALS (BASEL, SWITZERLAND) 2024; 17:698. [PMID: 38592001 PMCID: PMC10856079 DOI: 10.3390/ma17030698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 04/10/2024]
Abstract
This study investigates the suitability of using caffeine-treated and untreated black cherry (Prunus serotina Ehrh.) wood as a polylactide filler. Composites containing 10%, 20%, and 30% filler were investigated in terms of increasing the nucleating ability of polylactide, as well as enhancing its resistance to microorganisms. Differential scanning calorimetry studies showed that the addition of caffeine-treated wood significantly altered the crystallization behavior of the polymer matrix, increasing its crystallization temperature and degree of crystallinity. Polarized light microscopic observations revealed that only the caffeine-treated wood induced the formation of transcrystalline structures in the polylactide. Incorporation of the modified filler into the matrix was also responsible for changes in the thermal stability and decreased hydrophilicity of the material. Most importantly, the use of black cherry wood treated with caffeine imparted antifungal properties to the polylactide-based composite, effectively reducing growth of Fusarium oxysporum, Fusarium culmorum, Alternaria alternata, and Trichoderma viride. For the first time, it was reported that treatment of wood with a caffeine compound of natural origin alters the supermolecular structure, nucleating abilities, and imparts antifungal properties of polylactide/wood composites, providing promising insights into the structure-properties relationship of such composites.
Collapse
Affiliation(s)
- Aleksandra Grząbka-Zasadzińska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (A.G.-Z.); (A.K.-R.)
| | - Magdalena Woźniak
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland; (M.W.); (I.R.)
| | - Agata Kaszubowska-Rzepka
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (A.G.-Z.); (A.K.-R.)
| | - Marlena Baranowska
- Department of Silviculture, Poznan University of Life Sciences, Wojska Polskiego 42, 60-625 Poznan, Poland;
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-625 Poznan, Poland;
| | - Izabela Ratajczak
- Department of Chemistry, Poznan University of Life Sciences, Wojska Polskiego 75, 60-625 Poznan, Poland; (M.W.); (I.R.)
| | - Sławomir Borysiak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland; (A.G.-Z.); (A.K.-R.)
| |
Collapse
|
2
|
Yang J, Xu L. Electrospun Nanofiber Membranes with Various Structures for Wound Dressing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6021. [PMID: 37687713 PMCID: PMC10488510 DOI: 10.3390/ma16176021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Electrospun nanofiber membranes (NFMs) have high porosity and a large specific surface area, which provide a suitable environment for the complex and dynamic wound healing process and a large number of sites for carrying wound healing factors. Further, the design of the nanofiber structure can imitate the structure of the human dermis, similar to the natural extracellular matrix, which better promotes the hemostasis, anti-inflammatory and healing of wounds. Therefore, it has been widely studied in the field of wound dressing. This review article overviews the development of electrospinning technology and the application of electrospun nanofibers in wound dressings. It begins with an introduction to the history, working principles, and transformation of electrospinning, with a focus on the selection of electrospun nanofiber materials, incorporation of functional therapeutic factors, and structural design of nanofibers and nanofiber membranes. Moreover, the wide application of electrospun NFMs containing therapeutic factors in wound healing is classified based on their special functions, such as hemostasis, antibacterial and cell proliferation promotion. This article also highlights the structural design of electrospun nanofibers in wound dressing, including porous structures, bead structures, core-shell structures, ordered structures, and multilayer nanofiber membrane structures. Finally, their advantages and limitations are discussed, and the challenges faced in their application for wound dressings are analyzed to promote further research in this field.
Collapse
Affiliation(s)
- Jiahao Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
| | - Lan Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China;
- Jiangsu Engineering Research Center of Textile Dyeing and Printing for Energy Conservation, Discharge Re-Duction and Cleaner Production (ERC), Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24087473. [PMID: 37108637 PMCID: PMC10138923 DOI: 10.3390/ijms24087473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Alicja Macyk
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
4
|
Pandey K, Saha S. Encapsulation of zero valent iron nanoparticles in biodegradable amphiphilic janus particles for groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130501. [PMID: 36462240 DOI: 10.1016/j.jhazmat.2022.130501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/06/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Reactive Zero Valent Iron (ZVI) nanoparticles have been widely explored for in situ ground water remediation to degrade both non-aqueous phase liquid (NAPL) and water-soluble contaminants. However, they usually suffer from rapid oxidation and severe agglomerations restricting their delivery at NAPL/water interface. Aim of this study was to encapsulate the ZVI nanoparticles (50 nm) in amphiphilic bicompartmental Janus particles (711 ± 11 nm) fabricated by EHDC (electrohydrodynamic co-jetting). The dual compartments were composed of PLA (polylactic acid) and a blend of PLA, PE (poly (hexamethylene 2,3-O-isopropylidenetartarate) and PAG (photo acid generator). Upon UV irradiation, PAG releases acid to unmask hydroxyl groups present in PE to make only PE compartment hydrophilic. The entrapped ZVI nanoparticles (20 w/w%; ∼99 % encapsulation efficiency) were observed to degrade both hydrophilic (methyl orange dye) and hydrophobic (trichloro ethylene) contaminants. UV treated Janus particles provided stable dispersion (dispersed up to 3 weeks in water), prolonged reactivity (∼24 days in contaminated water), and recyclability (recyclable up to 9 times) as compared to non-treated ones. In addition, the amphiphilic Janus particles demonstrated high transportability (>95%) through porous media (sand column) with very low attachment efficiency (0.07), making them a promising candidate to target contaminants at NAPL/water interface prevailed in groundwater.
Collapse
Affiliation(s)
- Kalpana Pandey
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology, Delhi, India.
| |
Collapse
|
5
|
Dhingra S, Gaur V, Bhattacharya J, Saha S. Photoinduced micropatterning on biodegradable aliphatic polyester surfaces for anchoring dual brushes and its application in bacteria and cell patterning. J Mater Chem B 2022; 11:83-98. [PMID: 36226487 DOI: 10.1039/d2tb01477g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In view of intrinsic challenges encountered in surface patterning on actual biomaterials such as the ones based on biodegradable polymers, we have demonstrated an innovative strategy to create micro-patterns on the surface of tartaric acid based aliphatic polyester P (poly(hexamethylene 2,3-O-isoprpylidentartarate)) without significant loss of its molecular weight. Around 10 wt% PAG (photoacid generator, 2-(4-methoxystyryl)-4,6-bis(trichloromethyl)-1,3,5-triazine) was purposefully encapsulated in a polyester matrix comprising of P and PLA (polylactide) at a ratio of 5 : 95. With the help of a photomask, selective areas of the matrix were exposed to UV radiation at 395 nm for 25 min to trigger the acid release from PAG entrapped unmasked areas for generating hydroxyl functionality that was later converted to an ATRP (atom transfer radical polymerization) initiating moiety on the irradiated domain of P. In subsequent steps, spatio-selective surface modification by surface initiated ATRP was carried out to generate an alternate pattern of polyPEGMA (poly(ethylene glycol)methyl ether methacrylate) and polyDMAPS (poly(3-dimethyl-(methacryloyloxyethyl)ammonium propane sulfonate)) brushes on the matrix. The patterned surface modified with dual brushes was found to be antifouling in nature (rejection of >97% of proteins). Strikingly, an alternate pattern of live bacterial cells (E. coli and S. aureus) was evident and a relatively high population of bacteria was found on the polyPEGMA brush modified domain. However, a complete reverse pattern was visible in the case of L929 mouse fibroblast cells, i.e., cells were found to predominantly adhere to and proliferate on the zwitterionic brush modified surface. An attempt was made to discuss a plausible mechanism of selective cell adhesion on the zwitterionic brush domain. This novel strategy employed on the biodegradable polymer surface provides an easy and straightforward way to micro-pattern various cells, bacteria, etc. on biodegradable substrates which hold great potential to function as biochips, diagnostics, bacteria/cell microarrays, etc.
Collapse
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, India.
| | - Vidit Gaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India
| | | | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
6
|
Dutta S, Shreyash N, Satapathy BK, Saha S. Advances in design of polymer brush functionalized inorganic nanomaterials and their applications in biomedical arena. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1861. [PMID: 36284373 DOI: 10.1002/wnan.1861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
Grafting of polymer brush (assembly of polymer chains tethered to the substrate by one end) is emerging as one of the most viable approach to alter the surface of inorganic nanomaterials. Inorganic nanomaterials despite their intrinsic functional superiority, their applications remain restricted due to their incompatibility with organic or biological moieties vis-à-vis agglomeration issues. To overcome such a shortcoming, polymer brush modified surfaces of inorganic nanomaterials have lately proved to be of immense potential. For example, polymer brush-modified inorganic nanomaterials can act as efficient substrates/platforms in biomedical applications, ranging from drug-delivery to protein-array due to their integrated advantages such as amphiphilicity, stimuli responsiveness, enhanced biocompatibility, and so on. In this review, the current state of the art related to polymer brush-modified inorganic nanomaterials focusing, not only, on their synthetic strategies and applications in biomedical field but also the architectural influence of polymer brushes on the responsiveness properties of modified nanomaterials have comprehensively been discussed and its associated future perspective is also presented. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Soumyadip Dutta
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| | - Nehil Shreyash
- Rajiv Gandhi Institute of Petroleum Technology Jais Uttar Pradesh India
| | - Bhabani Kumar Satapathy
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| | - Sampa Saha
- Department of Materials Science and Engineering Indian Institute of Technology Delhi Delhi India
| |
Collapse
|
7
|
Dhingra S, Gaur V, Saini V, Rana K, Bhattacharya J, Loho T, Ray S, Bajaj A, Saha S. Cytocompatible, soft and thick brush-modified scaffolds with prolonged antibacterial effect to mitigate wound infections. Biomater Sci 2022; 10:3856-3877. [PMID: 35678619 DOI: 10.1039/d2bm00245k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Biomedical device or implant-associated infections caused by pathogenic bacteria are a major clinical issue, and their prevention and/or treatment remains a challenging task. Infection-resistant antimicrobial coatings with impressive cytocompatibility offer a step towards addressing this problem. Herein, we report a new strategy for constructing highly antibacterial as well as cytocompatible mixed polymer brushes onto the surface of 3D printed scaffold made of biodegradable tartaric acid-based aliphatic polyester blends. The mixed brushes were nothing but a combination of poly(3-dimethyl-(methacryloyloxyethyl) ammonium propane sulfonate) (polyDMAPS) and poly((oligo ethylene glycol) methyl ether methacrylate) (polyPEGMA) with varying chain length (n) of the ethylene glycol unit (n = 1, 6, 11, and 21). Both homo and copolymeric brushes of polyDMAPS with polyPEGMA exhibited antibacterial efficacy against both Gram positive and Gram negative pathogens such as E. coli (Escherichia coli) and S. aureus (Staphylococcus aureus) because of the combined action of bacteriostatic effects originating from strongly hydrated layers present in zwitterionic (polyDMAPS) and hydrophilic (polyPEGMA) copolymer brushes. Interestingly, a mixed polymer brush comprising polyDMAPS and polyPEGMA (ethylene glycol chain unit of 21) at 50/50 ratio provided zero bacterial growth and almost 100% cytocompatibility (tested using L929 mouse fibroblast cells), making the brush-modified biodegradable substrate an excellent choice for an infection-resistant and cytocompatible surface. An attempt was made to understand their extraordinary performance with the help of contact angle, surface charge analysis and nanoindentation study, which revealed the formation of a hydrophilic, almost neutral, very soft surface (99.99% reduction in hardness and modulus) after modification with the mixed brushes. This may completely suppress bacterial adhesion. Animal studies demonstrated that these brush-modified scaffolds are biocompatible and can mitigate wound infections. Overall, this study shows that the fascinating combination of an infection-resistant and cytocompatible surface can be generated on biodegradable polymeric surfaces by modulating the surface hardness, flexibility and hydrophilicity by selecting appropriate functionality of the copolymeric brushes grafted onto them, making them ideal non-leaching, anti-infective, hemocompatible and cytocompatible coatings for biodegradable implants.
Collapse
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, India.
| | - Vidit Gaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, India
| | - Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre For Biotechnology, India
| | - Kajal Rana
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre For Biotechnology, India
| | | | - Thomas Loho
- Department of Chemical and Materials Engineering, The University of Auckland, New Zealand Institute for Minerals to Materials Research, India
| | - Sudip Ray
- Department of Chemical and Materials Engineering, The University of Auckland, New Zealand Institute for Minerals to Materials Research, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre For Biotechnology, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, India.
| |
Collapse
|
8
|
Ifra, Thattaru Thodikayil A, Saha S. Compositionally Anisotropic Colloidal Surfactant Decorated with Dual Metallic Nanoparticles as a Pickering Emulsion Stabilizer and Their Application in Catalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23436-23451. [PMID: 35536242 DOI: 10.1021/acsami.2c03255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We aim to introduce compositionally anisotropic Janus particles, hemispheres of which was modified by hydrophilic poly(2-dimethyl amino ethyl methacrylate) [poly(DMAEMA)] brushes to display amphiphilic surfactant-type characteristics. Acquired by the electrohydrodynamic co-jetting technique, these colloidal surfactants were employed to stabilize octanol/water-based Pickering emulsion, which shows prolonged stability for more than 4 months. To explore their potential as the interfacial catalyst, iron(0) nanoparticles were incorporated in one hemisphere during electrojetting, whereas gold nanoparticles (GNPs) were patched onto the surface of the other hemisphere, which was previously modified by the poly(DMAEMA) brush. Ultimately, simultaneous rapid reduction (100% conversion in 1 min) of p-nitrophenol or methyl orange (MO) by GNPs in the aqueous phase and dechlorination of trichloroethylene (a hazardous chlorinated solvent waste) present in the octanol phase were accomplished at the organic-water interface stabilized by the Janus particles decorated by dual metallic nanoparticles. In addition, facile recovery and recyclability of the catalyst were also achieved. The novel colloidal surfactant demonstrated in this study may open up a new avenue to accomplish catalysis of several organic reactions occurring at the water-oil interface.
Collapse
Affiliation(s)
- Ifra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
9
|
Dhingra S, Sharma S, Saha S. Infection Resistant Surface Coatings by Polymer Brushes: Strategies to Construct and Applications. ACS APPLIED BIO MATERIALS 2022; 5:1364-1390. [DOI: 10.1021/acsabm.1c01006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shaifali Dhingra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shivangi Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
10
|
Verma M, Rana A, Vidyasagar KEC, Kalyansundaram D, Saha S. Protein Patterning on Microtextured Polymeric Nano-brush Templates Obtained By Nanosecond Fibre Laser. Macromol Biosci 2022; 22:e2100454. [PMID: 35102705 DOI: 10.1002/mabi.202100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/28/2022] [Indexed: 11/11/2022]
Abstract
Micropatterned polymer brushes have attracted attention in several biomedical areas, i.e., tissue engineering, protein microarray, biosensors etc., for precise arrangement of biomolecules. Herein, we report a facile and scalable approach to create microtextured polymer brushes with the ability to generate different type of protein patterns. Nanosecond fibre laser was exploited to generate micropatterns on polyPEGMA (poly(ethylene glycol) methacrylate) brush modified Ti alloy substrate. Surface initiated atom transfer radical polymerisation was employed to grow PolyPEGMA brush (11-87 nm thick) on Ti alloy surface immobilized with initiator having an initiator density (σ*) of 1.5 initiators/nm2 . Polymer brushes were then selectively laser ablated and their presence on non-textured area was confirmed by atomic force microscopy, fluorescence microscopy and X-ray photoelectron spectroscopy. Spatial orientation of biomolecules was first achieved by non-specific protein adsorption on areas ablated by the laser, via physisorption. Further, patterned brushes of polyPEGMA were modified to activated ester that gave rise to protein conjugation specifically on non-laser ablated brush areas. Moreover, the laser ablated brush modified patterned template was also successfully utilized for generating alternate patterns of bacteria. This promising technique can be further extended to create interesting patterns of several biomolecules which are of great interest to biomedical research community. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Meenakshi Verma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - Abhishek Rana
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - K E Ch Vidyasagar
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - Dinesh Kalyansundaram
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Delhi, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
| |
Collapse
|
11
|
Ifra, Singh A, Saha S. High Adsorption of α-Glucosidase on Polymer Brush-Modified Anisotropic Particles Acquired by Electrospraying-A Combined Experimental and Simulation Study. ACS APPLIED BIO MATERIALS 2021; 4:7431-7444. [PMID: 35006717 DOI: 10.1021/acsabm.1c00682] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this particular contribution, we aim to immobilize a model enzyme such as α-glucosidase onto poly(DMAEMA) [poly(2-dimethyl amino ethyl methacrylate)] brush-modified anisotropic (cup- and disc-shaped) biocompatible polymeric particles. The anisotropic particles comprising a blend of PLA [poly(lactide)] and poly(MMA-co-BEMA) [poly((methyl methacrylate)-co-(2-(2-bromopropionyloxy) ethyl methacrylate)] were acquired by electrospraying, a scalable and convenient technique. We have also demonstrated the role of a swollen polymer brush grafted on the surface of cup-/disc-shaped particles via surface-initiated atom transfer radical polymerization in immobilizing an unprecedentedly high loading of enzyme [441 mg/g (cup)-589 mg/g (disc) of particles, 15-20 times higher than that of the literature-reported system] as compared to non-brush-modified particles. Circular dichroism spectroscopy was used to predict the structural changes of the enzyme upon immobilization onto the carrier particles. An enormously high amount of enzymes with preserved activity (∼85 ± 13% for cups and ∼78 ± 15% for discs) was found to adhere onto brush-modified particles at pH 7 via electrostatic adsorption. These findings were further explored at the atomistic level using a coarse-grained dissipative particle dynamics simulation approach, which exhibited excellent correlation with experimental results. In addition, accelerated particle separation was also achieved via magnetic force-induced aggregation within 20 min (without a centrifuge) by incorporating magnetic nanoparticles into disc-shaped particles while electrojetting. This further strengthens the technical feasibility of the process, which holds immense potential to be applied for various enzymes intended for several applications.
Collapse
Affiliation(s)
- Ifra
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
12
|
Dhingra S, Joshi A, Singh N, Saha S. Infection resistant polymer brush coating on the surface of biodegradable polyester. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111465. [DOI: 10.1016/j.msec.2020.111465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/06/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
|
13
|
Maleki H, Semnani Rahbar R, Nazir A. Improvement of physical and mechanical properties of electrospun poly(lactic acid) nanofibrous structures. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00844-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|